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Abstract. The evolution of nonlinear Langmuir waves in the interplanetary medium is 
investigated by appropriately accounting for the random density irregularities of the medium. 
A pair of modified Zakharov equations, which describe these waves, is solved numerically as an 
initial value problem for large scale (~> 102 kin) initial perturbations. For an ion acoustic- 
Langmuir solitary wave, the random irregularities damp the Langmuir wave by way of 
scattering and let the ion density perturbation radiate away in a few days. However an initial 
solitary or shock-like Langmuir wave excites the ion density perturbations within a fraction of 
a second, and then itself gets damped. These effects will strongly decelerate the collapse of large 
scale Langmuir waves. The possibility of detecting these processes, by means of interplanetary 
scintillation, is discussed. 
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1. Introduction 

Type I I I  radio bursts are associated with the ejection of  high intensity electron streams 
into the interplanetary medium from the sun. These streams travel to very large 
distances such as 1 a.u. and beyond (1974 June/July issue of Space Science Reviews) and 
excite Langmuir waves through beam-plasma instability. The high frequency 
Langmuir waves, when their amplitudes become large enough, couple themselves to the 
low frequency ion acoustic oscillations through the ponderomotive force. In turn, the 
density fluctuations associated with the ion acoustic waves trap the Langrnuir waves in 
them. This nonlinear interaction between the Langmuir and the ion acoustic waves 
influences the propagation characteristics of  both of  them (Zakharov 1972, Thornhill 
and ter Haar  1978). The time development of  such coupled Langmuir-ion acoustic 
waves has earlier been studied quite extensively (Bardwell and Goldman 1976; Bardwell 
1976; Nicholson et a11978) especially with regard to their existence in the interplanetary 
medium around 0.5-1 a.u. from the sun. At such distances, the nonlinear effects were 
found to be quite important. Some of  these earlier works had included other effects like 
wave-particle interactions, oxsl (oscillating two-stream instability), presence of mag- 
netic fields etc. One of  their most important conclusions was to show the possibility of  
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Langmuir collapse (Nicholson et al 1978) whereby Langmuir waves with large widths 
shrink in size to very small widths of the order of a few Debye lengths. The collapsing 
Langrnuir waves by means of the ponderomotive force give rise to pockets of extremely 
large density fluctuations having the same scale sizes. These studies, however, did not 
take into account the random density irregularities so commonly present in the 
interplanetary medium. Although some attempts to consider the effect of such 
background random density irregularities on the Langmuir waves in the interplanetary 
plasma have recently been made (Goldman and Du Bois 1982; Du Bois and Pesme 
1984). However the latter studies were confined to the quasilinear regime of weak 
turbulence in which the strong coupling of the Langmuir waves to the ion acoustic 
waves through the ponderomotive force was ignored. We feel that such an approach to 
the Langmuir-ion acoustic interactions is rather incomplete especially since the 
Langrnuir waves generated by the electron beam-plasma instability in the inter- 
planetary plasma after a type III burst can very often grow to large amplitudes at which 
the ponderomotive force is not negligible. In the present work, we seek to study the 
strongly coupled Langmuir and ion acoustic waves (scale lengths >> 102 km) in the 
context of the interplanetary medium in the presence of the back-ground random 
density irregularities. The existence of such density irregularities, with sizes ,-, 102 km 
around 0.5 to 1.0 a.u. from the sun, has by now been very well established by the 
interplanetary scintillations studies (Readhead et al 1978; Gapper et al 1982) and 
satellite observations (Cronyn 1972; Neugebauer 1975). 

In § 2, we derive a pair of modified Zakharov equations to describe this process. In 
§ 3, we numerically solve these equations as an initial value problem with various initial 
conditions. Taking the initial perturbation to be a Langmuir-ion acoustic solitary wave, 
our computations for the solar wind parameters around 0.5 a.u., show that the 
Langmuir wave amplitude damps within a fraction of a second leaving behind the ion 
density perturbation. This is due to the scattering of the initially coherent Langmuir 
wave by the random density irregularities. Then the ion density perturbation that is left 
behind radiates away extremely slowly that is, in a couple of days. When this occurs, the 
originally smooth large size density perturbations breaks up into two or three smaller 
ones. Whereas an initial shock-like or a solitary type Langmuir wave with no initial 
density perturbation excites the density perturbation within a fraction of a second while 
itself undergoes damping. Later on, the density perturbation radiates away. In the case 
of shock waves, the density perturbations are excited at the leading and trailing edges of 
the shocks since the ponderomotive force is maximum at these places. Further 
evolution is same as in the previous cases. 

IPS observations similar to the one carried out by Gapper et al (1982) are the most 
ideal to detect the excitation and propagation of density perturbations after a type III 
burst in the interplanetary medium. The breaking up of the large scale size density 
fluctuations will correspond to a decrease in the power spectrum at these scale sizes as 
the regions of density perturbations move outwards. 

2. The modified Zakharov equations 

We take the interplanetary medium to be a plasma with hot electrons and cold ions 
containing isotropic random density irregularities with an average scale size say 
L (~  102 km). In the absence of magnetic field, two of the most common oscillations 
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such a plasma can sustain are the high frequency Langmuir oscillations (to ... to r 
= (4nnoe2/m.) 1/2) and the low frequency ion acoustic oscillations (co~tort 
= (4nnoe2/m~)~ :2). The equations describing the electron fluid dynamics are, 

On.  
ot + (n .v . ) - -  0, (1) 

and 

Ov e Ov. e E -ff+v.  = 
~, .r. On. 
mene 0 x  ' 

(2) 

OE/Ox = 4he (nt - n.). (3) 

In (1)--(3), n. and nt are the electron and ion densities, v. is the electron fluid velocity, 
T. is the electron temperature and y. is the ratio of specific heats of the electrons. The 
electrons, since they are light take part in both the Langmuir and ion acoustic 
oscillations whereas the heavy ions take part only in ion acoustic oscillations. 
Accordingly, we can expand the variables as (Tamoikin and Fainshtein, 1973): 

and 

n. = no+an(x)+ <n,>+ (ns > + n' ., 

n~ = no + an(x) + <n~ > + n;, 

v. = (vs>+ <v/>+v', 

(4) 

(5) 

(6) 

E = <E~>+ <E:>+E', (7) 

where the angular brackets denote averaging over the random density irregularities 
represented by an (x). Moreover no is the mean value of ion and electron densities and 
the prime denotes deviations of the quantities from their average values due to the 
fluctuations. The subscripts s and f refer to slow and fast oscillations. In the following 
treatment, the scale sizes of the random irregularities are considered to be much smaller 
than those of the slowly oscillating quantities. On substituting (4)--(7) in (I)-(3) and 
neglecting the nonlinear terms (Thornhill and ter Haar 1978) in the fast oscillations, 
after eliminating (ns> and (vs> and making use of the inequality 

0 
Ot (<n,>, <n~>; <v~>)~(<n:>;  <v:>), (8) 

we get, 

Ot 2 t-tO 1 4 e - -  = O. (9) 
no me 0X 2 

Here ~ = (E:) + E'. We define ~ as, 

e = ~ [e 0 (x, t)exp ( - icovt) + c.c]. (I0) 

~o (x,t) is a slowly varying function of space and time. Putting (I0) in (9) and ignoring the 
second order time variations of ~o, we obtain, 

2i Oeo 202eo ((ns>+~n) 
e o = 0. (I I) 

top Ot t- 37~2 o ff~x2 no 
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Further we split So as, eo = (s0)  + tb where ( % )  is the average and eb is the deviation 
from the mean value. Averaging (11) over the random irregularities, we obtain 

( 2 ~ 0  0 2 (n.))(eo) 1 (fine~). (12) 
+ 3~e2~ ~x 2 no = n--o 

Subtracting (12) from (11), we have 

2i Oe~ +3, .2  ~ 02~ ( n . ) ,  t~n [~__o n , ( f i ne , ) ]  (13) 
% Ot Ox ~ n-T So = no % ) + So no 3" 

Since the fluctuations (fin~no) and eb are of the same order, we can neglect the second 
order term (fine'o-(fine'o))/no in (13) (Tamoikin and Fainshtein, 1973). We then 
Fourier transform (13), solve for e~ and take its inverse Fourier transform to obtain, 

5'o = fin(x,t ) (eo(X',t')) 

x e x p { i [ k ( x ' - x ) - ~ ( 3 k Z , ~ 2 ~ + ~ o ) ) ( t ' - t ) ] } d x ' d t ' d k .  (14) 

On multiplying with (fin~no) and taking the average over the random irregularities, (14) 
gives, 

A - - - =  4-~o r -  O(~)exp, T no 

x (eo(X -~,  t - z ) )  d~dT dk, (15) 

where 0(;?) is the correlation function for the random irregularities and ~ is the x- 
component of the vector ~. Substituting (15) in (12), we obtain, 

2i d(eo) + 3yeR~ ~2 (eo) +iA (eo) = (n,)  (So) (16) 
cop dt ~x 2 n o 

The term iA <e o ) represents damping of the Langmuir wave due to scattering by the 
irregularities. 

The low frequency ion acoustic waves, on the other hand, are described by the 
equations, 

On..---~ i + L (ntvi) --_ O, (17) 
& Ox 

and 

0v I 0v i e 0~b 
(18) 

~2~ = 4he (ft. -- n,), (19) 
Ox 2 

where 0 is defined by, -OO/~x = (Es)+ E' and fie (= no + fin(x)+ (ns)+ n'e), is the 
low frequency electron fluctuations. To find fie we average (2) over the fast oscillations, 
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and neglect the electron inertia (Mohan and Buti 1982); this gives 

fi~ = no + 6n (x) + eft 4 - ~ , ] "  (20) 

We now use the method of reductive perturbations (Taniuti 1974; Mohan and Buti 
1980, 1982) to equations (17)-(19) and introduce the following stretched variables: 

= ~ l / 2 ( x - C s t ) ,  .¢ = ~3/2t, (21) 

where C, = (T~/mi) t/2 is the ion acoustic speed. The quantities n~, vi and ~b are expanded 
as, 

n~ = no + En ") + ~2nt2) + . . . .  (22) 

vi = Ev (~) + E2v ~2~ + • • • ,  (23) 

and 
__ E ¢ . ~ +  ~2~t2) + . . . .  (24) 

The smallness parameter e is chosen in such a way that ill(= (n t ) + n' l = en (1)) and [e I 
occurring in (20) are of the same order (Nishikawa et a11974). This way we can take into 
account the second order ion nonlinearities. 

From the second order equations in e, after eliminating n (2), v TM and ~b (2) and on using 
the first order solutions, namely 

n(l)= (no/C~)v")= (noe/T,)cp (1), (25) 

we get, 
dfl i Csh. dfl ~ C,T e 03hi Csno e2 O 
O--t + no ' Ox + 8nno e~ 3x ~ = 8T, rn, co 2 Ox N2.  (26) 

Following the procedure used in the case of (13) (Tamoikin and Fainshtein 1973), we 
average (26) over the random inhomogeneities to obtain, 

O-t\ no / no / ~x \ no ]+---2-Ox3\ no / 
m'C2 ( OB ) C'n°e2 O 
2en o ~x +O = 8T, meco~ ~x [(eo)l 2, (27) 

where 

and 

( 6n 2 ) B=-e~{f~exp[i(o~-koZ)] 
( n s ( x - " t - ~ ) ) [  ~ - i ) ]  dz x 1 + (koX dco dz 

no co;( 

D = eT,(6n 2) ~ f Off) exp[i(coz_koZ) ] 
2rim, ~x JW-~);~ 3 

x { C,[- 2~2 ( n , ( x - ~ , t - z ) )  ¢ (kop _i)+__~Lko 
no  

(28) 

(29) 
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with ko=;--~P[[S(to)] ~/2 and S ( t o ) = ( t o 2 + - l )  
\to2 

The term on the right side of (29) represents the ponderomotive force (Gaponov and 
Miller 1958) which couples the ion acoustic perturbation to the electric field of the 
Langmuir wave. 

We expand (eo(X -~ ,  t - z ) )  and (n+(x -~ ,  t - 0 )  occurring in (15), (28) and (29) 
about x and t and retain the first three terms in the expansion. Then after carrying out 
the integrations, (16) and (27) reduce to 

2i 0 ~ <n,)<eo) i L <tin2> 
to n Ot <So ) + 3~3.~ ox = n--~- 4 x/5,tv n~ % > (30) 

and 
o +c .  , +  o 
Ot -~x \ n o / 2 Oxa \ no / 

+az OxOtZ\ no , ] - ° t z ~ - ~ f ~ \  no / ~ x ~ t \  n o / 

C+no ez 0 
= 8 T . m . t o ~ O x [ % ) l  2, (31) 

where 
Cs <t~n 2 > L 2 

a t=3tor2+ n° 2 ;t2a, % = C : q  

and l -- <t~n2 > with-E=f~aff)dx ~ = ~ L  ,,--7' 

and L~ = / A  O(~)X dx. The quantities L and L --~ characterize the integral scales of the 
O u  

random density irregularities. Equations (30) and (31) are the modified Zakharov 
equations. On using the normalizations, 

x - .  x ( v 6 ~ ) - ' ,  t - ,  t c , / ( , f i , to) ,  

( n , ) ~  (n+___~) = N, <eo) = (eo)/(16nnoTe) 1/2 = E, 
no 

with ~'e = 3, they reduce to, 

and 

~t 02 E 
2ip + ~x 2 = NE - iaE, 

0N 0N ON 1 03N cOaN 
O---t- + -~x + N -~x + -6 ~xa + P t?x2 0t 

03N 0ZN 1 c3 
+ q ~ +r,~xot = -~ o-~ IEl~' 

(32) 

(33) 
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where 

#=~,~mi,  ] ' a=4v/~2----~\ n o / '  

C s ~ l  ~ 2  (~ 

p =  3-~o, q = - ~  and r - x / ~ 2  o. 

3 .  D i s c u s s i o n  

Since analytical solution of Zakharov equations is not possible, we have solved (32) and 
(33) numerically as an initial value problem for various kinds of initial perturbations. 
The electric field equation (32) is discretized using the Crank-Nicholson (Smith 1969) 
scheme as, 

2i/t(E~+ 1 j 1 (~.j+I_2E~+ 1 - j+ l  • 1 • - E , ) ~ + , ~ , + ,  +l~t_ , +E~+, -2Ej+Ej_ , )2H 2 

ia j j+  1) 1 • 
+ 2  (E,+E, -~ (N~  +' E~+' +N~E~)=O, (34) 

where I and j refer to the spatial points and temporal levels and H and T are the 
corresponding step sizes. For the ion density equation (33) the following Zabusky- 
Kruskal method (Zabusky and Kruskal 1965; Appert and Vaclavik 1977) is used: 

( N ~ + ' - N I - ' ) ~ + ( N ] + ,  -Nt_,)~-HJ 1 

• I 
N,-I)(N,+I 

+ ( N I + 2 - 2 N ~ + , + 2 N j _ , - N { _ 2 )  I 
12H 3 

+ p { ( N I + , - 2 N I + N I _ I ) - N I + ~ - 2 N ~  -t  + NtJ-'_, )} H 21T 

1 - -  ( M j  - 2 __ 9 M  j - 1 J-~ J-~+NI+,) +Nj_,)} +q{(Nt+l -2Nt+l ~"t-I ""I-1 HT 2 

+,/(NI-~_NI_ J-~ _ , ) - ( N , + , - n l + , ) }  1 
4HT 

1 
÷ (I EI¢+, + I EIj + I Eli-,) (I EI~+, -I  EI~-,) ~ = 0. (35) 

The plasma parameters used for the present calculations (Forslund 1970; Smith 
and Sime 1979; Readhead et al 1978) are n o = 5 c m  -3, 2 o = 5 x 1 0 2 c m ,  
a~pi=3x 103sec -1, L =  107cm, <6n2>ln/no = 10 -4 • These are typical of the 
interplanetary medium around 0-5 a.u. 

In the absence of irregularities i.e., a = p = q = r = 0, (32) and (33) have the 
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following solitary wave solution (Zakharov 1972; Nishikawa et al 1974): 

E = F sech (X/W) tanh .(X/W) exp {i[#MX + ( # M  2 + Q)t]} 
and 

N = - G sech 2 (X/W), (36) 
where 

X = (x-Mt), F = (6x/~/5)(1 - M ) ,  W =  (10/3)'/2(1 - M )  1/2, 

G = - ( 9 / 5 ) ( 1 - M ) ,  and ~=(1-#2W2M2)/(2pW2), (37) 

with M as the Mach number. This wave moves with a constant velocity without any 
change in its shape. 

However, since the interplanetary medium contains the random irregularities, we 
know that the quantities a, p, q and r are nonzero and so an initial wave given by (36) will 
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Figure 1. Time development of Langmuir-ion acoustic solitary wave. Full lines represent ion 
density perturbation and dotted lines represent the envelope of the Langmuir field, [ E I. At t 
= 0"0 we have taken (1 - M )  = 0.4 x 10 -8. 
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not remain stationary. This is shown in figure 1. Here we see that at first the random 
irregularities cause the Langmuir wave to damp. This is because the irregularities 
scatter the initially coherent Langmuir wave by introducing random phase fluctuations. 
On the other hand, the low frequency ion density perturbation is affected very little by 
the irregularities. After the Langmuir wave damps, the ion density perturbation spreads 
out by way of radiation since there is no more ponderomotive force to hold it. In this 
process it breaks up  into a few smaller ones within two or three days. 

Figure 2 shows the process of excitation of an ion density perturbation by a localized 
large amplitude Langmuir wave. This wave has no accompanying ion density 
perturbation to start with. Here we begin with a localized Langmuir wave with an 
arbitrary amplitude F' given by, 

E = F' sech (X/W), (38) 

o.sx l8  = 

0 

- 0 . 5 x l 6  e 

O.5Xt6 s 

0 

-O.5XtO e 
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I I | 
-sxlo o 5xto 

Figure  2. Time development of a localized Langmuir wave with zero initial ion density 
perturbation. The values of the quantities used at t = 0.0 are (1 - M )  = 0.4 x 10 -8, F' = 

0.75 x 10 -8. 
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where X and Ware defined by (37). We observe that the ponderomotive force of the 
Langmuir wave excites the density perturbation which attains its maximum within a 
fraction of a second; at the same time, Langmuir wave itself undergoes damping. Later 
on, as in the previous case the density perturbation radiates away. 

On certain occasions depending upon the nature of the electron stream, the beam- 
plasma instability in the interplanetary medium will be able to produce shock-like 
Langmuir waves. In the early stages, they would not have any associated density 
perturbations. The leading and the trailing edges of such shocks can respectively be 
represented by, 

E = F' [1 - tanh(X/W)], (39) 
and 

E = F' [1 + tanh (X/W)], (40) 

where X, Wand F' are defined by (37) and (38). Such shock waves are more likely to be 
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Figure 3. Time development of  the leading edge of  a Langmuir  shock wave. The various 
quantities at t = 0"0 are same as those in figure 2. 
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present in type-II solar bursts (Weiss 1963; Kundu 1965). The time evolution of the 
shock waves given by (39) and (40) are depicted in figures 3 and 4 respectively. Here we 
see that the ion density perturbations are excited only in a narrow region around the 
leading and the trailing edges. This is because the ponderomotive force represented by 
the right side of (33) would be vanishingly small at all other places. Further evolution of 
the ion density perturbation in these two cases is same as those described in the previous 
c a s e s .  

4. Conclusions 

The results presented here have important consequences on the density fluctuations 
propagating, across the interplanetary medium, away from the sun. The modulational 
instability and collapse (Thornhill and ter Haar 1978; Buti 1977, Nicholson et al 1978) 
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Figure 4. The time development of  the trailing edge o f  a Langmuir  shock. The various 
quantities at t = 0-0 are same as those in figure 2. 
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of  a long wave length (~> 10 2 km) Langmuir wave in interplanetary plasma will be 
seriously affected by the process we have discussed here. The breaking up of  an ion 
density perturbation will spread the energy of  the wave over a larger area instead of 
concentrating in a small region as in the case of  collapse. Consequently, we see that the 
random irregularities of the interplanetary medium help to avoid the collapse of very 
long wave length Langmuir waves. We are justified in drawing these conclusions even 
though our calculations are based on one-dimensional model whereas the collapse is a 
three-dimensional phenomena, simply because we know that the necessary condition 
for the occurrence of  collapse is satisfied only if the one-dimensional system is 
modulationally unstable (Buti 1977). 

Long time simultaneous IPS observations of  many radio sources all over the sky are 
the most ideal for obtaining an accurate picture of  the development of  density 
fluctuations after a type III radio burst. Similar observations have been reported by 
Gapper et al (1982) where they could detect the regions of density disturbances moving 
away from the sun over a few days although none of them has been identified with a 
type III burst. 

In order to see the breaking up of large scale fluctuations within these regions, one 
has to observe the changes occurring in the power spectrum of  density fluctuations 
corresponding to these scale sizes. For the large scale sizes considered here, two 
frequency ivs observations (Shishov 1975; Gapper and Hewish 1981) within the regions 
of  density disturbances are essential. The breaking up will correspond to a shift in the 
intensity of  power spectrum towards smaller scale sizes. This shift will be observable 
when the power spectrum within the region of disturbance is followed for a few days. 

To check our model, we are planning to make two-frequency ips observations at the 
ws observatory of the Physical Research Laboratory to follow the changes occurring in 
the power spectrum of  the density fluctuations in the interplanetary medium after type 
III bursts. 

We are also planning to take into account the presence of the interplanetary magnetic 
field to find its effect on the process of breaking up as a result of  Langmuir waves 
propagating in an arbitrary direction with respect to the magnetic field. 
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