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Abstract. Doubly-excited states of the isoelectronic sequence of H-, in which both electrons 
are in high principal quantum numbers, are examined on the basis of alternative pictures of the 
correlations between the two electrons. Restricting ourselves to the lowest ~$ states with both 
electrons in principal quantum number n, we parametrise the electron-dectron interaction on 
the basis of these pictures and compare the resulting simple expressions with more elaborate 
numerical calculations. This provides further understanding of the nature of correlations in 
such states. 
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1. I n t r o d u c t i o n  

This paper  is part  o f  a continuing study o f  electron-electron correlations in high doubly  
excited states o f  a toms (Rau 1983 and 1984). Its focus is on alternative parametr isa t ions  
of  the electron-electron interaction I / r ~ 2  in such states. The emphasis  is on  the 
systematics o f  such doubly-excited states, particularly with increasing excitation that  
approaches  the double ionization limit o f  the atom. 

In these higher reaches of  an atomic spectrum, the number  o f  independent particle 
states that are mixed together by 1/r 12 diverges. Conventional  calculations in terms of  
basis sets that are products  o f  single particle functions lead to parametr isat ion o f  1/r  12 

in terms o f  Slater integrals. When both electrons are in a high principal q u a n t u m  
number  n, the number  o f  Slater integrals increases with a proport ionali ty to n 3, making  
for formidable  numerical complexity of  the calculations. For  this reason, it seems 
desirable to get alternative renderings o f  1/rl 2- These simpler parametrisat ions are not  
only useful for computat ions  involving such states but, more important ly,  they 
contr ibute to our  understanding of  the nature o f  electron correlations in such two- 
electron states. 

This paper  is divided into two main sections, reflecting the two types o f  correlations, 
angular and  radial, that prevail in doubly-excited states. Section 2 deals with angular  
correlations which arise dominantly f rom mixing o f  states with the same n. By analysing 
different pictures of  the angular correlation between the electrons, new light is cast on 
the expressions for 1/r 12 that were previously derived on the basis o f  g roup  theoretical 
considerations o f  the symmetry of  this operator.  Section 3 deals with the organizat ion 
of  states o f  different n into a novel kind of  Bohr-Rydberg series that describes the pair 
o f  electrons as a single tightly-correlated (both angular and radial) entity. 
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2. Angular correlations within an n-manifold 

For  simplicity, we restrict our  treatment to the simplest two-electron system, the 
isoelectronic sequence o f  H - ,  and to states o f  1Se symmetry with both electrons in a 
principal quantum number n. Mixing of  states with different values o f  n is, of  course, 
important  at very high n when the spacing between different hydrogenic n levels 
becomes very small. But, at least for n ~< 10, the main focus o f  this section, we can set 
aside this mixing across in n. However, the mixing o f  different (n:) 2 states within the n- 
manifold is important  f rom the start because these states are degenerate in the initial 
description o f  independent particle hydrogenic functions. This section concentrates, 
therefore, on angular correlations represented by the mixing o f  (n:) 2 values. The mixing 
of  different n's which we do not consider here constitutes instead a radial correlation. 
We return to this in §3. 

A model that has proved successful in describing the angular correlations between 
two electrons in a constant n-manifold treats the 1/rl2 interaction as having the 
approximate symmetry o f  an SO 4 group which is based on the total angular 
momentum, L = / ' 1 + / 2 ,  and the difference between Runge-Lenz vectors of  the 
electrons, B = b 1 - b 2  (Wulfman 1973; Sinanoglu and Herrick 1975; Crance and 
Armstrong 1982). These studies have shown that the operator  r22 for L = 0 states can 
be written on the basis o f  this symmetry as (Herrick et al 1980; Crance and Armstrong 
1982) 

r~2 = (3 n2/2) [(11 i2/2) + (5n2/6)+ (19/6)], i = 0,1 . . . .  n - 1, (1) 

where i labels the n different 1S eigenvectors in the manifold. The 1/rt2 operator  is then 
simply constructed by taking the inverse square root  o f  (1). 

The lowest eigenvector, i = n - 1, within each n manifold is o f  particular interest 
because both experimentally (Buckman et a11983) and theoretically (see a review: Fano 
1983) it is the one that is dominantly excited. The expression in (1) reduces in this case to 

(r22)(so,) = (n2/2) (19 n 2 - -  33 n + 26). (2) 

[-We will use atomic units throughout  this paper except when specified otherwise.] To 
understand what this means in terms of  angular correlations between the electrons we 
will examine this, and alternative results for the lowest eigenvalue, on the basis of  
different models o f  the correlation and compare with the results o f  accurate numerical 
calculations. A more extensive study of  all n eigenvalues and~ therefore, the dependence 
o f  1/rl2 on i, will be reported elsewhere. 

As a first model for angular correlations between the electrons, we note that several 
studies o f  high-lying doubly-excited states and the vicinity of  the double ionization 
limit have emphasized that the two electrons lie on opposite sides o f  the positively 
charged core. This is immediately plausible because the electron-electron repulsion 
between two slow electrons can be expected to drive them to such a configuration. In 
the limit of  a delta function distribution, fi(n - 012 ), where 012 is the angle between the 
radius vectors, the various angular momentum states are equally likely So that the 
weight IV:, or the probability o f  each (n/) 2 state, is given by 

W~ ~) = (2:  + 1)/n 2. (3) 

The superscript fi denotes that this is the probability for a delta function peaking at 
012 = n and will distinguish Wte a) from the alternative I4:: considered below. With the 
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weights in (3) we have, therefore, 

n--1 

(r~2)(6, = ~ W~" (r~ + r~ + 2rtr  2 ). (4) 
t = 0  

Upon substituting on the right side the values of ( r ~ )  and ( r j )  appropriate to 
hydrogenic orbitals (Landauand Lifshitz 1977, equation (36.16)) and carrying out the 
summations, we get 

(r~ 2 )(6) = (40 n 4 + 22 n 2 + I)/6. (5) 

Another picture of  angular correlations, closely linked to the above in that the 
electrons are at a mutual angle of 012 = n exactly at the double ionization limit, but 
different in that at energies away from this l imit there are departures from such a sharp 
peaking, is provided by the Wannier theory for double ionization near threshold. Both 
experimentally (Cvejanovic and Read 1974) and theoretically (Rau 1976), it has been 
noted that the distribution around 012 = n is o f  a Gaussian shape with a width 
proport ional  to E 1/4, where E is the energy measured from the threshold. It has been 
shown more recently that although several : values are mixed as before, the E 1/4 
dependence o f  the width in angles implies that the dominant  mixing stretches only to 
values o f  : --, E-1/4. Further,  this result has been connected to the picture o f  SO 4 
symmetry by showing that the mixing coefficients for (n:) 2 provided by SO 4 have this 
dependence o f :  values that scale as n t/2. For  the lowest eigenvalue, the weight of  each 
(n:) 2 is given by (Rau 1984) 

W: (s°,) = (2:  + 1) (2n - 1) [(n - 1)!] 4 [(n + :)!  (n - :  - 1)!] -2 (6) 

To  obtain an expression for r~z with these weights, we evaluate (4) again but  with 
W: (s°,) instead o f  I4,': (6J. A simpler expression in place o f  (6), namely (Rau 1984), 

I4:: (s°,) ~_ [2(2:  + 1)/n] e x p [ -  2 ( ( :  + l ) /n] ,  (7) 

which is a very good approximation at large n particularly over the range o f  values 
where (6) is appreciable, proves more convenient. Together  with approximating certain 
sums by integrals, we now obtain 

(r22)(so,) __~ (n2/2) (19 n 2 -- 6 n + 5/2). (8) 

Considering the approximations made in its evaluation, (8) is in good agreement with 
(2). In particular, both  have the dominant dependence (19 n4/2) to be contrasted with 
the (20 n'~/3) of  (r~2)(~) in (5). The above derivation o f  ( r ]2)(so ' )  exemplifies that the 
nature o f  the angular correlations in the lowest state as described by the SO a scheme 
corresponds to the distribution of  (hE) 2 values according to (6). 

The energy o f  the lowest IS state in each n manifold of  H -  can now be written down 
a s  

E. = - (1/nZ)+ 1 / ( r22  >1/2, (9) 

where E.  is the energy measured from the double ionization limit. Table 1 contrasts the 
results obtained upon using (2) and (5) in (9) with numerical calculations o f  E.  within 
the n-manifold. In these numerical calculations, labelled "S.I." in the table, all the 
relevant Slater integrals were calculated with hydrogenic functions and then the matrix 
of  1/rl 2 between the (n:)  2 states diagonalized to determine the eigenvalues.* Although 

* I am indebted to Prof. R J W Henry for these numerical results for n = 1-10 and to Dr Charles W Clark 
for the results for n = 18. 
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Table 1. Binding energies - E~ (in eV) of 
the lowest ~S state of H-  within each n 
manifold. The columns labelled 6 and SO4 
are the results obtained with the electron- 
electron interaction taken from (5) and (2) 
respectively. They are compared with re- 
sults in the third column obtained through 
a full numerical diagonalization of the 
states within the manifold, the basis states 
for (n:) 2 being chosen to be products of 
hydrogenic functions. 

n 16) (SO,) (S.I.) 

2 4-34 3.60 3-46 
3 1.886 1.728 1.681 
4 1.053 1.017 0"986 
5 0.672 0-668 0-649 
6 0.465 0.473 0.454 
7 0.342 0-351 0-337 
8 0-261 0.272 0.260 

10 0.167 0"176 0-168 
18 0.052 0'055 0"053 

superficially the E~ ) values for larger n seem closer to E~ sx) than E (s°,~, this could be 
misleading. Note  that the entries for E~ ~) cross those for E~ st) a round  n = 10. In terms of  
the n-dependence, therefore, our conclusion is that E~ s°,) provides a better description. 
In any case, by the time we approach these larger n values, n > 20, all the entries in 
table 1 become deficient because the restriction to states within the same n-manifold, 
which amounts  to ignoring radial correlation, can be expected to break down. In the 
next section, we will look at an alternative picture of  two-electron states which does not 
neglect radial correlation. 

3. Rydberg series of levels 

We have considered so far each n-manifold individually. In this paper,  we have looked 
only at the lowest 1S state within each manifold but other studies, particularly on the 
basis of  SO4 symmetry,  have also similarly restricted themselves to one n-manifold at a 
time even when they have looked at all the n 1S states with i = 0,1 . . . .  n - 1. These 
studies (Herrick et al 1980) have considered systematics of  the states within a manifold; 
for instance, the n IS states f rom a pattern of  a one-dimensional  vibrator, with 
(n - 1 - i) serving as a vibrational quantum number. We consider instead in this section 
a different kind of  systematics, namely that across in n. 

A recent study (Rau 1983) showed that highly correlated doubly  excited states form a 
novel Rydberg progression in which the pair is viewed as a single entity in the six- 
dimensional space of  coordinates relevant to its description. The energies of  the states 
fit a six-dimensional Bohr-Rydberg formula and converge to the double ionization 
limit: 

2 3 _ p  , n =  1,2, • (10) E , = - 4  Z -  - a  n + ~  . . . .  
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Z is the nuclear charge and a and # are constants. The only experimental evidence for 
high doubly-excited states is in the H e -  system (Buckman et a11983) and the observed 
states were in fact shown to conform to (10) (Rau 1983). There is no  similar 
experimental information in either H -  or He but accurate numerical calculations are 
available for tS states in these atoms for n ~< 5 (Herrick et al 1980, Lipsky et al 1977; 
Oberoi 1972). We draw upon these except for the n = 2 state where experimental data 
are available (Schultz 1973). 

Table 2 gives the lowest IS states for each n as described by the six-dimensional 
formula (10) and compares with the essentially "exact" numerical values available for 
n ~< 5. The results of  SO~ theory and the Slater integral calculation o f  §2 are repeated 
from table 1 for purposes of  comparison. As in the previous study for H e -  (Rau 1983), 
the six-dimensional formula gives a very good description of  the pattern across in n. The 
difference between it and the results in the SO4 and S.I. columns can be taken as an 
index of  the radial correlation which is absent in these models which work within an n 
manifold. 

The values of  the "correlation constant" a and the quantum defect p in (10) were fixed 
by a study of  the numerical calculations (Lipsky et al 1977) o f  doubly-excited states in 
the two-electron isoelectronic sequence with Z ~< 5: 

1 
~r = ~ Z - 0 " 1 6 4 ,  ( l l a )  

# = (3/2) [1 - ( 1 / 1 0 Z ) ] .  ( l l b )  

In table 3 we compare the results of  the six-dimensional formula (10) for the four states 
in He where accurate numerical calculations are available with the results obtained 
from the SO4 expression in (2), suitably scaled by ( 1 / 2  2) = 1/4. 

Finally, it is of  interest, to examine the dependence of  the various results for 
asymptotically large Z and for the lowest state (n = 1) of  the two-electron system. In 
this limit, when correlations become negligible, we should expect to recover the well- 

Table 2. Binding energies - E .  (in eV) of the 
lowest ~S states of H-  as obtained by the SO4 and 
Slater integral calculations (same as in table 1) which 
are restricted to an n manifold compared with results 
from the six-dimensional Rydberg formula in (10) 
and (11). The last column gives accurate results 
available from experiment or detailed numerical 
calculations. 

n SO4 S.I. Equat ion (10) "Exact" 

2 3-60 3"46 4-042 
3 1"728 1"681 1.883 
4 1-017 0-986 1"085 
5 0"668 0"649 0"705 
6 0-473 0.454 0'494 
7 0"351 0.337 0.366 
8 0-272 0"260 0"281 

10 0"176 0'168 0"181 
18 0"055 0"053 0-057 

4.04 
1.886 
1'085 
0.704 

Table 3. Similar to table 2 but for the lowest 
1S states of He. 

n (SO4) Equat ion (10) "Exact" 

2 20.8 21.12 21.11 
3 9-50 9.62 9.61 
4 5.44 5.48 5.49 
5 3.51 3.53 3.54 
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known result of  a screened charge ( Z -  5/16), that, is, 

E 1 = - (Z - 5/16) z ~ - Z 2 + (0.625) Z. 

The six-dimensional formula in (10) and (11) gives the closely related 

Ex = - Z 2 + (0-644)Z, 

whereas the SO4 result in (2) gives 

E~ = - Z 2 + (0"408)Z. 

In the limit o f  large n and again asymptotically large Z, the two expressions become very 
similar, the six-dimensional formula giving 

E, = -- Z 2 "-J- (0.344)Z, 

and (2) leading to 

E.  = - Z ~ + (0.324)Z. 

4. Conclusions 

By looking at the most tightly bound tS state in each n-manifold, with both electrons 
having principal quantum number n, we have shown that angular correlations between 
the electrons as described by the (n l )  2 distribution given in (6) accounts for the 
representation of  1/r 12 for such states developed on the basis of  SO4 group symmetry. 
On the other hand, these lowest states with differing n are also organized into a different 
pattern, namely, a Bohr-Rydberg series converging to the double ionization limit. The 
relevant Rydberg formula in (10) also incorporates the radial correlation between the 
two electrons and is in conformity with the Wannier theory for two-electron states in 
the vicinity of  the double ionization limit. 
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