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Abstract. Classification of all electrovac specetimes permitting the separation of variables in 
the Hamilton-Jacobi equation for a charged test particle is carried out. This separation 
requires the existence of a complete set consisting of Killing's vectors and tensors of a special 
kind. Every complete set defines its own type of metric and electromagnetic potential in the 
separable coordinate system. There exist seven types of separation of variables for 
electromagnetic spaces. For every type an additional classification is carried out by 
transformation of coordinates without any disturbance of the separation conditions, the 
gradient transformation of electromagnetic potential and the conformal-constant transform- 
ation of metric. 

The key step in solving the problem is the extraction of an autonomous subsystem which 
determines the metric from only the Einstein-Maxwell equations for every type of separation 
of variables. 

Representatives of all classes of metrics and electromagnetic potential are given for every 
type of separation of variables with the exception of the spaces found in the well-known work 
by Carter. 

The problem is solved in terms of metric formalism. The classes of electrovac spacetimes 
obtained are found to be related to Petrov's classification. 
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1. Introduction 

We shall call the Riemannian space of  a signature ( + ,  , , - )  as a special Stackel 
electrovac spacetime in which the Hamilton-Jacobi equation for a massive charge in an 
external electromagnetic field defined by an electromagnetic potential A~(x), i, j = O, 1, 
2,3. 

gi~(x)(S,i + Ai)  (S,j + Aj)  - m 2 = O, (1) 

can be integrated by the complete separation of variables and the metric tensor  gij 
together with the electromagnetic potential Ai satisfy the vacuum (with g-term) 
Einstein-Maxwell equations 

R~j - gi~ R /2  + ggi~ = 4~le T~j, Vi F ir = 0, (2) 

(we use for a single term the rule of  summation with respect to the superscript and the 
subscript appearing twice, unless a reservation is made). Here Rij is the Ricci tensor; R is 
the scalar curvature; Vi is the covariant derivative with'respect to x~; Fi~ -- Aj.~- Ai.j, 
T~ = (gi~ F~t F ~l - F .  FJ.)/4 ~; giig~ = 6~, 6i, is the Kronecker symbol; ~e is an arbitrary 
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constant; k, l = 0, 1, 2, 3. The term "special" is introduced to distinguish the above 
determined spaces from the Stiickel spaces in which the eikonal equation, g~J S ~S~ = 0, 
can be integrated by the method of complete separation of variables. 

Interest in special St~ickel spaces of electrovacuum is due to the possibility existing in 
this case to investigate their global properties on the basis of exact solutions of the 
equations of motion for test particles. 

The problem of classification of such spaces repeatedly attracted researcher's 
attention (Carter 1968; Walker and Penrose 1970; Boyer et al 1981; Demiansky and 
Francaviglia 1981; Bagrov and Obukhov 1982, 1983; Bagrov et al 1983). A detailed 
bibliographical review has been given by Bagrov et ai (1983). In the present paper this 
problem is completely solved in terms of metric formalism. 

2. Separation of variables 

In this section we give some statements of the theory of separation of variables which 
will be needed in the subsequent discussion. A more detailed consideration of the 
theory is given by Bagrov et al (1973), Shapovalov (1978, 1979), Benenty (1980), 
Benenty and Francaviglia (1979). 

The conditions necessary and sufficient for complete separations of variables in a 
linear second-order non-parabolic differential equation were first given by Bagrov et al 
(1973) in covariant terms of symmetry operator complete sets. St~ckel spaces of a 
general form are studied by Shapovalov (1978, 1979). Benenty (1980) considered the 
theory in terms of structure properties of Riemannian manifold. The metric tensor and 
the electromagnetic potential are also found in a general form in separable coordinates 
by Bagrov et al (1973), Shapovalov (1978, 1979) and assumed as a basis for our work. 

By definition, equation (1) is solvable by complete separation of variables if in any 
privileged coordinate system its complete integral can be presented in the form 

3 

s=  S,(x')+Q(x), (3) 
i = O  

where Q tx) is independent of separation constants. According to general theory (see, 
for example, Shapovalov 1978, 1979; Benenty 1980) the necessary condition of variables 
complete separation in (1) is the existence of a complete set consisting of pairwise 
commuting n(0 ~< n ~< 3) Killing's vector fields Y~(x) (indices ofp and q run from 0 to 
n -  1 through the text) and ( 3 -  n) Killing's tensor fields Y~(x) independent of each 
other and of g~J (indices denoted by small Greek letters run from n to 3). We denote 
n' = n-rank (Y~ Y~i)- In the Riemannian space of a signature ( +,  , , - ) n '  can take a 
value of 0 or 1 (Shapovalov 1978, theorem 4; 1979, theorem 2). Numbers n and n' 
characterize the complete set. We shall take a complete set defined by integers n and n' 
as (n, n' )-type set. Accordingly, a special Stiickel electrovac space with an (n,n')-type 
complete set will be taken as a (n, n')-type space. The case is possible when a space would 
have sets of both (n,n')- and (no,nb)-types with n > no. Then we shall relate it to the 
in, n')-type. There are only seven different combinations of integers (n, n'), they are (0.0), 
(1-0), (1"1), (2-0), (2.1), (3-0), (3-1). That leads to the seven correspondent types of Sti/ckel 
spaces with signature (+ ,  , , ). 

The following notation is adopted here. Separable (privileged) coordinate system is 
picked up so that Yp = 6~ and will be further designated as (ui). Functions of one 
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variable will be denoted by small Greek letters with an obligatory singular right 
subscript indicating the number of the variable. For example: (o ~J ~J = ~p~ (u,). Inthiscase 
a derivative with respect to the corresponding variable is denoted by a dot. The 
quantities squared denoted by small Greek letters e, ~, ~ without indices are equal to 1. 
Constants are denoted by small Roman letters only (indices are possible), for example: 
a °,  a~, a~j are constants. Exceptions are metric tensors denoted by g~#, g~J, Kronecker's 
symbol 6i~ = ~ =_ 60, xi, u~, z = (u2 + iu3)/2. Other functions are denoted by capital 
letters. In order that one may not confuse the value of  a single superscript with the 
power we shall put the numerical value of  the index in parenthesis, so that up-{2) = an , 

= (%)2. when i = 2; d r, 

Let there be two special St[ickel spaces of electrovacuum V and V' being denoted by 
the following sets of  quantities 

g, ~(u), A,(u), ;~, ~e, (4) 

and 
o',j(u'), A',(u'), :.', ~', (5) 

respectively, ((u), (u') are privileged coordinate systems). V and V' are considered to be 
equivalent if quantities (4) and (5) are related by relationships of  the form 

g'ij(u') = a ~ (Ou~/Ou'i)(Ou,/cDu~)ghI(u),A~(u' ) = ~ ~ (DuJau[)Ak(u) 
k,l k 

+ O F (u')/Ou~, Z = ~/a, ~' = a~e, u'=u' (u), det(~u'/Ou) ~ O. 
(6) 

This definition is used only once for establishing the equivalence of  (1.0)-type to (2.0)- 
type spaces. In all other cases we employ a narrower concept of  equivalence when using 
in formulae (6) so-called permissible transformations of coordinates 

t q v q i Up = c n u q + C p ~ , ,  u ,  = ~s{,)(Us(,)), (7) 

where det c p ~ 0, S(v) is a certain permutation of  the set (n . . . . .  3). Using this 
definition, let us write down the conditions of  complete separation of  variables in the 
privileged coordinate system (see, for example, Bagrov et al 1973) 

• " J,v ij  
g'~ = v-3~v, (8) 

A i  v j -~" ~ 3 g i j  7f v, (9) 

g i J A i A j  = ~ ~v,  (10)  

where~bf (~-1 ~ , .  = )v, g0v Is the St~ickel matrix, n, ~j, n,~ are determined by the expressions: 

i j  i j .4_.opq~i  ~ j  ~ i  v i p type (n.O): n~ = ~ v 6 , _ , ,  _p_q, = 6 p ~ ,  

i j  (1 n i j n p i j i j type (n-l): n~ = - - ( ~ v ) ( ~ v ~ v ~ - ~ v ~ ; v ( ~ n ~ p - ~ - ~ p ~ n ) - ~ -  (11) 

n n i p -t- ~P%~i v - p~  q, n l v = ~ / . 6 v n n + 6 p n v .  

The metrics and electromagnetic potentials in the canonical form are represented here 
for all possible seven types of St~ckel spaces mentioned above. 
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Type (0~)): ds 2 = 6~6~duiduffdp~, Ai = O. 

Type (1.0)" ds 2 = (du2 /f~ + ~ du2 /8,W")A, ~Ao = y,,w", a,, = O, 
¥ 

Type (1"1): ds 2 = (2duodul/e.1 W ") -Ddu2/(e t  W~I)) 2 +du ] / e2  W ~2~ 

+ du2/e3 W~S))A, 

Ao = 71, At  = ( 0 ,  W v -  f~Ao) /~  1 W (1), A 2 = A 3 = 0. 

For (1, n' )-types A = 6, W',  fl = co, W' ,  W ~1) = ~2-~s ,  

W(2) = ~3 - -~1 ,  W(3) ---- ~1 --'~2- 

Type (2~)): ds 2 =( ~. Gp,dupdu,+ X (-I)'du~/~.)A.A.=O. 
\ p , q  v 

Type (2.1): 

Ap ~. 

d s  2 = 

- G - -  

A o = 

(12) 

(13) 

G ~ ( T ] - I - ' ~ ) ,  A - - 6 2  -}- 63, Gpp,GP'q=6qp,GP~=o~¢+o~ q. (14) 

- [(q~2d Uo + dul  -f~du2)2/G + 2duodu 2 - y 3 d u ~  + du~]A, 

~P~?3 +2~P2X3 + ~2 + ~3, f~ = ~P2~'3 +X3, A = 62 +63,  

0" 2 -I-¢P2AI, A 1 --~ (~0203 -0"2(~'J¢-~2 +~3)/G, (15) 

A2 = 03 - 0 . 2 ~ 3 - f ~ A l ,  A 3 = 0. 

Type (3.n'): go = gij(u3), Ap = a~, Aa = 0. (16) 

(1) n'=O, gp3=O. (2) n ' = l ,  gp2=g~3=O. (17) 

All the functions in the above relations can be apparently expressed in terms of  the 
ij " n~, n~, ~o~ in (8)-(10). 
Let us briefly describe the general scheme. 
Expressions comprising complementary information (to (8) and (9)) on the metrics 

and potential structure specific for every St~ckel space type are extracted from (10). 
Functional equations autonomous subsystem comprising only functions ¢p~ and n ~ 

is derived from equation (2) by the expressions mentioned above. The autonomous 
subsystem integration is reduced to the algebraic equations system solution. The rest 
system equations (2) and (8)-(10) are thus integrated. 

3. ( l ' 0 ) - t y p e  s p a c e s  

The electromagnetic potential, correct to equivalence, has the form 

A o = a l ,  A ~ = 0 .  

To prove this let us write down (10) in the form 

(y~W') 2--(w~W')(~.W~), v.#=1.2.3. 

Let the variable ul be fixed and introduce the functions 

f~,o = (°JVo-°Jl)/T,o+ lZl' Fro = (YVo- Yt)/T,o+ Vl' =-Vo = ( ~ v o - ~ l ) / T v o + ~ ' l ,  

(18) 

(19) 
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T~o = ( -  Iy° (%o-Zt ) ,  here Vo = 2, 3. Then one can represent (19) in the form 

(F2 - V3) 2 = ([12 - i13) (-=2 - F,3). (20) 

Linear combinations (with constant coefficients) of  the functions (F,0,~o; f~o,,0; -=~o,~o) 
forms a linear space M~0; moreover dim M2 + dim M3 ~< 3. 
(1). dim M2 > 0, dim Ms > 0. Became of the symmetry of  (20) with respect to the 
permutation of  indices 2 and 3, one can take dim M3 = 1. It allows us to represent 
functional equation (20) as a following system: 

F 2~o = tahoE,o, 2 r 2 v 3  = [12-=3 +[1a-=2. (21) 

A s  d i m  M 2 ~ 0,  w e  h a v e  

Ao = F2/f12 = F3/f13 = ~1. (22) 

(2). Let now dim M 2 = 0, then I" 2 = ~2 = ~-2 = 0. 
Because of  ~2 :P 0 (otherwise we have (2~)-type spaces), from here it follows: 

Yt = Y2 = tot = o~2 = (t  = ~2 = 0, (23) 

which is equivalent to (18). When condition (18) is satisfied,Tv~ = 0 (v :p #), then 

R~v = 0 (v q:/~). (24) 

All solutions of system (24) were found by Obukhov (1977). This together with 
condition (18) makes it possible to completely integrate system (2). We can write the 
solutions in the following manner: 

d s  = +du  + - u )t,7 du 2 

,40 = oq, Av = O, rlv= 4(ru 3 +bu  2 +kuv+q) .  

(1)  

tX 1 ---~ 

(2) ~ - -  

fit t ----- 

(3) 

2(eAlae)ilfl 1, k = A, q = O. (25) 

e, 82 = _ 4 e e 2 ( p e l  +eA+e~aea2/2),  

a S ( - ~ 6 2 e l ) - ½ d t t t ,  2er = ~aea2-2; t .  (26) 

tpt, 3(o2= -2(2~,tp2 + 6rtp2 + 3~am2tpt + ptp3/2), 

etp~/~b 2, r,l = 2a~(-~tpt)½. (27) 

It is shown that the above mentioned special Stackel electrovac spacetimes are 
equivalent, in terms of  relations (6), to certain spaces of the (n.0)-type, where n > 1. For 
this purpose we shall prove that, in addition to Killing's vector field Y~ -- (1,0,0,0) 
belonging to the complete set, these spaces permit the existence of  another Killing's 
vector field, i.e.Y~ -- (0, 0, A (u2, u3), B (u2, u3)) commuting with Y~ and A i. For solving 
(25) the field Y~ is defined by the formulae: A = u 2 ( ~ 2 ~ 3 u 2 u 3 ) - ½ ( u 2 - u 3 )  - l ,  B = 
- u3 (~/2 q3 u2 u3) - ½(u2 - u3)- 1. In cases (26) and (27) the existence of y i  follows from 
the following considerations. The IOlling's system is written as 
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2A.3 = D/tl2, 2B,2 = -D/~13, D = D(U2 u3)  , (28) 

2 A, 2 = - A ~2/~2 "~- (B - -  A ) / ( u  2 - -  U 3), 

2B.3 = - B~3/t13 + ( B -  3)/(1-/2 -- U3). 

Compatibility conditions of this sytem 

2 D 2 ~/2 = 3 (B - A)/(u2 - u3 )2 _ Bih/t l  3 (u2 - u3 ) 

- O[1/(u2 - u 3 ) -  ~2/~/2 ] /~2 ,  

2D,at/a = 3(B - A)/(u 2 - u3) 2 - A ~2 / r / 2  (u 2 - u3)  

- D [ 1 / ( u  2 - u3)  + ~3/?13]/YI3, 

with (28) form a completely integrated system of equations which has nontrivial 
solutions A, B, D and this is a proof of the existence of the vector field Y~. Making 
transformation of variables u2,u 3 which diagonalize Y~, we obtain metrics and 
potentials of the special Stackel spaces of  electrovacuum of (2"0)- and (3-0)-types in the 
privileged coordinate system. Thus, we have constructed the proof of  Theorem 1. There 
are no special Sti/ckel spaces of electrovacuum of (1.0)-type. 

Note: the same is also true for spaces of  (0"0)-type (Iwata 1969). 

4. (1.1)-type spaces 

Let us consider the functional equation (10). Using expression (13), (10) reduces to the 
form 

20, WV71 - oJ, W'~, 2 - ~e, W" = 0, (29) 

where ~e, = 7r,/e,. It should be noted that (29) is symmetric with respect to permutation 
of variables u2. ua and that the functions which depend only on one of these variables 
enter into (29) linearly. The latter means that to obtain a general solution of (29) it is 
necessary to exhaust all cases of linear dependence between the functions 
0o, ~eo, O~o, %, a = 2, 3. The existence of the group of equation (29): 

O'v = Ov +aT, +bco, +c,  ~e', = ~e~ +al  zv + 2bO, +b2o~ +ci ,  

O'v---tov+a2T,-I-C2, ~'l = Y l  +b,  z 'v=Tv-Ft  (30) 

(a, b, c, a~, c1, a2, c2, t-group parameters) 
enables one, without loss of generality, to confine himself to the non-equivalent with 
respect to (30) solutions of (29): 

(1) Y l = ~ e ~ = 0 = : ' A o = 0 ,  A I = 0 v W V / e t W  tl), A 2 = A a = O .  

(2) ~ e ~ = 0 ~ = c o ~ = 0 = o A o = ~ l ,  A v = f ~ = 0 .  (31) 

The conditions T,~ = 0,v ¢ # are valid in the both cases, hence it follows R ~  = 0, 
v ¢ #. A solution of this system was obtained by Obukhov (1977) and defined the space 
linear element in the form 
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ds 2 = ¢ [ 2 d u o d u t  + 2 d u f f S ~ W +  W(du~/~(~2)+du~/~3))], (32) 

where W = z 2 -  "3, f~ = co2- tea. Substituting (32) and (31) into Einstein-Maxwell 
equations (2), we obtain a system of functional equations for functions 
0~,?t,co~,¢~,qb. The solutions of this system define all spaces of (1.1)-type. They 
are: 

I. A, = 0, Ao = ut (22/~e)½, 

f l = 0 ,  ~ ] = 1 .  

II. A o = A 2 = A ~ = 0 .  

(1). At = 

(2). At = 

(3). At = 

p =  

(a) ~ - o  = 

~ ' =  

(b) ~=o = 

~ =  

= 1, i2 = (_  1)'[a + 2 n , ,  + l ,  ~, - 82,,3], 

12au2, r k = - 3 / X u  2, W = I ,  ~ = ( r u 2 + s u 3 + q ) / z  2 

- 122eea2u~+kou32 - ku 2, i 2 = 2 ( k z 2 - r / z 2 ) ,  ~?) = 1, ~,t'(3)-'2-,1. 

(au2 + r)/e2 + ( aou3 + ro)/,~, d? = W =  1 , 2 = 0 ,  f l = ( b u 2 + c u 2  

+ l)/a~ + (bo u2 + CoU 3 + 1o)/~2~, ~ t /a t  + ~'~/~ - 2b/a~ - 2 b o / ~  

+e(a~ / ,~+ao%D = o, ~e}--- .~, ~ ? ~ = , f .  

: ~ + ~ ,  ~ = ~ , t ,  w = 0 ~ o ~ o ,  , ~ = - ( 2 r o , o ~ + ~ n ~ o t  

+so(pt3), fl = roa~(#-o#-o)2/4+ ~ a ; ~ ' o +  ~a~=o,  7 =  l, 

p, -k=k,  a = ~ / ~ z ,  ~ ] = 1 .  

(kz 2 + 2qz + r ) e x p ( - i l ) ,  gr = (no3~=o +ko)exp(il),  

[ 3kro gr2 exp (il) + p ~=o + t]dz,  

cexp(1½z)+texp(-1½z)+ko,  ~ = O, 

- 2/½re k-o (c 2 exp (21½z)) 

- t 2 exp ( - 21½z) - (p + 31r o ko k-o)Z ( ~ o  - ko) 

+ Co exp (1½z) + to exp ( - 1½z). 

5.  (2 -O) - type  s p a c e s  

The spaces of this type were systematically studied in the well-known work by Carter 
(1968) under some additional restrictions imposed on the metric. We shall make a 
classification without these restrictions. 

Let us write relationship (10) using formulae (14) and differentiate it with respect to 
u2, u3. The equation obtained, after simple transformations can be represented in the 
form T23 = 0. As g23 = 0 it follows that R23 = 0. The latter equality can be written as 
[ In (A 2 det Gpq)]. 23 = 0. By integrating this we obtain 

det (Gp~) = ~2z3. (33) 

Thus, equation (33) follows from the separability conditions of Hamilton-Jacobi 
equation (1) and is not an additional restriction as it was supposed by Carter (1968). The 
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only essential restriction accepted by Carter (1968) is the existence of  constants a p ~ such 
that the condition 

det (ct~ q + ( - 1)'a p*) = 0 (34) 

is valid for the functions ~ ~* entering in metric (14). Having considered the metrics 
which do not satisfy condition (34) we establish the validity of  the following. 

Theorem 2. The set of  special St~ckel spaces of  electrovacuum of (2.0)-type can be 
divided into the following non equivalent, nonintersecting classes of  spaces: 

(a) class of  Carter's spaces. Functions ,~P* in metric (14) can obey the condition (34); 
(b) class of  plane wave spaces. By means of  permissible coordinate transformations 

(7) the component goo of  a metric tensor can be made equal to zero. All solutions of  this 
class enter as special cases into the solutions of  section 4; 

(c) class of  spaces of  constant curvature (with no electromagnetic field). 

Let us outline the proof. Formulae (14) enable one to extract from Einstein-Maxwell 
system (2) an autonomous subsystem (containing no functions of  electromagnetic 
field). Indeed, as it is not difficult to see that 

0"" T,, = 0"" T,o -- O, (35) 

hence 
g'# R,I , = gPq Rp~ = 22.  (36) 

Equations (36) together with (33) form the autonomous subsystem to be found. All 
nonequivalent solutions of  this subsystem not satisfying condition (34) and the equality 
goo = 0 are represented below: 

(1) ds 2 = ~ ( u 2 - b ) ( u a + b ) d u 2 + e ( u 2 + b ) ( u 3 - b ) d u 2 1 - [ d u 2 / ( 4 2 u 2 - a ) ( u 2 - b  2) 

+ du~/(4Au 3 + a) (u~ - b2) "] 3(u 2 + us). 

(2) ds 2 = ua [(0t2 duo +du l )2  exp tp 2 + r2 exp ( -  tp2)d u 2 -edu2/z2  + du~/( - 42u3/3 

+enua2)]' z 2 = n u 2 + 2 q u 2 + t '  a t 2 = f  [~b~(e2-~b2~2)-n]½du2exp ¢P2 

(3) ds 2 = 03 [(0% - ctp2 ) du~/(ct 2 - ~) + 2s tp2 duodul/(ct~ - ~) 

+ ~(cta + ctp2)du~/(ct~ - ~) + ~du 2 - ~du2/Ta], 

[2='pu2, ~t2 =~  +~O2/T3 

(ct2 x-I-~st2x -~- ~,d(ctx)/dx =- - ~ s t x ; d ( s t x ) / d x  =-ctx), 

+ o )(2osb's = (2osO:s 

(4) ds 2 = ~[(A + 4 a -  ~s)du 2 + 2~2 duodul  + e(A + 4a + ~3)du2]/A 

+ A[du2/(u2 + a)(u2 + b ) - d u 2 / ( u s  +a)(us - b ) ] ,  

A = u 2 + u 3 ,  y2=8e,  a(u2+a), T2=8a(ua+a) ,  2 = 0 .  

(5) ds 2 = ~ u s [ ( 1 / u s + e ~ ( u 2 - 3 ) / 2 ) ( d u 2 + e d u 2 1 ) - ? 2 ( d u 2 - t d u 2 ) ] / A  

+ ~A(4du2/(u2 - 3~e)+du2/ua)-2~?aduodul/A,  A = u 2 + us, 
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4y2- - - - (U2- -3~) (U2- t ' g~ )  3, ~2----~(g~--U3)3 , ~----0. 

(6) d s  2 = [ ~ u 2 u 2 d u  2 -t- 2(~u2)½u 2 duo d u l  - ~u2 (2/us + l /u2)du2"] /A 

+ A ( d u 2 / 4 u z + d u 2 / u 3 ) ,  ~ = 0 ,  A = u 2 + u  s. 

(7) ds  2 -- ~ gi~(u3)duidu~. 
i,j 

The first solution is a space of a constant curvature. The second one is serf-consistent on 
substitution into system (2) only if Ai = 0 and ~o2 = In u2. Under these conditions the 
above solution also describes a space of a constant curvature. The seventh solution 
results in spaces of (3~))-type. The rest of the solutions, when substituted in sytem (2), 
lead to some contradictions. Then the theorem is proved. 

Plane-wave solutions are represented below for completeness. They follow from (31) 
and (32) in which it should be assumed that Ao --/12 = A3 = 0, ~] = 1. 

(1) A1 = 2a exp (rus)cos (ru2) , ~__ 1/W~2, ~2 _ , [2( r2 ,c2  +4,~/3), 

W =  exp( - ru3) ,  f~ -- (qexp ( - r u 3 ) + q o ) e x  p ( - ru3)+3r2(b -~ea2)x2 ,A-1  

+ 2 b ~ - 2 b ~ / 3 :  + f  x, ~ z 2 ~ d u ~ ,  Z~ = r ~  + t ~ - ~ ' - ~ .  

(2) Al = a u , + a o u s ,  ~p= -3/;~u 2, W =  I, f l = k ( u 2 + u 2 ) + S o U 3  

- aeg(a 2 + a2)u~/12 + f  u 3 + t. 

(3) A1=$r/O3~o+~.~/d3ro,  2 = 0 ,  W=O-03~o~o ,  f ~ = ~ e ~ + ~ O ~  o 

+.~a~ro,  O=O/Oz, T = l ,  p = p ,  a = n .  

(a) ~r o = 3kz2 + 2qz + r, ~ = 2n(kz  s + qz2) + 3 f z + c, 

= a e n [ n ( k z S / 5 + q z 4 / 3 ) + f z 3 + c z 2 ] + 2 p ( k z S + q z 2 ) + S o Z + t .  

(b) ~ o  = h exp (1½z)+texp( -1½z)+k ,  $; = n z ( 3 r o - k ) + h o e x p  (1½z) 

+to exp ( -  1½z), 21½~= [n2aehz 2 + ( - n  2 ~eh/1½+ 2hona~+ 21ipoh)z 

+ so]exp (1½z) + [ - n 2 ae tz 2 + ( - n 2 ae t/1½- 2ton ae + 21½po t)z 

+ s t ]  exp (-1½z). 

.2 (4) Al = a , i , / W ,  c~ = 1/z2z3, % = ( -  1)~(r~ 2 -4Az,/3), 

,1,, = ( -  I)~T,~, ~ [ ~  + k~, + l + ( -  1)'~ ~ ~ (a~ + a])~/9]/~¢~du,.  

6. (2.1)-type spaces 

Similar to the space types considered above we shall write (10), using formulae 
(15), in the form A 2 =-G(2~r203-¢273+~/2+~/3)+. From this it follows that 
[ (G A~ )5 ],23 = - 2  b2 (F23 + fl. 3 A~ + riFt 3), which, in its turn, can be represented in 
the form 

(b2 + ~02 Al) (F23 + ~ F :  3) + GF~ 2 Ft 3 = 0, (37) 

or T23 = 0. The latter equation, subject to (2), leads to the condition for the metric R2~ 
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= 0¢:~ ( G 2 / G - 2 ~ 2 ) , 3  = 0, where ~ ,  = A, /A.  From this equation we obtain by 
integrating 

G = --  (A/ / /2f13)  2. (38) 

Formulae (15) together with (38) permits one to write system (2) of  Einstein-Maxwell 
equations in the following form 

~3 = 2483 A, (39) 

2 ~3,3 + ~2  _ 2/~3 ~3///3 - -  (~2 / /2 f13 /A)  2 = 0, (40) 

~l~2 _ 4 ~  3 ~i~3/~3 + (~b2/ /2 / /3 /A)2 __ _ 2 ~ e [ ( F 1 3 A / / / 2 / / 3 )  2 

-k- (~2 -[- ~2  A I  )2 /A  - 4 2  A, (41) 

~2 - ,~2 ¢2 ~ 2  - 3 ~d / /2 )  + n 33 + 3/~3 n ,  3///3 - 2 ~ 3  n ,  3 

-~ - 2 ~ A [ F I 2 ( d 2 + ~ o 2 A I ) - F I 3 ( F 2 3 + ~ - ~ F I 3 ) ] / / / 2 / / 2 ,  (42) 

~3 -[- ~3~3/ / /3  - (//2//3~'~, 3 / A )  2 - 2~2 / / / 2  - t~i~2 -I- 4/~ 2 ~ 2 / / / 2  

---- 2 ~ [ ( A F 1 2 / / / 2 / / 3 )  2 + (F23  - t - ~ F I 3 ) 2 ] / A ,  (43) 

(A F', 3///2//3),~ + ,.k2//,//3 02  + <k2 a , ) / A  = 0, (44) 

[ / /2 / /3  (F23 -~ nFa  3)/A], 3 - r / /2 / /3  (~2 + ~02 Al )/A], 2 = 0. (45) 

Let us put ~3 = 0. From (40) it follows that ~b2 = 0, equivalent to ~o2 = 0, while from 
(39) we have ~2 = 22//3 +p. Equation (38) gives in addition one more of the 
conditions (a) /12 = 62, (b) //3 = 1. Integrating (44) together with (41) makes it possible 
to obtain an expression for potential At: 

A1 =//2 r( - d2 _ 22~2/~)½~//3du3 + P2]/62 

while (37) enables one to express F 23 + ~ F 13 through A ~ if ~ 2 =~ 0. If  #2 = 0, we can use 
this for (45). The rest of the equations can be integrated in quadratures. 

Let now ~3 4: 0. From (39) it follows that 2~2 = 0, and from (40) and (38) we have 
(~b2//2) 2 = 462. Let us integrate (39) and (40) taking into consideration the above 
expressions; then we obtain//32 = &32 = (4/3) [ae34 + 6(~2 m3) 2] + 2k~e3 + q, 63 = ~e 2. 
Since ~3 4:0 (in the opposite case ~3 = 0), one can make the substilution of variables 
u~ = ~e3(u3), then 033 = - A / / / ]  and the above formula takes the form: 

//32 = (4/3) [u]  + 6(62u3) 2] + 2ku3 + q, 63 = u 2. (46) 

It is supposed below that the substitution of variables is made. Let us consider two cases 

(1) tp2 = 0. Then (41), (44), (45) can be integrated: 

(a) //2 = 1, 2q = - -  a~p 2, 62 = O c o s  Qt2, 

A x = p(sin ~'2 +p2u3)/u3, 

A2.3 + ~ A i , 3  = pA[a2 sin ~t 2 + u3/)2tO~t2]/u3//2. (47) 

(b)  a2  = q = 0 ,  AI -- a2, A2. 3 = p2A///2. (48) 
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The unknown functions entering into (47), (48) should be chosen so that (41), (42) 
would be self-consistent. Then these equations can be integrated in quadratures. 

(2) ~b2 =P 0. Let us integrate (44) and (45); we obtain 

At = P2 sin 2[arctg(Us/o92) + ae2] - #2(o2, 

fl](A2,s + f~At,a)/A = p{ (cb2/o~2 - ]~2/fl2) cos 2[arctg(us/o~2)+;e2] 

+ 2 a~ 2 sin 2 [arctg (uaflo2) + ;e2] + (692 cos 2 [arctg (u3/o92) 

+ ~g2])/20J2 }/(D 2 -I-02, 62 ~-- (,022. (49) 

Substituting (49) into (41) enables us to give concrete expressions to the quantities 
entering into (48) 

p2 ~-- pfl2/(D2, q = --(2~O~ + 2~p2), ~e2=b,  

02 = p~2(D2 2 COS b, (¢72/(o2),2 = p~20)2(D2 2 sin 2b. (50) 

From (38), by fixing in turn variables u2, us and taking into account the linear 
independence of the functions ¢P2 and ~p2 we obtain the following expressions: 

fl2~3 = C0-J- 2C163 +C262, fl2~3 = bo + 2b163 +b2 62, 

fl2 ~s = ao + 2a163 + a2 62. (51) 

Substituting again (51) into (38), collecting coefficients of the linearly independent 
functions 6a, 6 2 and equating them to zero we obtain 

f122 (Co~ 02 "4- 2bo (P2 Jr- do) ---~ 62 -- r~2 f122, 

f l2(cl(p2.q-2bl(P2+al) _- 62 - / ~ 2 f l ~  , 

fl~(c2(P~ + 2b2tP2 +a2) = 1 -n~2f122, 

~2 [ n62 + 2163 + r - fl~] = O. (52) 

The latter equation of  system (52) together with the relation between fla 2 and 6s defined 
by (46) enables us to come to the conclusion that either ~2 = 0 or fl3 = const. Solutions 
of the rest of equations of system (52) together with the conditions 2~i 2 = 0, (~b2f12) 2 
= 462 gives 

2 2 4 2 (a) ~2 . . . . . . .  0, f12 1, ~0 2 6 2 u 2 , fl3~3 1, ~3 Us/fl3, ~3 us/f ls ,  

(b) ~2 = 0, f12 = [a(¢~o 2 + 1) ] -½,  (o22 = 4c2a(¢~022 + 1), 62 = c, 

(c) 

rs = a ~ ( u ] + c 2 ) / # ] ,  z3 = O, 

~2 2 2 = 62(C2~02 + 2b2tP 2 +a2), 

62 = fl2(cl (p2 + 2bl ¢P2 +at ) ,  

~s = a (u]  + c2)/~s. 

f122 = 1/(C2(# 2 +2b2q)2  +32) ,  

(o 2 = 462/fl 2. 

Thus, all the functions entering into gij, Ai are determined. System (2) and conditions of 
separability (8)-(10) are satisfiable identically. In conclusion, all the solutions obtained 
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are listed below. 

dse = _/~22 ~2 (~02 duo + d u~ - f~du2)e/A 

- A(2duodu2 - 7adu 2 • + du2/~), 

Ao -- o'2 + ¢p2 A I ,  A 3 - - 0 .  

I. 48~ 2 -- 48//2 = ~ [ 1 6 u ~  + 24(~b2//2u3) 2 - 3(~b2~2) 4 ]  + 4 8 k u 3  - 96~ep 2 

A -- u 2 + (~b2~2/2) 2. 

(I) ¢P2 -- 2cu2, ~2 = 1, ~2 = 73 = [~ = O, Al = p[2cu3cosa 

+ ( c  2 - - u  2) sin a]/c(u 2 + c 2 ) ,  A2 --- 0. 

( 2 ) ) . = 0 ,  ¢p2=u 2, / / 2 = 1 ,  ~ 2 = - 2 p u i s i n a ,  fl=(u22+u2)//J 2, 

~2 Y3-- 1, A x -- 2p (u  3 cos  a + u 2 sin a)/(u22 + u2), A2 = O. 

( 3 ) ~ . - - 0 ,  ~b2=4( rcp2+~cp2) ,  k - - 0 ,  2 ~ p 2 - - - - 1 ,  ¢p2/~2--1, E - - -0 ,1 ,  

0" 2 ---- 2gp~0202 sin a, f} = ~p2u~ + (2rcp 2 + e)u 2, ?3 = u~ + 2ru 2, 

A 1 = p[202u 3 cos a + (0 2 - u 2 - 2f rcp2A - - s A )  sin a]/cp2 02A, 

A 2 -- 02 p r [ 2 0 2  u 3 cos  a + (0 2 - u 2 - tA )  sin a]/A, 0 2 -- r + e/qJ2. 

= = - c u 3 / ~ 3 ,  (4) (p2-----0, ~2 1, 0 " 2 = 2 p u 2 c o s a ,  ~'3 --cL'-~, ["~= 4 2 

A x = 2 p u ~ l s i n a + c a 2 ,  A2=O. 

(5) ¢P2 ---- 0, //2 = 1, o" 2 = 0, f l  = 4 ~  x3(rx +2cp2)/$~4(x)dx, 
o 

7 3 = 4 ,  f : "  d x ~ 2  (x){ f ° dt~4(t)t2[4~(rt+2cp2)2+2p2c2~2t)]a +h} ,  

A l=2p/u3 ,  A 2 - - 2 p I ? '  [cx2[]~2(x)-I-"(x)x-2]dx. 

(6)~02ffi0, ~2ffir/$2+b, ~72ffik--P--f~--0, 3'3---3(2~ru2+2~cu3 

-3~!2)/2,[2u~, At -- ~2, A2 -- 3(  12-~2//$2)½/'~u3, 

(a) ~2 = (a/r)(r/32 +b) ½, (b) cx 2 =au 2, /32 = u2. 

(7)~0~--0, ~2=1, P=~2=0, ~1=-¢ ~-~dx,  

f:, dx {fo :[C2:+2t2~/q(t)3d(t) } 
?s = /$](x) /3~(t) +h , A~ = ~'2, 

A2 -- (12-~22) ½ fu,  x2dx 
o / ~ ( x )  
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(a) ~2=0,  
(b) k = c -- O, 3's --- - 9 (  12~e +nus)/2AZu~, 

~2 = au2, A2 = 3(! 2-a2)½/Au3. 

II. ¢P2=0, a 2 = p + 2 A ~ ] ,  A=62 .  

(8) j~2=62=I, #z=(-2R~e)½u2cosa, ps=us, f~---c/:.u~, 
Ys = (c/~us) 2, At -- (~s sin a + 2cu2 cos a ) / ( -  2R~ )½, A 2 ----0. 

I:| ( n /-2" 'i'dx 
(9) #2---62=1, Ps=u3, or2=O, f~--- (p+i,lx)½ r~,~))~-, 

f o ' I d X { f o [ n - r ( - 2 " ( P / ~ + 2 t ) ) ½ " i  2+2aer2' } 
Ys-- x ( p + 2 ~ x ) t  , t2(p+2~t)½ d t + h  , 

+2Rx)~" 

(10),~.=~2=B2=0, 62=~2, Ps=u3, fl=c/u 2, ys=c2/u2+l~In2us 
+blnu3, At=0, A2=(l#2)½1n us. 

(11)~=~2=0, Ps=1, f2---cus, Ys=ru2+nu3, AI=~2, 

A2 -- -c~2 us, 62 [2~[2/~2 + (~2/62) 2 + 4(/[|2~2)/~262 + (q[$2/62) 2 - 2r]/2~e 

.~. (620~2/#2) 2 ~t. C2012 = 0. 
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7. (3"n')-type spaces 

The spaces of this type admit a three-parametric Abelian group of motions. In 
separable coordinates, a metric tensor and an electromagnetic potential depend on one 
variable us. In the present section, as earlier, constants are denoted by small Roman 
letters and by small Greek letters without risht subscript. All other letters are used to 
denote functions of us. As before, the exceptions concerning the symbols 6~, Or j, g~ are 
valid. 

7.1. (3.0)-type spaces 

The metric, in correspondence with (16), has the form 

ds 2 = A ~ Gpqdupduq- Aadu~/f~2G, (53) 
P,q 

where 
G = l/det(Gp,), Gee'G,~, = 6~, p,q = O, 1, 2. 

Integrating Maxwell equations we have 

A, = Gp,cq/f~ (54) 
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Using permissible coordinate transformations 

' = = 0. ' (a,~, a : ~  = 6 ~ ) ,  ( 5 5 )  up a~uq, up a.puq, . . 

we turn c (1~ and c (2~ to zero. This condition is invariant about (55) if we demand for 

a;, (°J. = a  (°)'. = 0 ,  a = l ,  2. (56) 

Let us denote J~ =- (;PeGeq, ~ - A/A then system (12) can be represented in the form 

( f l J~)"  = { 6~[~ec2AGGoo - 22A 3 + (fl ~) ' f~  G - 2ec2AGGo,6Po} /nG ', (57) 

3 (f~ ~)"  - (df~/G)" - t213 ~2 _ 2 ~ d / G  + (~P'(~pq/2] = (aec 2 AGGoo + 2~Aa)/flG. 
( 5 8 )  

Integrating (57) under with p = a = 1, 2, we obtain 

~qJ; = ~36~ + k I, (59) 

where ~ is a certain function. In addition, from (57) it also follows that 

a = h i 3  ( t a s k , ' ) "  - (Oa/G) ]/2d~Goo. (60) 

The rest of  the equations can be reduced to the form 

(taJ~,°~)'Goo + [ ( t a J [ ' ) ' -  (f~J~o°))']Go~ = 0, 

(f~J]°))'Go2 - (t2JI2°))'Gel = 0, 

(f~ d'~dp,)" - 2 (flOIG)'f~Ooo/Goo + 2 (f~J~)'t)(diG + 3 GoolGoo) = 0, 
(61) 

2 (3[2 ~ - f ~ / G )  2 + ( f ~ / G )  2 + 3t22 ~;P~p~ + 12 (~ec 2 AGGoo 

- 2;tAa)/G = 0. (62) 

System (61) is a differential-algebraic consequence system (59), (6O), (62). Multiplying 
(59) by G ~ and summing over p, we obtain the system 

f ~ ( ~  = ~aG ~° + k~G ~ .  (63) 

Let us eliminate ~a from (63) and integrate the subsystem obtained. By transformations 
(55), (56) we turn matrix k~ to one of the two possible canonical forms 

"11 II ° °11 0 0 k I L k ; =  
I ' k p =  0 n 0 ' 0 n 0 

Discarding the solutions leading to s p ~ a l  cases of  (2.0)- and (2.1)-type spaces we 
obtain three nonequivalent classes of  the solutions G~,  which are represented as 
quadric quantics G(x,x) = ~ G~x~x~, x~ are parameters: 

P,q  

(I) G(x,x) = {x~ - 20aXoXl + ('Oaf~ + O])x~ + 2(ua0a - O a ) x o x z  
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- 2 [u3~03 + 03 (u303 - 03)]x~ x2 + [~03  #3 + (u303 

- O~)2]x~ }lt/3~ 2, 

where 03 = f l + u a  2. 

(2) G(x,x) = {[2x~ +aOax2t - 2uaOax,x 2 + O3x~}1o3~, ~ = a - u l .  

(3) G(x,x) = {(a-b2u3)x~ + 2aOaxoXl + 2bO3xox2 +aOa(O3-u3Os)X~ 

+ 2bOa (03 - us C)3)xl x2 - 03~)3x~ }1u303 [(b2 us - a)~a - b203], 

03 = fllu3. 

Every of  these equations includes an arbitrary function 03, defined from (62). All the 
rest of  the equations of  system (57), (58) are satisfied identically. 

7.2. (3.1)-type spaces 

According to (17) the metric of the space has the form 

ds2 = ~ gij duiduj, g33 = gp2 = O, gp3 = f i r ,  fig2) ____. 1. 
i , j  

From system (2) it follows that flta°) = fl~ll = 0. Indeed, 

R,q = - ~g' ~l '  g,p' g,q' = g , ,  (T+ 2), where T = 2n=  (tiff F,3)2, 

hence ( l~°}g l l - f fa l lg° i )2=-ggl l (T+;O,  

tlj,o~ go, _ Is~,~ goo)~ = _ gooo ( r  + ~ ), 

( ] l~°lg l '  - ]1~')gOi)t]j~O)gO, _ ] j~ i )gOO)  = _ g g O ,  ( T +  2), where  g = det (g,s). 

Since g ¢ 0, we have T + 2  = 0,/~°~Ol I - ffal~g °l = 0, ~[O)gOl _/~tal~goo = 0. There is, 
up to equivalence, the only solution of  this system: 

/~o~ =/~l~  = ~ = r =  o. 2 ( ~ / g ) ' + ~ - O , , +  2 = ~ , , A r 4 °  = 0. As = 0. 

which is solvable by a quadrature. 

8. Conclusion 

In conclusion, it should be noted since the problem is solved in terms of  metric 
formalism it is desirable to obtain the Petrov classification of  the solutions obtained. 
Additional analysis has shown that (2.0~ and (3.0)-type spaces belong to Petrov type I, 
(2.1)-type spaces are mainly of Petrov type II; and that (3.1), (1.1)-types belong to the 
confluent Petrov type II. 
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