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Abstract. The nonlinear distribution function of Allis, ganeralised to include the transverse 
electromagnetic waves in a plasma, is used to set up the coupled wave equations for the 
longitudinal and the transverse modes. These are solved, keeping terms up to the cubic order of 
nonlinearity, by using the method of multiple scales. The equations of wave modulation are 
derived, which are solved to discuss the nature of the moduladonal instability and solitary 
wave propagation. It is found that the solutions so obtained satisfy conditions which are very 
similar to the well known Lighthill criterion for stability, appropriately modified due to the 
coupling of the two modes. The role of the average constant current due to any flow of the 
resonant and trapped electrons in determining the stability, is also discussed. 
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I. Introduction 

In an earlier paper (Majumdar 1982), we have used the nonlinear distribution function 
of  AUis (1968, 1969), to study the modulational stability of  the solution of  the Vlasov- 
Poisson's system of  equations. In this paper, we extend that analysis to the case when a 
transverse electromagnetic field is also present, i.e., to the solution of  Vlasov- 
Maxweii's system of  equations for a plasma. 

It is known that in a nonlinear medium, the transverse and the longitudinal modes 
are always coupled. This coupling has been studied by Wang and Lojko (1963), Winkles 
and Eldridge (1972), Clemow (1975) and by several others. These studies are based on 
forms of  the distribution functions which do not consider the effect of  the particles 
trapped in the potential well as well as the resonant particles. Schamel (1972) developed 
a non-linear distribution function which includes the particle trapping and used it to 
investigate the modulational instability (Schamel 1975) and the effect of  trapped 
particles in the formation of plasma waves and solitons, in which there is no role of  the 
transverse field (Schamel 1979). 

In this paper, we shall investigate the nonlinear coupling between the longitudinal 
and the transverse modes, by using a form of the nonlinear distribution function 
developed by us according to the prescription given by Allis (1969). The basic idea in 
estimating this nonlinear distribution function is that the longitudinal and the 
transverse modes propagate together with the same phase velocity, forming a single 
nonlinear mode. The effect of  the wave field on the distribution function will be 
described in terms of  a scalar and a vector potential, and we shall work in the Lorentz 
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gauze so that space charge effect will explicitly appear in our model. We shall use this 
distribution function to calculate the non-linear expressions for the charge and the 
current densities which will be used in the Maxwell's equations to obtain the wave 
equations. The coupled wave equations will then be solved by the method of multiple 
scales to obtain the equations of wave modulations. Finally, these modulation 
equations will be analysed to obtain the stability conditions and the solitary wave 
formation in the plasma. 

2. The nonlinear distribution functions 

The electron distribution function is governed by the Vlasov equation, 

df  tgf e ( E + v  xB).  d f 
- ~  + v " ,~r = s - f i  ' (1) 

where E and B are the electric and magnetic field of the wave in the plasma, and are 
described in terms of the scalar and the vector potential ~ and A: 

dA 
E = - V~b dt ' 

B = V x A. (2) 

The field quantities satisfy the Maxwell's equations, 

V . E =  p-- V x E =  dB 
e o dt ' 

1 dE 
v -  a = 0, V x B = ~ -~-  + ~oJ,  (3) 

where p and j are the charge and the current densities. We assume that ~b .and A are 
connected by the Lorentz condition 

V.A c 2 dt =0" (4) 

We seek plane wave solutions of the set of equations (1) to (4) which propagate along 
the z-axis with phase velocity u, such that all the quantities are functions of the variable 
(z - u t )  only. Following the prescription of Allis (1969), we have constructed the non- 
linear distribution function which can be taken as the solution of the Vlasov equation 
(1). This distribution function is written in terms of the scalar and the vector potentials 
as (see appendix A): 

f =  no exp [ - # ( u  +Co) 2 -# (v±  - m  A± ) ], (5) 

(V - e A  ) 2 - 2 e ( c ~ - u A z ) ,  (6) whe re  c 2 = w  2 + v 2 J _ -  .L m J" m 

m 

fl = 2kT'  

a n d  w = ~ z -  u, 
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is the z component of electron velocity in a frame moving with phase velocity u of  the 
wave. The subscript ± denotes the component perpendicular to the z axis, and the 
other quantities have their usual meaning. The energy constant Co appearing in (5) plays 
a very important role in determining the nature of  the nonlinear distribution function, 
and the trapping of  particles in the wave potential. Let us consider the particle motion 
in the wave frame, and write 

co z = w ~ - ¢,, (6a) 

2e (~_uA~)+e2A2± 2e  A ±  • v ±  . 
where ~ = m -  m 2 m 

The phase orbits of the particles are shown in figure 1 for the simplified case of  zero 
vector potential and zero transverse energy of  the particles. We notice that ~mc 0 1  2 = Wis 
the total particle energy in the wave frame, and those particles, for which - ~2 < co z 
< ~'l is satisfied, will be trapped by the wave, ~'l and ~/'2 being the value of~, at the top 

and the bottom of the wave. The phase orbits are surfaces of  constant Co. The surfaces 
with Co z > ~'1 represent open orbits, while c~ < ~'l represents closed orbits, which are 
trapped particle orbits. The point or surface Co z = ~l thus represents a discontinuity 
which is really the seperatrix between the open and the closed orbits. Since by 
Liouville's theorem, the distribution function is a constant following a particular orbit, 
we see that f is oscillatory in the trapped region. The oscillation period for the inner 
orbits, near ~2 is given by 

2n( m "~ ~/z 
: T ' 

which steadily increases for the outer (but within the trapped region) orbits, and 
ultimately goes to infinity at the separatrix (see Davidson 1972). Phase-mixing then 
transfers the discontinuity at w = 0 to Co = =l: (~'1)1/2, making the trapped distribution 
a function of co 2, rather than Co. Thus only the symmetric part of f with respect to c o 
contributes to the trapped particle distribution. 

The electron density and flow in the plasma can be obtained by calculating the 

P ~ 8  

wl  c 2 ,,, , I 

_ .  

~b'2 0 ~lZl 

Figure 1. Phase-orb i t s  o f  the e lect rons  for A ± and  v ± = 0. 
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velocity moments of  the distribution function f, 

Density: n_ = ~ fdv ,  

Flow: 1" = F~ + F± 

= J f v z d v + j f v  ± dr. 

Using (5) for f, these moments can be evaluated by following Flynn and Allis (197 I). 
The results obtained are given below: 

n_ = no k ~'= 0 (fl-~ ~- (q+  #Z)k. ~ ~= 0 (--2flUZ)tl! (#2)~ 

' ( - ) , , , ~  . 
x E ~ t~ ,~ ,+z+ , ,  (7) 

p=O 

r ~  = hour4  Y.  (#u2)J' u~) k 
( 2flu2~ 

- - - i f - - .  (,1 + • : , = o  i = o  l! (#2)~ 

~ (-)Pl . . . .  
x ~ -  %Vnk+~+p- ~k+i+j,+ i), (8) 

p=O 

and 
F, = e ,  u(n_ - no). (9) 

The derivations of  these results are indicated in appendix B. 
In (7) to (9), the quantities q and/~ stand for the longitudinal and the transverse part 

of  the potentials, 

2e 2 

= mu-- ~ ( ¢  - u a , ) ,  

eA x 
# = - - ,  (10) 

m u  

and Mo represents the confluent hypergeometric functions, 

Mo = iFl(a; ½; -flu2), 

which has been referred by Allis (1969) as the plasma dispersion function of  the ath 
order. In particular, 

Mo = 1, and MI = - ½  Re[Z'(fll/2u)], 

where Z(x) is the plasma dispersion function defined by Fried and Conte (1961). We 
note that the function Mo has a zeros, and Mx is < 0 for flu 2 > 0-857. 

Equations (7) to (9) are the most general expressions for the charge and current 
densities having nonlinearities of all order in the potentials. In fact, they are the small 
potential expansions of  density and flow. We shall, however, retain nonlinearities up to 
the cubic order in the series (7) to (9), thereby obtaining, 

n_ = no(l - Aoq + AI q2 + A2/a2 "k- A3q 3 "k-A4q/.t2), 

['1 = nou#(Bo - Bxq - B21 ~2 - B a q 2 ) ,  

r, = e,u(n_ - no). 

(11) 

(12) 

(13) 
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In these expressions, the different coefficients are given by the following expressions: 

A 0 m - ~ U 2 M l ;  A l - (/~u2) 2 M 2  
2 

M3 
A 2 m --#u2(Ml -M2) , A 3 = (/~U2) 3 

A 4 = --  (~u2)  2 ( M  2 - M 3 )  

B 0 m M o - M I ,  B 1 m - / ~ u 2 ( M I  - M 2 )  

M2 - M3 (14) 
B2 m ~ u  2 (MI - 2M2 + M3); B3 = - (~u2) 2 2 

We notice that 

A4 = 2B3, 

A 2 -- B 1. (15) 

3. The coupled wave equations 

It has been pointed out by Allis (1969) that the average electron density ( n _ )  in the 
plasma need not be equal to the equilibrium density no, when there exists a d.c. flow 
carried by the trapped as well as the resonant electrons. In that case, we write 

( n _ )  -- n+ -- no(l +C2), (16) 

where C2 is a constant which represents the d.c. flow of the resonant and the trapped 
electrons. The justification for the validity of (16) can be seen in the following way: 
When we have a wave form 

~P = A sin ( z  - ut) - B, 

A being the amplitude, and B, a constant, then the zero of the function ~P does not 
coincide with the point of inflexion of the curve ~P. In this case, the average value of ~P, 
i.e. ( ~P ) does not vanish, and consequently the average electron density ( n_ ) does not 
become equal to no. Now, referring to figure 1, we notice that the distribution function 
f becomes exactly Maxwellian, every time the potential goes to zero, i.e., along lines, 
similar to that marked 0 in figure 1. If this marked line, which represents the zero of 
potential, is situated symmetrically between the top and the bottom of the wave, then 
there is no average flux of particles in the trapped region. But if it is placed 
asymmetrically, which essentially means that the zero of the potential is at a point 
different from the point of inflexion, then due to this unbalance a net flux of particle 
arises. This is the origin of the resonant and trapped particle current. As already 
explained, ( n_ ) becomes different from no when this happens, and we can use (16) for 
(n_ >. Because of space charge neutrality, ( n _ )  is always equal to n+, and it can be 
shown that the constant C2 is algebraically related to the constant B in the wave form, 
measuring the deviation of the zero position of the potential from its point ofinflexion. 
Taking average of (13), and using (16), we obtain 

(r',) = Fo = ((n_)-no)U = noUC2. 
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Thus C2 is a measure of the average d.c. flow, due to resonant and trapped particle 
current. The possibility of generating wave form in the plasma, which will give rise to 
non-zero value of  F0 is an entirely different question, and will not be discussed here. 

Using (11) to (13) and (16) the charge and the current densities can now be written as 

where, 

and 

p = e(n+ - n _ )  ~ - enoG(r h #2), 

j ,  = - enou  G(tl ,  # 2 ) e z ,  

J.L ---- -- eno u H (tl, 1~2) lg 

G(q,  IZ 2) = - C 2  - A o q  + AI  q 2 +A2/~ 2 +Asq 2 + A4 ~Ip 2, 

H ( r / , / 1 2 )  - -  B 0 - B i t  ] - B2/12 - B3 t /2 .  

Using these expressions for p and j in the Maxwell's equations (3) and (4), the following 
wave equations for the potentials ~/and/4 are obtained: 

c~'rl _ c2 ~2~ = 2o~o2a2G(rl,/~2), (17) 

c~2u 2 c~2~ - , ~ o  2 H(~/,/12)/A, (18) 

z 
where ~0~ = h o e  

~o m 

¢2 
and a 2 = 1 - ~-~. 

We notice that when C2 = 0, mo reduces to the plasma frequency oJe = (n + e 2 / t  o m) i/2. 
Also, the phase velocity u is always greater than the light velocity for a transverse wave. 
So a is always positive and less than unity. 

If we put w/= 0 in (17), it is not satisfied. Hence we conclude that purely transverse 
nonlinear waves cannot exist in a plasma, a fact already noted by Wang and Lojko 
(1963). 

4. E q u a t i o n s  for wave  m o d u l a t i o n  

We solve (17)and (18), by the method of multiple scales, following Nayfeh (1973)and 
Nayfeh and Mook (1979). Neglecting all nonlinear terms in G and H, the resulting 
linear equations admit periodic solutions of the form, 

'1 = ~(0, ) ,  ~ -- ~(02) ,  

where the phases 01, 02 are given by, 

01, 2 = k l ,  2 z - c o l ,  2t, 

and col~k1 = w 2 / k 2  = u. 

The frequencies and the wavenumbers appearing in these solutions satisfy the 
following linear dispersion relations: 
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to~ = ~- Be. (19) 

When the nonlinear terms in G and H are retained, the wave train will be modulated, 
making the amplitude, frequency and wavenumber slowly varying functions of  space 
and time. If z and t are measured on scales which are typical of  the wavelength and 
period of  the wave, then we assume that the amplitude, frequency and the wavenumber 
vary on a scale denoted by 

Z = ~, T = et, 

where e is a small parameter. Following then the principle of  the multiple scales method, 
we consider ~/and F to be functions of both the fast and the slow variables and the 
smallness parameter p-, in addition to their phases, 

tl = n(O,, Z, T; e), F = F(02, Z, T; ~). (20) 

The frequency and the wavenumber are now considered as functions of slow scale 
variables, 

@Or, 2, k,, 2 = OO,,  2/@Z, (21) o~t. 2 = OT 

where 0t. 2 = e- t Or. 2 (Z, T). (22) 

We now make the following expansions in powers of  the small parameter e: 

r /=  ~ t  (0t, Z,T; e) + e2rt2 + e3t/3 + . . . .  

F = e f t  (0~, Z, T; *) + e2F2 + e3F3 + . . . .  (23) 

0 0 0 
= .... 

& 

~gZ 

and assume the constant C2 to ix a small quantity of  the order ofe. Using (23) and (24) 
in the wave equations (17) and (18) and keeping terms up to the cubic order, we equate 
terms having the same order in e. In this way, we obtain three different equations, of 
which the equation of order e is the following: 

02,/, e- ~ C2 = 0, 
oo,2 
02#t 
OO--'-~ + F 1 = 0. 

The solutions of (25) are 

e- tC2 
t/t + - -  = P(Z, T) exp (i01) +c.c. 

Ao 

F I  = Q(Z, T) exp (i02) + c.c. 

(25) 

(26) 
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where P and Q are the complex amplitudes of the longitudinal and transverse modes, 
the c.c. denotes the complex conjugates. 

Using solutions (26) of the t-order equation in the two other derived equations of 
t2-order and t3-order (which we have not written here), we can solve the latter equations 
successively. In this procedure of solution, certain secular terms are generated which 
must be eliminated. The conditions of eliminating these secular terms yields the 
following equations for the amplitude, frequency and wavenumber variation with slow 
scales: 

a 2 63 AI~-IC2  (o ip ) + c2 ~-Z (k' P2) = --4i°~°2~12 Ao p2, 

63 2 +C2__~ itOo 2 BIs-IC2 ~T ((D2Q) - - -  (k2Q2) = -- Ao Q2, (27) 

632p 2 632p = to 2 ~2P(~o + ~l PP* + ~2 Q" Q*), 
63T2 c 

632Q _ c 2 632Q _- 07o2Q(60 -F 61Q. Q* + 6 2 Pp*), (28) 

where 
[--:~/4A~ 6A_~t_ 2 C~, 

+ Ao / 

20AI 
+ 6A3, o"1 = 3Ao 

8AtA2 8AaBI k~ 
- -  +4A4, 

o2 = Ao Bo k ~ - 4 k ~  
(29) 

lAmB, ) 
and, 60 = [, Ao a + t-2C~, 

2A2BI A~BI k~ 
_ _ .  - -  

61 = Ao + Ao k12-4k 22 t-3B 2 

2AiBl 2B21 k 2 
62= A------~ Bo k2_4k2 ,L2B3, (30) 

and * denotes the complex conjugate quantities. Because of the relations given in (15), 
we note that 

o2 = 462. (31) 

The modulation equations are obtained from (27) and (28) by expressing the complex 
amplitude P and Q in terms of a real amplitude and a phase, 

P(Z, T) = ½qa(Z, T) exp lift1 (Z, T)] 

Q(Z, T) = ½1Ao(Z, T) exp lift2 (Z, T)]. (32) 

In terms of the real amplitudes t/o and tAo, we can write the wave form given in (26) as, 

C2 
r/= - - - + a c o s ( 0 1  + / ~ ) +  . . . .  

Ao 

/4 = b cos (02 + f12) + . . . .  (33) 
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where, 
a=8~/o and b=6/1o.  

We now introduce the nonlinear frequency ¢bi, 2 and the nonlinear wavenumber 
/~l, 2, and we want to describe the wave form in (33) in terms of  these quantities, instead 
of  the linear values oJl, 2, kl, 2 and the phases ~i, 2- Writing 

01, 2 "~" ~1, 2 = ~- l ( I) l .  2(Z, T) 

c3(Ili 2 c311 2 
(-Ol,2 = - ~-~ , ]~1,2 = ~-~ , (34) 

we immediately obtain, after using (21) and (22), the following relations: 

O#l. 2 
(DI'2 =(D1'2--~ ~ r  ' 

~#1 2 
]~1,2 ~--- kl, 2 -~ £ ~Z " (35) 

Finally, we use (32) and (35) together with the linear dispersion relations (19) in (27) and 
(28), and eliminate the phase//~, 2- In this way, we obtain the following equations, after 
some algebra: 

2/~2a 2 02a ~ [ e t ~ - c  ~ ] : a  cbi-cZki-alco2 

(2A0 + 0 t  tyro24 a2b2 ) 1  4 ' (36) 

6ib 2 62a 2 2//632b c2 a2b ~ b[~j2_c2k2_o~21Bo+@2 

The quantities O~, 2 and #~, z should obey the consistency relations, 

~]~1, 2 ~(~'l 1, 2 
~---T + ~ z  = o, (38) 

which can be derived from the relations in (34). In (36), the quantities O1,02 are given by, 

4AI C //4A2 6A3 '~ 2 
g'  = - t- fo + - fo ) c 

B1 (AIB1 B3\ 2 
=  oC -t ,43o (39) 

Equations (36) to (38) are the final modulation equations, which we shall analyse in 
the remaining sections for the stability of  wave form. 



794 Saroj K Majumdar 

5. Monochromatic waves and their stability 

For a uniform wave train, the frequency, amplitude and the wave number remain 
constant. Putting these constant values 

a = a (°), b = b '°), tbl.z -- to[°~,/cl,2 = k[°~, 

in the modulation equations (36) to (38), we obtain the following nonlinear dispersion 
relations: 

a(O) 2 b(O)2 ~ 
oJ~°)2 = COo " 2Ao + g, - oi---~- - ~2"--~-} 

b(°) 2 a(O)2 \ 
~%~o)2 = o~o 2 Bo +02 - ~ ,  T - ~ 2 T / ' /  (40) 

The structure of  these dispersion relations is easily understood. The first terms with 
Ao and Bo give the linear frequencies, the second terms with 01 and 02 denote the 
nonlinear frequency shift due to the d.c. flow of resonant and trapped electrons, and the 
last pair of  terms with at ,  ~r2 and ~1, 62 indicate the amplitude dependent nonlinear 
frequency shift for the longitudinal and the transverse modes. Equations (40) are 
coupled through the amplitude dependent terms containing the quantities at. 2, and 
¢51.2. Thus the sign of  these frequency shifts can be estimated by using (14), (15), (29), 
(30), and using the asymptotic expansions for Mo for different values of  a (Magnus and 
Oberhettinger 1949), for the ease when flu 2 >> 1. Since flu 2, as given by (6), is the ratio of  
the phase velocity to the electron thermal velocity, flu 2 ~, 1 occurs either for large u, or 
for small T, or both. In this way, we have estimated the sign of  the quantities gt. 2, ol. 2, 
~St. 2 in the following cases: 

Case (i): Only quadratic nonlinearity, flu' ~, 1. 

01 and 02 have the sign of  C2, 

ol > 0 ,  oz > 0 , ~ 1  > 0 ,  62 > 0 .  (41) 

Case (ii): Quadratic and cubic non-linearity both appearing together, flu 2 ~, 1. 

01 and 02 have the sign of  C2, 

al < 0 ,  o ,  > 0,/~1 < 0 ,  Jz > 0 .  (42) 

Using (41) and (42) as well as the magnitudes of  the ratio of  the two amplitudes a ~°) and 
b ~°), the sign and magnitude of  the nonlinear frequency shifts can be estimated. 

We now investigate whether this uniform wave train is stable under small 
perturbations. For this we set, 

a = a ( ° ) + a  "}, b f b ( ° ) + b  ~1~, 

6Jr.2 = co(~°.~2 + co(11.)2, /~,.2 = k(1°)2 + k(l'.½, 

in (36) to (38) and iinearise them. The quantities with superscripts I denote the 
perturbations. The linearized equations so obtained may be solved by assuming 
solutions of  the form 
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ro~t t), k~ t), a (1) ~ exp [iAt (z - U~°~T)], 

oJ[ l), k[ l), b TM ~ e~p [ih2 (z - V~°)T)], 

giving rise to the following dispersion relation connecting the modulation wavenum- 
bers eat. 2 with the modulation speeds it(o) . " 1 , 2 "  

_ _ a (°)2 - 

u - '-'2"~°~tj _oJ2Xo,,l =____,~22 ~" - U~2°~2) 

I~2 / 'r(0)2~I~2 I / ' (0 )21~2, . ,4  0"2¢~2 0(0)2b(0)2 
= ~  - ' ~ t  , ~  - " 2  , ~ " o ~  • ( 4 3 )  

This equation can be solved approximately by first neglecting the small terms in (43) 
containing e2A 2, 2 and a (°)2, b (°)2.  This gives 

C 2 
V~°~ = U~°~ ~ - - .  

u 

We use this approximate values of  U~t°~2 again in the small terms of  (43). After some 
rearrangement, we obtain, 

( X - G t ) ( Y - G 2 )  -~ D, (44) 
where, 

G t  
= 2 7' 

C2OL" ( ¢a~6t b '°'2 

C2~6¢00 * . O.2¢~2 a(O)2b(O)2 D ffi F.,M..,(O)2...(O)2 
~a,-=~ 1 u~, 2 

Let us note here that X > 0, Y > 0 and D > 0. 
A plot of  X vs Y of  (44) is a rectangular hyperbola. If no part of  this plot falls with in 

the positive quadrant, then stable solutions of  (44) cannot be obtained. The condition 
under which this can occur is given by, 

That is, 
Gt < 0 ,  G z < 0 a n d G I G 2 > D .  

2 

e2A~c" - 2  °~d°~2 < 0 

2 
e2Alc2 - o~  6 j,~o~2 < 0 

2ot2 t,- 
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and (e, z221C2---'~ -¢a(O12"~['e,z22c2¢O~'~b(O)2)t ]~ 2 - - ~ u t  

4. 

> ~ "2 "2 '.+ '.+" • (45) 

Inequalities (45) lead at once to the following criterion for modulational instability: 

(a) ax>0 and 61>0. 

(b) For zero modulation wavenumber (i.e. 2t = 2z = 0), 

0161 > 0262. 

(c) Modulation helps to stabilize the solutions. 
(d) When flu 2 ~> 1, use of  (41) and (42) shows that quadratic nonlinearity alone 

produces instability, whereas quadratic and cubic nonlinearity together give a stable 
solution. 

6. Steady profile solution, Solitary waves 

We shall follow Whitham (1974) to find out the conditions under which solitary wave 
solution of  the set (36) to (38) may exist, which propagates without changing their 
shape. To do this, we consider the modulation equations (36) to (38) in a moving frame, 
and express all the quantities as functions of  the moving coordinates 

~1,2 = Z - U I . 2 T :  

a=a(Z-UIT), b = b ( Z - U 2 T ) ,  

¢bl, 2 = ~1, 2( Z -- UI. 2T), ]~l. 2 -~ ]¢1.2(Z - UI, 2T), (46) 

where Ut. z are the nonlinear group velocities of  the two modes. Using (46), (37) and 
(38) can be integrated to give 

(c2/~1 - ~s Ul) a 2 = RI, 

(C2](2 -- ~2 U2) bz = R2, (47) 

and cbl, 2 - I~1, 2 U l. 2 = $1,2, (48) 

where Rt. 2 and St. 2 are integration constants. 
Let us consider a solitary wave form for which the amplitudes a --, 0, b --, 0 as ~t, 2 - '  

-t- o0. This gives from (47), Rt, 2 = 0, so that 

Ut, 2 = c21~1, 2/~t ,  2. (49) 

Since $1.2 are constants, (48) together with (49) show that o31, 2 and I~. 2 remain 
constant for this kind of  wave form. Under this condition, (36) can be integrated and 
combined together to yield the following result: 

~2 ~(U2 2 - / da '~2 2 / db '~2-] 

L 
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+ 4 ebe[ , - - 090  (Bo + 0 2 ) ]  

2 2 
• O~ 0 9 0  . 

t ~ t~rl a + + 2<r2 a2b 2 + 461 b+). (50) 

Now, the linear group velocities of  the two modes are both less than c, so that the 
nonlinear group velocities UI, 2 can be taken as less than c. Since n 2 > 0, this means that 
the left side of  (50) is always negative. On the right side, terms with second power of  the 
amplitude should dominate the last term with fourth power of the amplitude as a --, 0, 
b --, 0 at (1, 2 --' + oo. This gives the following condition: 

a 2 [tb~ - c2k~ - ~20902 (2Ao + gl)]  

+ 4 ~ 2 b 2 [ c b  2 --  C2]~2 2 --  09o2(Bo 4 - 0 2 ) ]  < O. (51) 

At the maximum value of the amplitudes a = a . ,  b = bm, the derivatives on the left side 
of (50) vanish. Therefore, the maximum values a .  and b.  of the soliton amplitude is 
governed by the following inequality, found by using (51) in (50): 

GI a4m 2 2 + 2O2ambm +461b~ > 0. (52) 

When (52) is satisfied, solitary waves having maximum amplitudes a~, and bm 
will propagate. Condition (52) is satisfied for any values of am and bin, if ¢r I > 0, 
a2 = 462 > 0, and 61 > 0, which is the case when the nonlinearity is quadratic. For 
other combinations of ol,  ~2 and dil, relative magnitudes of am and bm will determine 
the solitary wave formation. 

If  we use the nonlinear dispersion relations (40), and the relation (31), we can rewrite 
(52) in the following alternative form: 

09o 
a~ (09(1 m) -091)09, + 4~2b~(09(2'm- 092)co2 < T ( a ~ o t  +4b~02), (53) 

where, we have written c0(°)2 ..,(m) a~O~ b~O) m + CO1. ~ 209t . = w i , 2 a t  =am, =bmandcol .  2 2 .2, 
approximately. Since the functions w'~, 2 (k~. 2) have the signs of the linear frequencies 
091.2, prime representing differentiation with reference to the argument, and since the 
quantities (09(7)2--O91,2)denote the nonlinear frequency shift at the maximum 
amplitude, the two terms on the left side of (53), taken separately with gt = g2 = 0, 
represent the Lighthill (1965) criterion for instability for the longitudinal and 
transverse modes. Hence we see that condition (53) is nothing but the modified 
Lighthill criterion for instability for the coupled nonlinear mode in the presence of  the 
resonant and the trapped particle current in the plasma. For small C2, (39) show that 
01,2 have the sign of C2. It therefore follows that the presence of d.c. flow generated by 
the average motion of the resonant and trapped electrons favours modulational 
instability and solitary wave propagation in the plasma. 

In conclusion, we may note the all-important role of  the dispersion functions M, of 
various orders of nonlinearity in determining the nature of the wave form and their 
stability. These functions depend only on the quantity flu 2, which is the ratio of the 
phase velocity to the electron thermal velocity. 

Appendix A 

Verification of (5). 
We seek a plane wave solution of (1) and (2) of  the form 
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f = f(v, z - ut), dp = O(z - ut), A -- A(z - ut). 

Introducing the wave-frame coordinate 

Z -- z -  ut, 

we obtain from (1) and (2), the following: 

i.eo~ 

where 

. ] w~-~ ( ~ p - u A z - v ±  A l  )0~- dA± . Of 
= -  • + w  d Z  0v± ' 

Of d o f  
d--z = - e ~ (dp - u A z )  dg ' 

(At) 

(A2) 

# = ½m(v 2 + w  2) (A3) 

is the kinetic energy in the wave-frame. 
Now, linear±zing (A2), by writing 

f ( Z ,  v) = nofo(V ) + nl (Z)fl (v) + . . . .  

and then integrating w.r.t. Z, we obtain 

. , ¢~fo 
nlA = - eno(,~ - uA.j O - i "  

Hence, the total distribution function is given by 

0fo 
f =  n o [ f o - e ( O - u A , ) - ~ + . . . ] .  (A4) 

The right side of  (A4) is nothing but the first two terms of  the Taylor expansion of  the 
function 

f (E)  = f [ 8  - e(0 - uA,)]. (A5) 

Hence the nonlinear distribution function in the wave frame can be taken as 

f =  n o ~ ' J  exp~-~--~),  (A6) 

where E = 8 -  e(~b - uA,) (A7) 

is the total energy in the wave-frame. Transforming the wave-frame energy E to the 
laboratory frame energy E', we get 

E' = E + uP: + ½mu 2, (A8) 

where the relations 

p~ p2± 

E = ~ m +  2 m '  

and P l = my ± - eA ± , (Ag) 

have been used. Using (AS) and (A9) in (A6), we obtain (5). 
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A p p e n d i x  B 

Derivation of (7), (8) and (9). 
The electron density is given by the moment of  the distribution function (5): 

n _ =  = _ dwf ffdv fdvxf+f 
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(~)a /2 fd  p[ fl( __eA±)2]  = no v z  ex  - v±  m 

x dw ~ exp( - #Co2)[exp( - # u  2 - 2flUCo) 

+ exp( - flu 2 + 2flUCo)]. (B1) 

Now, using the standard series expansions of  Hermite and Laguerre polynomials, one 
can write (Magnus and Oberhettinger 1949), 

exp ( - #u 2 - 2#UCo) + exp ( - /3u 2 + 2#UCo) 

2n I 1 _ 2  n. 

where L~ l/2 is the Laguerrer polynomial ofargument flc~. The quantity flCo 2 is given by 
(6). By using (10), this can be expressed as 

#co2 = #w 2 _ flu2(t/+ ~2) + 2#u#. v ~ . (a3) 

We next use the sum rule for the Laguerre polynomial 

L~(x + y) = exp (y) 
( y)k 

~=o ~- LU'(x) ,  (134) 

and the relation (B3) to express L,- ~/2 (flco2) in terms of L~(#w2). In this way, the right 
side of (B2), becomes 

2 exp (riCo 2 - / / w  z) ~, ( -  flu2)" (~u2)k(r/+ p2~, 

x ( -2#u/~  "v± )' I! Lf l/2+k'+t(flW2)' (B5) 

where (~ ) ,  : F ( ~ + n ) / F ( ~ ) .  

Using (B5) for the right side of (B2), and the standard integral 

f [  dx exp ( - x ) x  ' - I  L:(x)= r(~)r(l +a +n-~)  
n!r(l +a-v)  

in the right side of  (B1), one can carry out the integrals in w and v ± in successive order. 
Then carrying out the summation over the integer n, using the result 
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where 

~. (k  + l ) .  ( - # u 2 ) "  

. = o  (1)2, n--- - -~ .  =Mk+t'  

Mk+t =-- tF t (k  +l; ½; - ~ u  2) 

is the confluent hypergeometric function, we obtain the result given in (7). 
Equation (8) can be similarly obtained with only a slight, but otherwise straightfor- 

ward, modification of the v± -integral. 
Equation (9) needs a comment which we explain here. Writing the distribution 

function (5) as 

where 

f =  no (~)exp[ -~8(v~ ---me A J-)2]F' 

F = exp [ -  fl(u + Co)2], (B6) 

we get for the z component of flow F,, 

l "  
dv 

f (0 [< Y]I+; e A ~ Fv, dr,. = dvj. no exp - v . t  m 

Next we write 

f+: F v, dr, = F (u + w) dw 

= u F dw + Fw dw. 

(B7) 

(BS) 

The first integral on the right side of (B8) can be evaluated as outlined above. When used 
in (BT), this gives the value n_ u. To evaluate the second integral of (BS), we use (6a) to 
change the integration variable from w to c o. In doing so, we note that in the trapped 
region, F has a discontinuity at w = 0, which gives rise to a branch point singularity at 

co = +_ (¢1) '/2, 

by phase mixing of the trapped particle orbits, St being the top of the potential well. 
This is already explained in §2. Using this fact, we can write 

Fw dw = F Co dco - F Co dco. 
- o o  - $ _ , 1 / 2  

The second integral on the right side above represents the phase-mixed current, which 
we shall neglect here, as this produces only initial damping of the wave. The first integral 

+_ ~ Fco dco can be easily evaluated, which together with (B7) and (B8) yield the result 
given in (9). 
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