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Abstract. We present here an approximate scheme to obtain the complex frequency- 
dependent local field correction, G (q, co). Using the equation of motion approach we develop 
here a methodology from which the results obtained by earlier workers, for density-density 
response function ofan electron gas, can be arrived at in a simple systematic manner. We study 
in detail an approximation made along the similar lines as Singwi and coworkers, which leads 
to a compact expression for a complex frequency-dependent local field correction. We give 
results for damping coefficient of long wavelength plasmons which depends on Im G (q, co). The 
real and imaginary parts of G (q, co) as functions of co for various values of q are also calculated. 
The dynamic structure factor S (q, co) is evaluated for q = 1.6 qP and compared with earlier 
theoretical and experimental results. 

Keywords. Dynamic local field correction; density-density response function; density- 
density correlation function. 
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1. Introduction 

The dielectric function of a uniform electron gas at metallic densities has been a 
quantity of interest for the past few decades mainly because of its central role in 
explaining metallic properties. In the past, major efforts have been made in developing a 
theory of the wave-vector and frequency-dependent dielectric function, with suitable 
approximations amenable to numerical computations. However, the numerical aspect 
has always set severe constraints on the nature of approximation, restricting most of the 
available work to approximations accurate in the long wavelength or high frequency 
limits. For example, the well-known time-dependent Hartree mean-field theory (also 
known as random phase approximation or RPA) takes proper account of only the long 
range part of the Coulomb interaction via screening, explaining some of the metallic 
properties (Singwi and Tosi 1981). However, RPA fails to describe correctly the short 
range part of exchange and correlation effects, for example, giving negative values of the 
pair correlation function e (r) at short distances. Several attempts have been made in 
recent years to go beyond the RPA using different theoretical approaches. Most of these 
theories ttTy to consider the fact that due to the short range exchange and correlation 
effects, there is a local depletion in the density around each electron, i.e., there exists an 
exchange-correlation hole around each electron. This leads to the modification of the 
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time-dependent Hartree mean field and one refers to the difference between the 
effective field and the mean field as the local field correction. 

Most theories (Singwi and Tosi 1981; Singwi et a11968, 1970; Vashishta and Singwi 
1972; Pathak and Vashishta 1973; Toigo and Woodruff 1970, 1971) assume that this 
local field correction is a static and real quantity usually denoted by G(q). The 
assumption of a static local field implies that each electron, under the influence of an 
external perturbing field, moves with its exchange and correlation hole held rigidly 
around it. This assumption can be true only if the perturbing force changes very slowly 
with time. In such a case the electrons respond almost instantaneously and the exchange 
correlation hole can adjust itself continuausly to the motion of the electron with 
negligible deviation from its static value. In case the perturbing force is rapidly varying, 
the behaviour of the exchange.correlation hole is much more complicated. It distorts 
appreciably and also performs dynamic motion with respect to the electron (Holas et al 
1979). To account for these effects, the local field correction has to be a ,complex, 
frequency-dependent quantity, G (q, co). The complex nature of the local field is 
necessary to include dissipative effects which lead to the damping of long wavelength 
plasmons. Our aim in this paper is to develop such a complex, frequency-dependent 
local field correction for a homogeneous electron gas. 

The knowledge of a dynamic local field correction is imperative now if we are to 
understand the results of recent inelastic electron (Zacharias 1975) and x-ray scattering 
(Platzman and Eisenberger 1974) experiments, in simple metals. These experiments 
study the energy loss spectra and hence measure the dynamic structure factor S (q, co), 
over a wide range of momentum transfers. The latter, S (q, co), in turn depends on the 
local field correction G (q, co). Theories based on static local field correction G (q), such 
as RPA (where G (q) = 0) and other mean field theories, have failed to reproduce the 
experimental results for S (q, ¢o), especially for large momentum transfers. The failure of 
these theories is due to the neglect of the dynamic and dissipative effects in the local field 
correction. 

Some efforts have been made to include the dynamic effects although the theories 
have not been very successful. The exact high frequency behaxtiour of G (q, co) was 
obtained by Niklasson (1974) who truncated the equation of motion for a two-particle 
Wigner distribution function. Later Aravind et at (1982) used a truncation scheme 
equivalent to making an RP^-like approximation for the two-particle distribution 
function. Earlier, the same authors had carried out a low order dynamic perturbation 
calculation (Holas et al 1979) for the proper polarisability--leading to dynamic G (q, to). 
Along similar lines Dharmawardana (1976) wrote down a perturbation series for 
G (q, co) but no attempt was made to evaluate it. Brosens et al (1976, 1977, 1980) 
published a series of papers of their work, where they start with the Hartree-Fock 
equation of motion for one-particle distribution function and solve it by a variational 
method. Mukhopadhyay et al (1975) were able to reproduce the experimentally 
observed structure of S (q, co) by including the life time effects of the single-particle 
states (see also Niklasson et al 1983), but this theory violates the continuity equation. 
The work carried out by Awa et al (1981, 1982a, b) is also along similar lines and stlffers 
from the same drawbacks. Green et al (1982) who included more sophisticated many- 
body effects also found some of the observed structure in S (q, co) but it is not clear from 
their treatment what the precise origin of this structure is. A few authors 
(Mukhopadhyay and Sjolander 1978; Jindal et a11977) re-examined the problem in the 
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frame-work of Mori formalism but the results obtained are in disagreement with 
experiments. 

In an earlier paper (Shah and Mukhopadhyay 1984), we have given a brief outline of 
our theory along with a few results for damping of long wavelength plasmons. Using 
the equation of motion approach we report in this paper a methodology from which the 
results obtained by earlier workers can be obtained in a simple, systematic manner. 
Section 2 gives the basic approximation made for the two-particle Wigner distribution 
function appearing in the equation of motion for the one-particle distribution function. 
In this section we also illustrate how suitable approximations lead to some earlier mean 
field results. In § 3 we discuss in detail an approximation, made along the same lines as 
suggested by Singwi et al (1970), which leads to a frequency and wave-vector dependent 
local field correction. Calculations and results for damping of long wavelength 
plasmons and for G (q, oJ) at finite q and ¢o are discussed in § 4. 

2. Theoretical formulation 

We have followed the equation of motion approach in our theory. We start with the 
equation of motion for a one-particle Wigner distribution function. In the Fourier 
space, the Hamiltonian for the electron system in the presence of an external potential is 
given by, 

h 2 1 
---- k , -~-o,  k ,+~o ,  

k~o I q' k~o~ 

1 + q'a d~  ±q'_ 0 k q'_ a k .q' (1) Y 
q' k~al 

k2o" 2 

where Oext (q, t)is the spatial Fourier transform of a time-dependent external potential; 
a~, and a~, are the annihiliation and creation operators for the electrons and v (q) 
represents the Coulomb potential in Fourier space (v (q = 0) = 0 to compensate for 
positive background in the electron gas). Using the Hamiltonian in (1), the equation of 
motion for the one-particle distribution function is given in Fourier space by, 

h 2 ~.1 
[hco-~(k.q)]f~,~o~(q,(o) = (n k q - - n - .  q [~o,,(q,o~)+v(q)n(q, co)] 

1 + ~  v(q') ~ ~r,~ q, , , 
k,o, ~ Jk--~ok,o, ( q - q ,  q,oJ) 

_ _  2 )  q '  _ _  , , f~+~-ok,~, (q q,q,m)}, (2) 

where n (q, oJ) is the induced electron density. Here, we have taken the temporal Fourier 
transform and retained terms to linear order in the external potential. Barred quantities 
in the above equation and in the remaining text denote deviation of these quantities 
from their respective equilibrium value (i.e. their value in the absence of the external 
field).f ~2~ represents the irreducible two-particle distribution function, using which we 
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define a function 

C (2) (q, q', t) = ~ f~k '~ '  (q, q', t). (3) 

k'a'  

The irreducible density-density correlation function D TM defined as, 

D(2)(q,q',t) = (/~(q,t)/~(q',t)>, (4) 
where, 

~ (q,t) =/~(q,t)-- <,~ (q,t)>, (4a) 

is related to C TM via the relation, 

D(2) (q,q', t) = C(2)(q,q',t)+ <~(q+  q',t)~). (5) 

We note that the equilibrium values of the functions C (2) and D (2) are given by, 

and 
C(2)eq (q, q ') = ~q+q',0" N {S (q)-  1}, 

D (2)eq (q, q') = ~q+q,,0 N" S (q), 

(ha) 

(6b) 

where N is the total number of electrons in the system. 
We approximate the two-particle distribution function appearing in (2), by 

deeoupling it into one-particle functions via the function C ~2~ (% q', t) (defined in (3)) as 
given by the expression (in real space) below, 

fk2~k'o' (r, r', t) "~= .'k.¢O)'~', ~,Jk'o'*~¢O) (r,, t). nl_~ C(2) (r, r,, t). (7) 

Here n is the constant density of electrons in the metal. This decoupling means that the 
electron correlation contained in f12) is approximated by an average momentum and 
spin-independent correlation function described by C TM. In Fourier space, we can then 
write, 

... 1 
f~k,o,(q,q',t) = ~ -  ~ f~)~(q-qt,t)f~(q'-q2,t)C(2)(ql,q2,t  ). (8) 

ql, q2 

This approximation preserves the continuity equation, which in the Fourier space 
reads, 

i h - ~ f ~ ( q , t )  = (k.q)f[lJ(q, t). 
itu 

This can be easily verified by substituting (8) in (2) and then summing over ktr. This is an 
important aspect since this cannot always be checked once an approximation is made in 
a theory (see Mukhopadhyay and Sj61ander 1978 for discussion). On substituting (8) 
f o r f  (2) in the equation of motion f o r f  (1) and again retaining terms to linear order in 
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Ocxt, we have 

a (q, co) = { Oext (q, co) + v (q)a (q, co)}X '° (q, co) 

1 
+ n (q, co). n--k3 ~ v(q') {S ( q -  q ' ) -  1}7. "0 (q, q', co) 

1 
+ - -  ~ v (q') C ~2) (q -- q', q', Co)X "° (q, q', co). nVq, 

In the above equation, 

nk q'u--nk' q' 
1 -'2 "2-° 

X "° (q, q', co)= ~-~ E 
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(9) 

(lo) 

and X '° (q, co) = X ~° (q, q', co) is the usual retarded density-density response function for 
the free particle (or the non-interacting electron gas) system. We have here then an 
expression for the induced density n (q, co) which is related to the density-density 
response function X" (q, co) of  the fully interacting electron gas, as, 

a (q, co) = X" (q, co)~¢xt (q, co). (11) 

Thus by making suitable approximations for C ~2) (q, q', co) in (9), we can get ~" (q, co). We 
now show how we can arrive at the results obtained by some of  the earlier mean field 
theories from (9) by making suitable approximations for/~(2) (q, q,, co). 

If in (9), we neglect both the second and third terms in the right side of the equation 
i.e., neglect C ~z) and hence the two-particle function f(2) altogether, we obtain, 

a (q, co) = { ~ext (q, co) + v (q)a (q, co)}y,o (q, co). 

Using (11), which defines X' (q, co), we obtain, 

x'(q,co) = Xr° (q'co) 
1 - v (q)[O (q, co), (12) 

which is the well-known time-dependent Hartree approximation (Singwi and Tosi 
1981) (commonly known as the random phase approximation). 

As the next approximation we neglect only the third term on the right side i.e. 
approximate C ~2) by its equilibrium value. In this case then we have, 

X "° (q, co) 
X" (q, co) = 1 - v (q) { 1 - G(q, co)}Z "° (q, co)' (13) 

where G (q, co) is the so-called local field correction that is given by, 

1 1 
G(q, co)= v(q)x,O(q, co ) n -k~v(q ' )  { S ( q - q ' ) -  1} X'° (q, q', co). (14) 

This is the result obtained by Hasegawa and Shimizu (1975), who followed a fully 
quantum mechanical approach starting with the equation of  motion for a one-particle 
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Wigner distribution function and made an approximation for f~k,o,(r ,r ' , t )  as 
suggested by Singwi et al (1968). Singwi et al (1968) (referred to hereafter as STLS) 
decoupled the two-particle function via the equilibrium pair correlation function as 
follows: 

f~1¢¢, (r,r ' ,t) ~-f~(r,t)f[go,(r', t){g ( r -  r ' ) -  I}. (15) 

Here we note that if we replace C~2~(r, r', t) by its equilibrium value in (7) the present 
approximation for f(2~ reduces to the one used by STLS in their calculations. 

In the classical limit i.e., for h ~ 0, .~o (q, q,, 09) is given by, 

Z,o (q, q,, o~) h ~ O  ~ 7,o (q, 09). (16) 

Using this limiting value, we find that in the classical limit, (13) reduces to 

.X "° (q, 09) 
.X" (q, 09) = 1 - v (q) { 1 - G (q)}z r° (q, 09)' (17) 

where G (q) which is the static local field factor is given by, 

1 ~ ,q .q '  { S ( q - q ' ) - l } .  (18) G(q) = -----, zL _---=~, 
nrq,  q 

This is the result obtained by STLS whose approximation for decoupling o f f  (2~ in the 
equation of motion f o r f  ~l~ was rather intuitive than systematic. 

Hence, we see that in the present formalism, we can obtain the earlier results 
(obtained using different approaches), in a more simple and methodical manner. 

3. Time-dependent local field 

We describe here in detail the approximation that we have used to obtain a dynamic 
local field correction. 

First of  all we note the following identity, 

~. v (q')C (2~ (q -- q', q', o9)7. 'o (q, q', 09) 
q' 

= ~ ~ v (q') {C (2) (q - q', q', 09)Z '° (q, q', 09) 
q' 

i rO +C(2~(q+q ', -q,09)X (q,-q',09)}, 

= ~ ~ v (q') {C (2) (q - q', q', 09) - C (2) (q + q', - q', 09)}y,0 (q, q,, 09), 
q' 

= ~ v (q')D t2' ((q - q', q', 09)7. "0 (q, q', 09), (19) 
q' 

where we have made use of the fact that X "° (q, q', 09) is an odd function of q' and the 
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relation between C ~z~ and D (2). Thus an approximation for/yz~, the irreducible density- 
density correlation function can be used instead of  O 2~ in (9) to get ~' (q,m). 

The equal time correlation function D(2~(r,r',t) is related to the time ordered 
function ~ (r, t; r', t), as, 

D(Z)(r,r',t) = lim ihg (r,t; r',t ') (20a) 

= ]im [<T{p(r,t)p(r',t')})- <p( r , t ) )  <p(r ' , t ' ) ) ] .  (20b) 
t '  " *  t 

We obtain an expression for D (2) (in the presence of an external field Oc,t) using an 
approximate solution of  an integral equation for ;z following the method suggested by 
Singwi et al (1970) (referred to hereafter as SSTL). We start with an integral equation for 
the non-equilibrium function ~, 

lz {1, 1') = ~,~ (1,1') + S 72,~ (1, 2) v (2, 3)~z (3, l')d(2)d(3), (21) 

where, ~,c is the screened correlation function; 1 - (rl,tl),  2 = (r2,t2) etc., and v as 
before is the Coulomb interaction. Again writing ~ as a sum of its equilibrium value and 
its deviation from equilibrium i.e., as, 

(1, 1') = ~eq (1, 1')+ ~ (1,1'), (22) 

we can rewrite (21). Suppressing all coordinates for brevity and using the matrix 
notation we have, 

~zcq + ff ~ ~ +  ffsc + ~ v  ff + ff~c wzeq + ~ v~cq. (23) 

Here again since the external potential O¢~t is weak, we have retained terms only to 
linear order in deviations from equilibrium. ~q satisfies a similar integral equation as ~z 
in (21). Making use of this we have, 

_ e q x -  1 (24) ~ = ~ -  z ~sc(,~sc J ~eq, 

where we have used the definition for the causal dielectric function g,  i.e., 

gc 1 eq = - % ' v .  (25) 

Now defining a vertex function h (1,1 ') as, 

h(1, 1') = Sd (2) n~:(1, 2) rt~-'  (2,1'), (26) 

the integral equation for n (1,1') can be written as, 

rt (1,1') = n eq (1, 1') + ~ d (2)d (3)e c-' (1, 2)h(2, 3) 7z eq (3, 1'). (27) 

We now make the ad hoc approximation for this vertex function has suggested by SSTL. 
Assuming that the correlation functions are short-ranged in space and time and hence 
depend on the local density alone, we write, 

h(r ,  t; r', t') ~ 6 (r - r ')6 (t - t').  n (r, t) (28) 
?/ 
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This form ensures a static limit, for the resultant response function, equal to the static 
results obtained earlier by STtS. Substituting this expression for/i (r, t; r', t') in (27), the 
integral equation for ~ within this approximation is given by, 

7t (r,t; r' , t ' )  = tt~q (r , t;  r ' , t ' )  

+!SdSr l  d t l t  c-' (r,t; rl,tz)ltCq(rl,tl; r ' , t ' )~(rl , t l) .  

The equilibrium time-ordered correlation function is nothing but the causal density- 
density response function X c (r, t; r', t'). Thus we have, from (20a), 

D 2 (r,r',t) = - / f d r " d t " ( - '  (r-r",t-t")Xc ( r" - f  ,t"-t').n(r",t"), 
ti J 

1 ~® dco 
= V--~- ~ exp(iq1"r+iq2"r ')  1 ~ - e x p ( - i c o t )  

Using this, the Fourier transform used in (27) is given by, 

i ~® dcol Z c (q', col - co) 
D(2) (q - q" q" co) = n__® 21r t~(q-q ' ,col )  n(q'co)" (30) 

Within the random phase approximation (to maintain consistency), we can write, 

to-' (q, co) = 1 +v(q)xC(q, co). (31) 

Substituting in (30) we find that the expression for D ~2) (q - q', q', co) splits into two 
parts as given below, 

D(2) (q- q" q" co) = n (q' co) [ ~ f dcol Xc (q'' col - 2~ 

• ] +-~ v ( q - q ' )  ~((q',col - c o ) g ( q - q ' , c o l )  , 
gt 

=~(q, co)[S(q')+v(q-q') i n j ~ "  7.1"dcol ~(q,col' -co)x~(q-q' ,col)].  (32) 

Substituting this form for/)(2) (q_  q,, q,, co) in the third term on the right side of (9) we 
have, 

v (q')  C (2) (q - q', q', co) 7:0 (q, q', co) 
q' 

= ~ v (q')D (2' (q - q', q', (L))~ r0 (q, q', co), 
q' 

: ~ (q, co) .~  v (q') r s  (q')z "° (q, q', co) 
q' L 
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+ v ( q - q ' ) ~  f alto1X c (q' , tot-to)x'(q-q' , tot)X'°(q,q' , to)],  
J 2~ 

= ~l(q, t o )~v (q ' ) v (q -q ' )  i f dtol X~ q' ~ j - - ~ -  (q', to, - to) 

x X ~ (q - q', tol )X '° (q, q', to)" 

The first term in the third line of the above equations vanishes because of the fact that 
S (q')Z '° (q, q', to) is an odd function of q'. Substituting in (9), we have, 

(q, to) = {t~xt (q, to) + v (q) n(q, to)}X '° (q, to) 

+ ~l (q, co) 1--~, ~ v (q') [ {S ( q -  q') - I} 
nVq, 

, i ldto, x, ] 
+ v ( q - q  ) 'n .I 2n (q',tot - t o ) f f (q -q ' , t o l )  fro (q,q,,to). 

(33) 
Then from (11) we have, 

X' (q, co) = X'° (q' to) 
1 - v (q) {1 - G (q, to)}X "° (q, to) ' (34) 

where, the local field correction G (q, to) is given by, 

v (q)X'° (q, to ) 1 1 [ G (q, to) = n-V ~ v (q') {S (q -  q ' ) -  1} 

+ v ( q -  q') ~ ~d; - t  X' (q', tot - to)~ ( q -  q', co, ) ] ~'° (q, q', to). 

Since X" (q, to) is an even function of q and to, we can rewrite the above equation to 
obtain, 

v ( ~ °  (q, °9 ) I I [ G (q, to) = ~--~ ~ v (q') {S ( q -  q ' ) -  1} 

,) i fdto, ] 
+ v ( q - q  "~]- -~- -xC(q ' , to l )~(q-q ' , to - to , )  X"°(q,q',to). 

(35) 

When we use Hasegawa and Shimizu's approach and use this approximation suggested 
by SSTL for decoupling o f f  ~2), we get a similar expression for G (q, co). In this case, 

v (q)ff° (q, to) 1 1 [ G (q, to) = n-V ~ v (q') { $ ( q -  q ' ) -  1} 

i fdto I X~ ] + v (q') 'n j - ~  (q', to,)~ (q-- q', to-- to1) fro (q, q,, to). (36) 

We are not able to re_produce the result exactly mainly because of the ad hoc 
approximation used for h. By definition, the function D~2)(q, q', to) is symmetric with 
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respect to exchange of variables q and q'. In this approximation we see that this does not 
hold (see (32)). A better and more realistic approximation should give a symmetric D (2). 

In the classical, i.e. h -~ 0 limit, using (16) and neglecting the frequency dependence of 
t (q, co) in the denominator we have, 

G(q)= e (q,---~ {S ( q -  q ' ) -  1}. (37) 

This is the result obtained by SSTL As they neglected the frequency dependence of the 
dielectric function in the denominator of G (% co), they obtained a static local field G (q) 
in their approximation. 

From (35) we see that the first term, a real quantity, has the same form as the local 
field obtained by Hasegawa and Shimizu (1975) which satisfies most of the static 
properties of the system. The second term is the complex, frequency-dependent part 
which will be of interest in our present calculations. 

We consider only the classical limit of (36) for our calculations. In this limit the local 
field can be written as, 

G (q, co) = G 1 (q) + G2 (q, co), (38) 

where the first term G~ (q) is the result obtained by Singwi et al (1968) and is given by 
expression (18). The second term G 2 (% co)can be further simplified using the spectral 
representations for the causal functions according to which, 

g(q'co)=-l-ffdco'Img(q'co'){ I n  o~-co'+i,~ co+co'-i~tl t .  (39) 

Using this form for the causal functions in (36) we can perform the col integral by 
contour integration. Then using the relation between the imaginary parts of the 
retarded and causal functions for positive co (Hedin and Lundqvist 1969) the imaginary 
part of G2 (% co) can be written as, 

ImG2 (q, co) - I ~'dSq ' q.q_q' iq_q,i 2 
4n 2 e2n j (2n) s 

× f~ dco+ ~'" (q', coi)" Q'" (lq- q'], co- col), (40) 

where Q" (q, co)= -v (q)l' (% co), is the polarisability of the system. Using reduced 
units where q and q' are in units of q f, the Fermi momentum and kco and tun' in units of 
e~, the Fermi energy, we can rewrite (40) as, 

Im G 2 (q, co) = ~ dq' q,2 -1 dt qq't 

(41) 

where q,,2 = q2 + q,2 _ 2qq't. 
In (41), the co-dependence of Ira G2 (ooco) is seen to be controlled by a product of the 
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type Q'" Q'" i.e. by coupling between the various excitation modes of the system. A 
similar feature had been observed earlier by Sharrna et al (1980) who used an entirely 
different approach called the Mori formalism to develop a theory mainly for 
investigating the damping of plasmons. In the Mori approach, a disadvantage is that 
the static quantities are required as inputs to the theory and cannot be extracted from 
the theory itself, whereas in the present ease we are able to reproduce the well-accepted 
static results (STLS). Further, this mode coupling feature present in our approach is 
noteworthy because to our knowledge this is the first time, starting from an equation of 
motion or a generalized mean field approach, one has been able to incorporate the 
coupling between the excitation modes in the system. 

In principle, (41) has to be solved self-consistently with (34) to obtain Im G (q, co). The 
amount of computation being formidable we have replaced the Q" in the equation for 
Im G2 (q, co) by its RP  ̂form which can be obtained from (12). By using the RP  ̂form, we 
ensure the coupling between the excitation modes of the interacting system. 

4. Numerical calculations and results 

4.1 Damping coe~cient of lono wavelength plasmons 

In the small q limit, the imaginary part of G (q, co) is found to vary as q2 (as expected). 
This Im G (q, co) gives the plasmon damping coefficient ~ which is defined (in reduced 
units) as, 

_ COo 
y - ~ Im G (q, co,), (42) 

where cop is the bulk plasmon frequency. In table I, we have tabulated the contributions 
to damping coefficient from this coupling of excitation modes for r s = 2, 3, 4 and 5. 

The contributions to. ImG(q, co) from interactions between particle-hole and 
plasmons and between plasmons themselves arise only for frequencies greater than the 
plasmon frequency cop. At co ~< cop, the only contribution is from the '" '" Qph Qph i.e., the 
particle hole part alone. When QRP  ̂is replaced by the free electron polarisability Q,O, 
there is a considerable increase in the value of ~. For this particular case of using non- 
interacting Q,O, we have carried out analytical calculations also for r~ = 2. As q is small, 
we make a Taylor expansion of Q" (q' - q, co - co~ ) about q' to linear order in q as, 

Q'°"(q ' -q ,  co-col) = Q'°"(q',co-cot)-q'V~'Q'° (q', co - cot ). (43) 

To evaluate the integrals we have followed the method suggested by Dubois (1959). In 
table 1 we have also listed for r~ = 2, the result obtained by Sharma et al (1980), who 
used Mori formalism and replaced (2" by Q,O'.. The difference in the value obtained by 
us and that obtained by them is rather large. This is somewhat misleading because the 
expression obtained by Sharma et al (1980) viz., 

~=~--03n co~ [63 (1 - In 2)] ~_ 0"285 co~, (44) 

is really valid only in the r, --, 0 limit. The value of y reported in table I has been 
calculated for r, = 2 using the above r, --. 0 result. This small r s result compares quite 
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Table 1. Contributions to damping coefficient y calculated using 
equation (41) for Im G (q, top). 

Contributions to ~ from r, = 2 r, = 3 r, ffi 4 r s = 5 

QRpAQRp^ 0-0015 0-0023 0-0031 0"0037 
Q,o,, Q-o,, Computed 0-0967 0-1858 0-2293 0-3215 

Analytical 0-0966 
Result of Sharma et al (1980) 0"6797 

well with the weak coupling result (r, --, 0) obtained earlier by Dubois and Kivelson 
(1969) following perturbation theory, i.e., 

37~ 3 
3' = ~ t o .  [ 3 4 -  221n 2] "-, 0-276 to~. (45) 

We have therefore investigated the r, ---, 0 limit in our approximation. We use the same 
approximations as those used by Sharma et al (1980) i.e., replace Q'" by the free particle 
function Q,O,, and neglect the second term in (43), (i.e. the derivative of Q" (q', to -col  )). 
In this case we obtain, 

3n 3 -40 3 3' -- ~4--i~ ~p I. ( l - I n  2)] ~_ 0.181 ogp. (46) 

Now the agreement with r, --, 0 result of Dubois and Kivelson (1969) is fairly good and 
that with the result of Sharma et al (1980) in the same limit is far more improved. We 
note here that the inclusion of the derivative term in (43) reduces the value of  3' by about 
75 %. For example, in the r~ ~ 0 limit if we take the full expansion of Q,O,, (q _ q,, co 
- o~1), given in (43), we obtain, 

3 n  3 -  0 3 3' -- ~ COp L1 (1 - In 2)] -~ 0.045 top. (47) 

These results for r s - ,  0 however are not very useful since for metallic densities the 
value of G lies in the range between 1.8 and 5-6. Thus we feel that the 3' values calculated 
by us and presented in table 1 are more relevant for metallic densities and none of the 
results (equations (44) to (47)) is meaningful in this range of r,. However, we note that 
the Q,o,, Q,O- approximation gives considerably large value of 3' as compared with that 

b r" i," for the more accurate fully interacting case, represented in the table y QRP^ QRPA. The 
significant decrease in the magnitude of  3' results from the screening effect which is 
absent in the Q,O,, Q,O- approximation. 

4.2 Higher q-region 

We have calculated explicitly the Im G 2 (q,o~) for various q and co values for r s = 2. In 
(41), Q" is replaced by its SPA value both for particle-hole as well as plasmon part, i.e., 

Q f '  I /~r  ~- _4_/fir ~- 
~,~ RPA)ph t .~ RPA)pl- 



Now, 

and 

0.16 

where, 

fQ,oy 
(48) 

(Q~.pA)pl = 2 co (q) a (co - co(q) ) O(qc-  q), (49) 

co (q) = cow (1 + rq2). 

Here, F = 9n/ (40~, , )  in reduced units and q~ is the critical wave vector. Thus  now in 
G~ (q, co) we have contr ibut ions from Qph Qph, Qph Qpl and Q~I Qpl. 

To  obtain the particle hole contr ibut ion,  we have evaluated the triple integral in (41) 
using numerical methods. The co' and t integrals were evaluated together  using two- 
dimensional Simpson's method  and the value o f  q' integral was then calculated using 
trapezoidal rule. In the particle-hole plasmon part, the co' integral could be solved 

(a) 
3 

I 0.12 

"~ 0.08 

o 0-04 
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i 0 - 0 - -  
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I 0.0 
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w-O'08 
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-0.16 
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(b) 
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2 4 6 S 10 12 

w 

Figure 1. (a) Imaginary part of G, (q, co) as a function of co for q = 1.6 and r, = 2. Curve 1: 
particle-hole plasmon part; Curve 2: particle-hole part, Curve 3: total Im G2 (q, co). (b) Real 
part of G2 (q, co) for q = 1"6 and r, = 2 as a function of co. 
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analytically and then the t and q' integrals evaluated using numerical methods, e.g., 
Simpson's method for the t-integral and the trapezoidal rule method for the q' integral. 
The plasmon-plasmon contribution could be obtained analytically but it was found to 
give a non-zero value only for small q (q < 1 in reduced units). 

In figures la-3a, we have plotted the different contributions to Im Gz (q, co) and total 
Im G2 (q, co), against co for q -- 1.6, 2.5 and 5-0 respectively. In all these figures curve 1 
gives the particle-hole plasmon part, curve 2 the particle-hole part and curve 3 the total 
Im G2 (q, co). As can be seen from the curves, in the high frequency region the plasmon 
contribution vanishes completely and the particle-hole contribution is the only 
contribution. At very high co, this G" pa-ph decreases to zero as 1/(;4 + Bco). 

To obtain the real part of G2 (q, co) from this imaginary part we have made use of the 
Kramer-Kronig dispersion relations according to which, 

(50) 

0.32 

where P denotes the principal value of the integral. Figures Ib-3b show the Re G2 (q, co) 

T 0.2~ 

0.16 

EO.08 

I 0.0 

0,16 
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1 I" Im (q, co') 
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( b )  

Figure 2. (a) Imaginary part o f  G2 (q,w) as a function of  co for q -- 2.5 and r, -- 2. Curve 1: 
particle-hole plasmon part; Curve 2: particle.hole part; Curve 3: total Im G2 (q, co). (b) Real 
part of  G2(q,o~) for q -- 2'5 and r, = 2 as a function of  co. 
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Figure 3. (a) Imaginary part of G2 (q,¢o) as a function of co for q = 5-0 and  r, = 2. Curve  1: 
particle-hole plasmon part; Curve 2: particle-hole part; Curve 3: total Im  G2 (q, co). (b) Real 
part of G2 (q, co) for q ffi 5"0 and  r, = 2 as a function of co. 

as a function of  to, for q = 1"6, 2"5 and 5"0 respectively, again for r, = 2. 
It is interesting to note a special feature of  G2 (q, to), viz the negative peak in its value. 

Niklasson (1974) had reported from his exact treatment of  G (q, to) for very large q, the 
existence of  a strong peak at the free particle energy q2 (in reduced units). As is seen 
from the curves for G' (q, oJ), the peak does appear to be shifting towards the free 
particle energy as q increases. This is illustrated in figure 4. It should be noted that 
G~ (q, co) vanishes for both co --, 0 and co --, oo. This means that G2 contains the pure 
dynamic effects while GI contains the pure static effects. This is a defect in the present 
theory in that G (q, co) has the same static and high frequency limits (Mukhopadhyay 
and Sj61ander 1978, give a comparison of  G at these two limits). 
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Figure 4. Solid curve is a plot for free particle energy q2 vs q. The crosses indicate position of 
the negative peak in Re G2 (q, co) for different q values. As seen from the figure, peak appears to 
be shifting towards free particle energy for high q. 

For q = 1.6, we have also calculated the dynamic structure factor S(q,co). This 
quantity is related to the imaginary part of the inverse dielectric function as given by 

Im = (51) hq 2 S (q,co), 

and so in turn is proportional to the Q" (q, co). To calculate the latter, we have used 
Go (q) in place of GI, to obtain a better result in the static limit. In figure 5, we present 
our results (curve 1) for Q" (q, co) as a function of co for q = 1.6. Curve 2 in the figure is a 
plot of Q[PA (q, co) and curve 3 is the experimental result (Platzman and Eisenberger 
1974). All the curves have been normalized to the same peak value for comparison. As 
can be seen, S (q, co) in our case has a broader peak structure than the RPA case but the 
peak in S (q, co) has been shifted to a lower frequency, a trend tending towards the 
experimental result. The double peak structure obtained in experiments, however, is 
not reproduced. The calculations of Aravind et al (1982) also fail to show the double 
peak structure in S (q, co). They have also reported a broadening in the peak as also a 
shift in the peak value towards lower frequency. Although Green et al (1982) do find 
some shoulder appearing in their calculations for S (q, co), the agreement with 
experiment is far from good. In the present calculations for S (q, co), a high frequency 
tail is also observed. 
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Figure 5. Plot o f  Q" (q, co) vs. co for q = 1.6 and r, -- 2. Curve 1: Present calculations; Curve 
2: ePA; Curve 3: experimental results. 

5. Discussion 

We have been able to develop in a systematic methodical manner, a theory that gives a 
complex, frequency-dependent local field correction. Also we have been able to show 
how suitable approximations in our theory can lead to results obtained by earlier 
workers in a simple, systematic manner. Further the frequency dependence in 
Im G (q, to) is seen to be controlled by a term of the type Q'" Q'", i.e. by coupling between 
excitation modes of the system. This feature had been observed earlier in an entirely 
different approach called the Mori formalism used for developing a mode coupling 
theory. To our knowledge this is the first time that such a mode coupling type term has 
been observed starting from an equation of motion approach. The results for damping 
coefficient of long wavelength plasmons at metallic densities and the fair agreement 
with the perturbative calculations in the weak coupling limit (Dubois and Kivelson 
1969) are other positive aspects of the present theory. 

A major disadvantage of the present approximation is that G (q, to) gives the same 
static and high frequency limits. Also we are not able to reproduce the experimentally 
observed double peak structure for S (q, co), a feature not yet explained by any of the 
earlier theories either. Attributing these drawbacks to the ad hoc nature of the 
approximation for the vertex functition h, elsewhere we have developed the vertex 
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funct ion in a more  systematic  manner ,  using the l inear  response theory  (Shah 1985). 
The  mode  coupl ing  feature is observed in that  ease too.  Using  different approaches  to 
de te rmine  G (q, to), we have also been able  to  show there, that  the mode  coupl ing feature 
ar ises  due  to  inclusion o f  higher  o rde r  cor re la t ions  in our  theory.  However ,  f rom a 

compu ta t iona l  poin t  o f  view, the present  fo rmula t ion  is much simpler,  and  gives the 

p lasmon damping  coefficient in reasonably  good  agreement  with per turba t ive  calcu- 

la t ions  in the weak coupl ing l imit  (Dubois  and  Kivelson 1969). 
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