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Abstract. The quarkonium spectroscopy has been studied by considering a non-relativistic 
potential which includes the QCD vacuum polarization corrections. The potential consists of a 
short-range 2-loop QCD potential matched to a Martin-type power law potential for large 
distances. The Poggio-Schnitzer correction to the leptonic decay width has also been included. 
The energy levels, leptonic decay widths and El transition rates of ~, and T families have been 
calculated and have been found to be in good agreement with experimental results. The 
toponium spectroscopy has also been studied for the range of M, values suggested by the 
recent jet events observed by the UA 1 collaboration. The contribution of the decay through a 
virtual Z ° has also been included in the calculation. The potential seems to provide a very good 
non-relativistic description of the quarkonium systems. 

geywords. Quarkonia; vacuum polarization corrections; leptonic decay widths; El trans- 
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1. Introduct ion 

The vacuum polarization corrections to the annihilation rates of  heavy vector mesons 
to lepton pairs have recently been studied by many authors (Billoire and Morel 1978; 
Celmaster et al 1978; Eichten et al 1976; Eichten and Gottfried 1977; Poggio and 
Schnitzer 1978, 1979a and b). It has been pointed out that even for the non-relativistic 
treatment of  the quark antiquark (QQ) systems, two different cases may arise, 
depending on the characteristic length scales of  the bound Q~) states, where the 
corrections are to be treated differently. Thus for cases where the QQ spectroscopy is 
determined essentially by the potential at distances less than about  0-1 fm, the 
corrections can be calculated by the perturbative quantum chromodynamics (QCD). 
But for extended QQ bound states, the spectroscopy is determined mostly by the 
potential at larger distances and the non-perturbative effects of  the confinement 
potential must also be considered. It is, therefore, expected that the vacuum 
polarization correction to the annihilation rates of  ~, and Y families cannot be 
determined by perturbative Q C D  alone. Therefore, one can hope to obtain only model- 
dependent results. The problem has been studied with the help of  a Bethe-Salpeter 
equation which also provides a f ramework for estimating the relativistic corrections 
(Durand and Durand 1982; Keung and Muzinich 1983; McClary and Byers 1983; 
Moxhay and Rosner 1983). One may, therefore, consider a simultaneous expansion in 

2 two parameters, the velocity squared fl and the Q C D  coupling constant as. Poggio and 
Schnitzer have shown that most of  the next to leading order corrections in ~q and the 
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quark velocity to the leptonic decay (in a static linear confinement potential) can be 
accounted for by replacing ~ (0) by ~(1/MQ). They have also pointed out that for 
extended QQ systems where the confinement potential dominates, one should not 
consider a running coupling constant in the one-gluon exchange term. Rather, one 
should include the vacuum polarization corrections in the confinement potential so 
that there is no double counting of the QCD screening. This prescription, though 
simple, is incomplete in the sense that it is not clear which approach should be 
appropriate for the known quarkonia. A simple uniform prescription for all cases, even 
if phenomenological, will be useful for practical applications, particularly because the 
known heavy quarkonia fall in neither of the two extreme categories. The purpose of 
the present paper is to suggest a simple prescription which may be applicable to all 
heavy quarkonia. The results obtained are consistent with the observed quarkonium 
spectroscopy and may be used to predict results for the toponium states. 

We first write down the non-relativistic QQ potential in the form 

VQo(r ) = f(r) VQcv(r ) + [1 --f(r)] Vu(r), (1) 

where f (r )  is the Woods-Saxon function 

1 
f ( r )  = 1 + exp [ (r -- a)/s] ' (2) 

and VocD(r) is the Q~) potential calculated by including the 2-loop gluon and light 
quark vacuum polarization correction terms (equation (5)). The potential V u (r) is the 
potential as determined for the range 0-1 fm ~ r < I fm by the t~ and Y spectroscopy. 
Since there is no compulsion to prefer any particular form for this confinement 
potential, we have chosen the Martin (1980, 1981) form 

Vu(r) = A + Br °'l, (3) 

with the condition that 

VQcD (a) = VM (a). (4) 

We may study the QQ bound states by solving the Schr6dinger equation with the 
potential (1), with the additional provision for including the suggestions of Poggio and 
Schnitzer£or calculating the leptonic widths, i.e., we replace 

I (0)l by I (1/M0)l 

in the Van Royen-Weisskopf (1967a and b) formula. This may be looked upon as a 
phenomenological prescription with some qualitative justification. For a very heavy 
quarkonium, e.g. toponium, 

dp(l/MQ) ,~ ok(O), 

and one deals with the potential given essentially by the one-gluon exchange term with a 
running coupling constant. The confining part of the potential is not important for the 
system. For cases where V u (r) dominates the QQ spectroscopy, the first term on the 
right side of (1) has very little effect and the Poggio-Schnitzer prescription is valid. 
When distances r ~ a become relevant, the choice (4) minimizes the double counting of 
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screening, if any. An interpolation is now possible for cases where both the short range 
and the confining terms are important. We have shown in this paper that such an 
interpolation is possible and indeed consistent with the experimental results. The 
remarkable success of the Poggio-Sehnitzer prescription for light vector and pseudo- 
scalar mesons, as has been shown by Krasemann (1980), fits with this scheme. The 
choice of the particular form for the potential (1) is motivated by another consideration. 
It gives a simple parametrization suitable for studying the details of the cross-over 
region. The parameters a and s may be used to fix roughly the position and the 
extension of the cross-over region. These parameters will also be helpful to fit the fine- 
hyperfine splittings of the QQ system, which will be discussed elsewhere. 

The presentation of the paper is as follows. In the next section, we discuss the QQ 
potential and use it to study the spectroscopy of the cg and bb-systems. The predictions 
for the ffsystem for a range of Mt values, suggested by the recent jet events (Arnison et 
al 1984), are also presented. In § 3, we consider the leptonic widths as well as rates for 
some other decay modes. We have considered, in particular, the contribution of the Z ° 
exchange for toponium decay. For the excited states, we have made use of some general 
properties of Schr6dinger equation to calculate the Poggio-Schnitzer correction 
factors. This can be done for heavy quarkonia, without referring to any potential 
explicitly, once we know the correction factor for the IS state. Our conclusions are 
summarized in the last section. 

2. The QC~ potential 

The extensive work on the c~ and bE spectroscopy have succeeded in determining 
uniquely the QQ static potential within the range 0-1 fm ~ r ~< 1 fm. In fact, the 
different potentials (Applequist et al 1975; Buchmiiller et al 1980; Eichen et al 1975; 
Levine and Tomozawa 1979; Quigg and Rosner 1979; Richardson 1979; Stanley and 
Robson 1980) that fit the data reasonably well all agree within this range. Since 
distances much larger than 1 fm will not be relevant for the problems under 
consideration, we have chosen Martin's form (1980, 1981) for the potential VM(r ). For 
small distances, the QQ potential should be given accurately by the one-gluon exchange 
term with a running coupling constant. This potential upto 2-loop corrections has been 
considered by a number of authors (Buras et al 1977; Buras 1980; Billoire 1980; Fischler 
1977). The potential may be written as 

41tC2(R) 
VQC o (r) = -- bor In (1/A~s r2) 

c 1 x I l + (2 7 E +-~ o ) l n (1 / A~_gr2  ) b l l n ln (1 /A2~r2 ) l  

where )'E is the Euler constant and 

bo = !31 C2 (G) - ~ N/  

b~ = ~-~ [C2(G)] 2 _ ~ C2(G)N.r _ 2C2 (R)N: 

c = ~ c , ( o ) - ~ N : .  

(5) 

(6) 

(7) 

(8) 
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In above, C2(R ) and C 2 ( G  ) a r e  the invariant quadratic casimir operators, which for 
SUc (3) equal 4/3 and 3 respectively. N s gives the number of  quark flavours relevant for 

the problem, which we choose to be equal to 4. In the standard MS scheme, it is 
customary to choose N/as  the number of quark flavours with mass <~ #, where/~ is the 
renormalization mass. The QCD scale parameter Au-- ~ has been chosen as equal to 
200 MeV. 

We combine the potential VQc D (r) with the large distance potential Vu (r) as in (1) so 
that the condition (4) is satisfied. This gives, with r in fro, 

A = -7.392, B = 8.080 (9) 

and a = 0-072325 fro. Because of our choice of  (1) and (4), the results will show only a 
very weak dependence on the parameter s which gives the scale of the crossover region. 
We have chosen s = 0-01 fro. The combination (1) will ensure that the potential is given 
by one of  the two terms in their respective domains and the potential in the crossover 
region is a smooth interpolation between them. Combinations of potentials have 
already been considered by some authors (Bhanot and Rudaz 1978; Deo and Batik 
1983). We have followed in particular that of  Igi and Hikasa (1983) with some 
modification. 

We have solved the Schrbdinger equation numerically with the potential (I) and 
the energy levels for the c~ and bb- systems are shown in table 1. We have chosen 
M b = 4-837 GeV and Mc = 1.44 GeV. The experimental results are also shown. The 
general agreement of our results with the experimental results is better than those 
obtained with other potentials considered in this connection. 

In table 2, we have presented the results for some toponium levels with Mt ranging 
from 30 GeV to 50 GeV as suggested by the recent UA1 experiments (Arnison et al 
1984). The variation of the binding energy of any level with M, is found to be almost 
linear. The levels are, however, still not coulombic. It is, therefore, essential that one 
should consider the perturbative QCD potential like (1) and not just a coulomb-like 
potential while studying the toponium system. Since the root mean square radius R, 
given by R 2 - ~  ( 1 S i r 2 [  IS) ,  is about 0"07 fm for Mz ~ 40 GeV, we can probe the 
potential in the true perturbative region. The higher excited states depend also on the 
long range part of the potential. 

Table 1. Some bb-and c~energy levels calculated with potential (1). The levels marked 
with an asterisk indicate the centre of gravity values. 

Mass of bb- system Mass of c~ system 
(GeV) (GeV) 

State Experimental Calculated Experimental Calculated 

IS 9.460 9'461 3.097 3.098 
2S 10"023 10"038 3"686 3"708 
3S 10"355 10'374 4-030 4-063 
4S 10.575 10'615 4"415 4"319 
IP *9-882 9'882 *3"549 3"539 
2P "10.261 10.265 3"945 
ID 10"154 3'828 
2D 10.445 4-135 
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Table 2. Some toponium levels for different t-quark mass. 

Mass of Toponiummass  (Gee) 
t-quark 
(GeV) IS 2S IP 2P 

30 59-115 59-686 59-572 59-924 
35 69.047 69-627 69-520 69.870 
40 78.985 79,575 79.475 79.823 
45 88.926 89.528 89.435 89.781 
50 98.871 99-487 99.400 99.744 

It may be useful to compare our results with those obtained with Richardson (1979) 
potential and the logarithmic potential V(r) = A In (R/Ro), considered by Quigg and 
Rosner (1979). The difference in energies, E(2S) -E(1S) ,  in the three cases are 590, 630 
and 560 MeV respectively for M, = 40 GeV and 616, 645 and 560 MeV respectively if 
Mt = 50 GeV. 

For the tb-system, one gets the following results. For M, = 40 GeV and Mb 
= 4"837 GeV, the binding energy for IS and 2S states of  tb-system will be - 0.416 GeV 
and 0.150 GeV respectively. 

The El transition rates of  the quarkonia are given by 

4 2 3 ( f  ° )2 F(n3pj--* r + n'3Sl) = -~otQqco R,oRn, lr3 dr , (10) 

(f: F(n3Sl---~r+n3Pj)=42j+ lotQ~co3 RnoRn, tradr , (11) 
3 9 

where co is the photon energy, given by 

MZ(vl) - MZ(o2) 
co = 2M(vl) , M(vl) > M(v2). (12) 

In calculating the E1 transition rates, we have used the experimental values of  the 
photon energy, as we have not considered the fine structure interactions. The results are 
shown in table 3. 

It is already known that the ~,'---, 3' + X rate is suppressed by a factor of  2-3 in 
comparison with non-relativistic estimates. A number o f  factors help in restoring the 
agreement with the experimental results. First, relativistic effects can affect the dipole 
matrix element significantly. The overlap integral ( 1 e l r l 2 S )  may be particularly 
sensitive to the relativistic corrections, as it is the sum of  two contributions of  opposite 
signs due to the presence of  a node in the 2S wavefunctions. A shift in the wavefunction 
caused by the relativistic corrections serves to reduce the value of  the matrix element. 
This alone is, however, not enough. One should also consider the coupled channel 
effects for ~,', which also reduce the overlap between the two states (Eichten et al 
1978, 1980). Our results for the transition rate for ~b' ~ ~, + ~ agree with other non- 
relativistic calculations. For  the upsilon system the relativistic effects are less 
important and we get fairly good agreements with the experimental results. Thus 

F(T'  ~ ~ + Xbi) = 4"9 + 1"8 keV, experimentally, whereas we get the value 4.38 keV. 
l 
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Table 3. El transition rates for bb-and c~ systems. Experimental values of(o are used 
in the calculations. 

Transition 

bb- system ce system 

co Transition o~ 
(MeV) width (keV) (MeV) 

Transition 
width (keV) 

13Po---,13St 
13pt--*13St 
13p2--*I3St 

23St--*I3P o 
23S1--*13p t 
23Sx--*13p 2 

23Po--~I3St 
23PI--*I3St 
23P2--*13S! 

2~Po--,23S1 
23Pt--,23SI 
23p2---,23St 

404.4 32.434 
425.4 37.783 
444-6 43.131 

148.9 0-927 
127.2 1.770 
107.4 1.686 

743.8 5'638 
763.3 6-092 
779.0 6.477 

207-8 13.133 
228.4 17.365 
245-0 21.451 

303-2 176.470 
388-7 371.283 
429-4 500-945 

261.0 62.736 
171.8 53.924 
127.7 37.006 

Table 4. Leptonic decay widths with and without Poggio-Schnitzer (PS) correction for bb- 
and c~ systems. 

State 

PS 
]~, (0)[ 2 Experimental Uncorrected corrected 
(GeV 3) (keV) (keY) (keY) 

"r (9-460) 
T (10.023) 
T (10-355) 
T (10-575) 

4.714 1'100 5:0-120 1.247 0-995 
2.602 0.507 + 0"051 0.611 0.466 
1"857 0.362 5:0-050 0"408 0.304 
1"466 0.240 5:0.053 0-308 0"225 

~b (3"097) 
~, (3"686) 
¢, (4"030) 
~, (4"415) 

0-743 4-600 + 0'390 7"332 4.847 
0.413 2"050 -l- 0-210 2'845 1"601 
0'296 0-750 + 0-100 1"697 0-868 
0'241 0-490 -1- 0-130 1.224 0-583 

3. The decay widths 

While calculating the leptonic decay widths of the quarkonia we apply the Poggio- 
Schnitzer (PS) correction to the Van Royen-Weisskopf relation: 

4-.2,q2 
a ~q d~0~ 2 (13) F(v  ~ e+ e - )  = ~ l-r, ,i , 
• -- qq 

where Qq is the quark charge and My1 is the mass of the quarkonium qq. The un- 
corrected and the corrected values of the leptonic widths for ~, and T families are shown 
in table 4. It is seen that the PS correction factor is about 0-6 to 0.7 for the bb-and c~ 
systems and leads to better agreement with the experimental results. In calculating the 
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correction factors for the excited levels, we make use of some general features of  the 
Schr6dinger's equation. We first show that once the correction factor is known for the 
IS state, we may calculate very easily the correction factors for all nS states of a heavy 
quarkonium. 

Suppose R1 (r) is the IS state and R. (r) is the nS state of a heavy quarkonium. We 
define 

K.(r )  = R. (r) /R, (r). (14) 

It is now easy to check that K.(r) satisfies the equation 

R' 
K~(r)+(2+~R-~t )K'.(r)+ot.K.(r) = O , (15) 

where primes denote differentiation w.r.t, r and 

2/~ 
x. = r~ T (E. - Et ). (16) 

Equation (15) is very convenient for studying the small distance behaviour of the 
excited states. Note that the equation does not involve the potential V(r) explicitly and 
will, therefore, be useful for potentials singular at the origin. For a small r, we may 
neglect R'(r)/R(r) and obtain the solution 

K. (r) = K(0) sin x / ~ . r  (17) 

Hence, if l/Mq is sufficiently small so that the above approximation is good, we have 

~b.s(l/M~) z h2M~Zsin 2 ([2/~(E.-Et)]~/Z/Mqh) q~,s(1/M.)2 (18) 

The left side of (18) gives the Poggio-Schnitzer correction factor. Equation (15) may be 
useful in many applications. It may be noted that (17) is again a good solution near the 
maximum of the IS wavefunction. 

To see if the above approximation is applicable to the Q(~ states, we have compared 
the exact numerical values of dp~s(l/M~)/dp,s(O) for the c6 and bb states with those 
predicted by the relation (18). Our conclusion is that the Poggio-Schnitzer correction 
factors can be calculated easily by the relation (18) for the $ and Y families and also for 
heavier quarkonia. The calculated leptonic widths are consistent with the experimental 
results. 

It may be pointed out that the relative Poggio-Schnitzer correction factors depend 
on the product of the mass of the quark Mq = 2/~ and the level spacings AE and are 
insensitive to details of  the potential. However, since AE is fixed, a different PS factor 
can result only if Mq is chosen differently. This shows that the relative PS correction 
factor should be almost the same in all potential models which fit the observed 
quarkonia masses. 

The annihilation of the toponium, because of its predicted mass ~ 80 GeV, presents 
a case where an interesting interplay of  weak, electromagnetic and strong interactions is 
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expected. In the calculation for a decay of the 3S t state, one should in general consider 
(i) the photon and the Z ° exchange in the S-channel and the W exchange in the t- 
channel, (ii) the single quark weak decays of  t, (iii) the three-gluon annihilation term and 
(iv) also the two-gluon plus photon term. For  a toponium mass close to Z ° mass, the 
neutral current decays dominate over strong and electromagnetic decays. For decays to 
lepton pairs, we need consider the interference of  two amplitudes corresponding to the 
annihilation through (a) a virtual photon and (b) through a virtual Z °. In the standard 
Salam-Weinberg model the contribution (b) can be obtained by noting that the weak 
neutral quark current is given by 

1 
~i (Gti'qi~l~qi "l- fli'qiYu75qi'), (19) 

j o  = _~ 

where i indicates the flavour. The vector and the axial vector coupling constants are 
given by 

~ = l - ~ s i n  e0 . ,  f l i = l  for i = u , c , t  (20) 
and 

~ i = - l + ~ s i n 2 O w ,  f l i = - I  for i = d , S , b .  (21) 

For  an electron, ~t e = 4 sin 2 0 w - 1  and fie = - I .  Since only the vector part o f  the 
neutral current couples to the 3S l state, the interference between the two amplitudes 
depends only on the vector coupling constant ~t,. We can write down the total ieptonic 
decay width of  the toponium state, including the Z ° contribution (Khoze and Shifman 
1983), as 

2~,~, (~2 + ~e )~,, 
Ftotaj(T--.e+e -) = F,(T- ,e+e -) 1 - - ~ - - y  + y2 , (22) 

where Qt is the charge of the t-quark, F~ is the pure electromagnetic ieptonic decay 
width and 

Y = 16n~,  / (M;2 - M ( t i ) - 2 ) "  (23) 

We have shown in table 5 the electromagnetic as well as the total leptonic decay widths 
of the t t-system for a range of  M, values. The contribution of  the Z ° exchange term is 

Table 5. Leptonic decay width of toponium states (e.m. and total) for various M,. 

IS 2S 

Leptonic decay Leptonic decay 
Mass of width (keY) width (keV) 
t -quark  I~'(0) 1 ~ I~,(o) l ~ 
(GeV) (GeV 3) e.m. Total (GeV 3) e.m. Total 

30 136 "99 3" 712 3-707 63' 72 1-694 1-693 
35 194.02 3.854 3"969 85"78 1'675 1"732 
40 264"73 4"018 4'898 110"93 1"659 2"070 
45 350'52 4" 197 19-116 138.97 1"642 9"396 
50 452.67 4"385 31"363 169.69 1.624 9"701 
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negligible for qJ and ~f states, but dominates the leptonic decay widths for the toponium 
states, if M, lies in the range suggested by the UA1 collaboration (Arnison et aI 1984). 
Equation (22), however, should not be applied down to the Z°-pole. It has been pointed 
out by Gusken et al (1985) that if the difference between the toponium and Z ° masses 
and the width of Z ° are of comparable magnitude, the situation changes and one,may 
even expect a dip in the resonance excitation cross-section for M (ti) = Mz. However, 
for M (ti) >/Mz + F~, the line shape will resemble that obtained by the incoherent sum, 
given by (22) although there may be some distortion. However, the possibility remains 
that some excited states closer to the Z°-boson pole may have a larger leptonic width 
than the ground state. It may be noted that the rates for decays into three gluons or two 
gluons and a photon are small and almost mass independent and are, therefore, difficult 
to observe against the enhanced rates for electro-weak decay. 

In table 6, we have tabulated the decay widths of toponium to lighter quark- 
antiquark systems, T ~ q~. This is given by 

I 
Q-q: 2 2 2 

F(T--*qq) = 3Fr(T-- ,e+e -)  Q2 2u Qqy-t (~q +~----~)Y q 
J' 

(24) 

where Qq is the charge of the quark q and ~t~ and flq are as given in (20) and (21). 

4. Discussion 

We have shown that a simple short-range QCD potential matched to a Martin type 
power potential gives results in agreement with the experimental values for a wide range 
of physical processes. The Poggio-Schnitzer correction is included while calculating the 
decay amplitudes of the bound states by assuming that the Q~) annihilate at an average 
distance r ~ l / M  e, which gives the relativistic size of the quark. The correction is, of 
course, negligible for very heavy quarkonia. Our aim has been to determine a 
theoretically motivated potential satisfying the constraints imposed by the available 
experimental results. Even though the large distance behaviour of the potential is not 
known, it is interesting to see that a static non-relativistic potential is capable of 
describing fairly accurately the general features of the Q0 spectroscopy. 

It may be useful to study how the calculated results change as the parameters of the 
potential (1) are varied. We first consider the QCD scale parameter A~--g which has 
been chosen to be equal to 0"2 GeV. If We choose instead A~-~ = 0"15 GeV and leave the 

Table 6. tt~ decay width to low mass q~ for various Mr. 

Mass of  
t-quark 
(GeV) 

tt-decay width to tTdecaywidth  to 
uU (keV) d~(keV) 

IS 2S IS 2S 

30 7.754 3.609 4"512 2"145 
35 13.207 5"982 11.049 5" 103 
40 37"100 16.660 40"883 18.580 
45 390.420 199"130 492.120 252.000 
50 569"410 169"120 733.760 217"710 
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other parameters unchanged (thus failing to satisfy the condition (4)), we get results 
which are qualitatively worse, particularly for the ground state. As expected, the higher 
states show a weaker dependence on A~-~. Thus, the B.E. for the 1S state with A~-g 
= 0"2 GeV and 0"15 GeV are - 0.213 GeV and -0.204 GeV respectively. The leptonic 
decay widths of  nS states decrease by about 10 % as AM-g is decreased from 0.2 GeV to 
0-i5 GeV. 

Another parameter to consider here is s, which describes the scale of the crossover 
region. Our conclusion is that the quarkonia data favour a sharp crossover, i.e., a small 
value o f s  ,-, 0.01 fm. We have shown in figure 1 the potentials VocD(r), Vu(r)and the 
total Vr(r ) with an inset which shows the nature of  the cross-over on a magnified scale. 
It may be pointed out that the parameters of  the potential may need minor adjustments 
when relativistic effects are considered. The gross features of  the potential shown in 
figure 1, however, are unlikely to be altered. We shall consider the fine-hyperfine 
splittings of the QQ system elsewhere. The success of  the non-relativistic potential may 
be looked upon as an evidence in favour of QCD. This will be tested further in the near 

0 
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-0-4 - 

-0.8 - 

0 

E 
~-1.2 - 
0 
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- 2 . 0 -  / 

-2.4 

r 
0.1 0-2 0.3 0.4 0,5 

i i i i J 

V T , V M 
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Figure 1. The potentials V Q C  D (r), V M (r) and the total potential VT(r) as given by equation 
(1), are plotted against r. The units are Gev-fm. The inset shows the crossover region on a 
magnified scale. 
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future when the experimental results for the toponium family become available. The 
recent UAI results indicate that the toponium should be observed at the e+e - colliders 
which are presently under construction (TRISTAN, SLC and LEP). It is expected that a 
variety of interesting and experimentally observable physical processes connected with 
the toponium system will be available for study when these colliders become 
operational. 
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