He II spectra of La, Ce and Yb: Novel features in the valence band region*

D D SARMA
Solid State and Structural Chemistry Unit, Indian Institute of Science,
Bangalore 560 012, India

MS received 24 August 1983

Abstract. He II photoelectron spectra of La, Ce and Yb show features which cannot be explained in terms of single electron excitations. It is proposed that these are due to formation of electron-hole pairs.

Keywords. UPS; valence fluctuation; valence band; rare earth metals.

We have been interested in the investigation of electron states in rare earth materials for some time (Rao and Sarma 1980). During the course of these investigations, we have observed unusual features in the valence bands of La, Ce and Yb which cannot be accounted for by the known electronic configurations of these metals. These features appear as sharp peaks in the valence band region and seem to represent an electronic process occurring in the bulk of the metal and not due to a surface effect. Such structures have been noticed at times (Steiner et al 1977; Baer et al 1981; Gudat et al 1981; Alvarado et al 1980), though with poor resolution (Steiner et al 1977; Baer et al 1981; Gudat et al 1981), and attributed to surface states (Gudat et al 1981; Alvarado et al 1980). We have investigated these features in the valence band region to understand their nature and origin and their possible relevance to the problem of spontaneous valence fluctuation.

In figure 1, we have shown the He II spectra of La, Ce and Yb. Lanthanum with the $4f^0$ ($6s, 5d)^3$ configuration is expected to show a single peak (marked 1 in figure 1) near the E_F originating mainly from $5d$-states, but we see two additional peaks at 2-1 and 3-5 eV (marked 2 and 3 respectively) in the spectrum. These features of La have not been described hitherto in the literature. Cerium is expected to exhibit a single structure due to $4f$ emission, besides an emission at E_F due to the conduction band (peak 1 in figure 1); we however see two peaks (2 and 3) besides peak 1. Peak 2 which appears distinctly in the spectrum shown in figure 1 has been noticed as a shoulder or an asymmetry on the higher binding energy side of the conduction band in earlier studies (Steiner et al 1977; Baer et al 1981). Ytterbium shows a weak feature due to the conduction band near E_F in He II spectra; in addition it shows four peaks (marked 1, 2, 3 and 4 in figure 1) due to $4f$-emission instead of the expected doublet due to the spin-orbit split structure.

*Communication No. 227.
To investigate whether the additional features found in the valence band region could arise from surface states, we recorded the spectra of Yb inclined at various
angles of acceptance, θ (figure 2). We see that the relative intensities of the various peaks remain constant over the entire range of θ. The ratio of the combined areas of peaks 2 and 4 to that of peaks 1 and 3 have been measured by fitting the background-subtracted spectra with four gaussians and the result is plotted against θ (figure 2, inset).

Alvarado et al (1980) have observed marked changes in the relative intensities of the peaks of Yb with the energy of the radiation and have therefore attributed peaks 2 and 4 to surface states. Our measurements with He I and He II radiations, however, gave unity as the value of K, where K is defined as $K = \ln \left(1 + R^I\right)/\ln \left(1 + R^II\right)$, with R^I (using He I) and R^II (using He II) representing the relative intensities of peaks 2 and 4 compared to that of peaks 1 and 3, indicating that all the peaks arise due to the bulk state. The angle dependence of relative intensities of the peak is probably more diagnostic of a surface state than variation of the relative intensities with the energies of radiations. This is because the photoejected electrons with low kinetic energies feel the effect of reorganisation of the residual electrons and decay of the final states considerably (Fuggle 1981).

In Ce, while peak 1 (figure 1) is due to conduction band emission, there is some doubt (Allen et al 1981; Croft et al 1981; Steiner et al 1977; Baer et al 1981) whether peaks 2 or 3 (in figure 1) is due to 4f emission. When the surface of Ce is oxidized to form CeO$_2$ with the (6s, 5d)6 4f1 configuration of Ce, both peaks 1 and 2 vanish, but peak 3 is unaffected, showing unambiguously that peak 3 is due to 4f1 state. This observation suggests that peak 2 is in some way connected with the conduction band. Furthermore, peak 2 exhibits resonance photoemission (Gudat et al 1981) characteristic of the f-state and we therefore suggest that this feature represents the formation of an electron-hole pair where the hole in the 4f level following the photoemission is screened by localizing a conduction electron. This kind of screening is indeed known for deep core levels (Fuggle et al 1980). According to our assignment, the energy difference between peaks 2 and 3 (\sim1.5 eV) represents the binding energy of the electron-hole pair. Interestingly, peak 2 has a low FWHM compared to peak 3 which is due to unscreened 4f emission (table 1). In Yb, peaks 1 and 3 are sharp while 2 and 4 are relatively broad (table 1). The energy separation (1.3 eV) between 1 and 3 is the same as that between 2 and 4, which is equal to the spin-orbit splitting of the 4f13 final state. By analogy with Ce, we can assign peaks 2 and 4 to the unscreened

<table>
<thead>
<tr>
<th>Metal</th>
<th>Peak No.</th>
<th>Binding energy</th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>1</td>
<td>0.4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Ce</td>
<td>1</td>
<td>0.3</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Yb</td>
<td>1</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 1. Positions and FWHM (in eV) of valence band structures in La, Ce and Yb.
$4f_{7/2}$ and $4f_{5/2}$ states respectively while peak 1 (or peak 3) corresponds to electron-hole pair formation with the hole in the $4f_{7/2}$ (or $4f_{5/2}$) state. The binding energy of the electron-hole pair in Yb is the energy difference (0.7 eV) between peaks 1 and 2 (or between 3 and 4). As in Ce, we find that the state representing electron-hole pair formation has a smaller FWHM.

The assignment of peak 2 of Ce and of peaks 1 and 3 of Yb as due to electron-hole pair seems quite reasonable as we can rule out the possibility of shake-up processes or surface states. One of the difficulties of attributing peak 3 in the spectrum of Ce (figure 1) to the $4f^{1}$ emission has been that it would be impossible for Ce to manifest valence fluctuation with such a large energy (~2.1 eV) of the $4f$ level within the promotional mode. A similar difficulty will arise with Yb as well if peaks 2 and 4 are assigned to the $4f$ level. However, since the electron-hole pair formation is an integral part of $4f$ hole creation, the binding energy of this pair to a large extent compensates for the large excitation energy required for promoting a $4f$ electron.

The case of La is somewhat different from Ce and Yb in that there is no $4f$ population in the ground state, the empty $4f$ level lying ~4 eV above E_F. As mentioned earlier, peak 1 in the spectrum of La (figure 1) is due to the conduction band. Peak 3 is 3.5 eV below E_F; this prompts us to speculate that peak 3 may arise from the promotion of a conduction band electron to the $4f$ level akin to a shake-up satellite accompanying the photoemission from the conduction band. Peak 2 which is narrower than peak 3 (see table 1) can be assigned to electron-hole pair formation with the electron in the $4f$ level; the binding energy of such a pair will then be ~1.4 eV.

It is noteworthy that an extra feature has been noticed in the valence band of Eu in EuPd$_2$Si$_2$ which the authors have attributed to a surface state (Martensson et al 1982). It is possible that the valence band features of Eu may as well be due to electron-hole pair accompanying the unscreened $4f$ emission indicating the presence of a broad $4f$ level. Uranium, with its broad $5f$ level, also seems to exhibit an extra peak in the valence band region (Iwan et al 1981). On the basis of theoretical considerations, Liu and Ho (1982) have pointed out that such an electron hole pair formation is indeed possible in Ce. However, the model proposed by these authors is somewhat different. We believe that unscreened $4f$ emission is more probable if the $4f$ level is not highly localized.
He II Spectra of La, Ce and Yb

Fuggle J C 1981 Electron spectroscopy: Theory, techniques and applications (eds) C R Brundle and
J. Appl. Phys. 52 213
B25 1446
Rao C N R and Sarma D D 1980 Science and Technology of rare earth materials (eds) E C Subbarao