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Abstract. Unified study of the different properties of metals clearly reveals the 
inadequacy of the empty-core Ashcroft pseudopotential even in the case of simple 
metals. In the present paper we propose a modification of the one-parameter Ashcroft 
pseudopotential by assuming the parameter re to be wave vector-dependent. This 
introduces a simple modification of the electron-ion pseudopotential in the reciprocal 
space. The corresponding potential in the configuration space shows that tile abrupt 
change in the Coulomb potential at r = rc is replaced by a continuous change spread 
over a small region near the core boundary. The present model has been used to 
make a unified study of AI and is found to be a significant improvement over the 
simple Ashcroft model. The agreement between the calculated and experimental 
values is found to be quite satisfactory. 

Keywords. Modified Ashcroft pseudopotential; unified study; Taylor's dielectric 
function; Vashishta-Singwi dielectric function. 

1. Introduction 

In a recent investigation, Sen et al (1980) have pointed out that the empty-core Ash- 
croft (1966) pseudopotential is not  suitable for unified studies even in the case of  
simple metals. Though they obtained fair agreement for the static properties of the 
alkali metals, the discrepancy in the case o f  phonon dispersion was about 40 9/0 in 
some cases. Price et al (1970) attempted to calculate the different properties of  alkali 
metals on the basis of  Ashcroft's model. But in order to obtain reasonable agreement 
with the experimental values they had to use two different values for the same para- 
meter in the first and the second order energy expressions respectively. All these 
studies clearly indicate the inadequacy of  the empty-core Ashcroft pseudopotential for 
a comprehensive unified study and it seems evident that in order to obtain reasonable 
agreement with the experimental values for both the static and dynamic properties 
of  a crystal, one has to use two different values of  the same parameter. But from 
a theoretical standpoint this is inconsistent and does not make sense as a pseudo- 
potential. In the present paper we have modified the Ashcroft pseudopotential 
by assuming the parameter of  the potential to be wavevector dependent and the 
dependence is assumed in such a way that in the short and long wavelength limit we 
get two distinct constant values of  the parmneter. This introduces a simple modi- 
fication for the Fourier transform of  the potential and makes the model consistent. 
The potential in the direct space has also been evaluated. The modified potential 
has been used to make a unified study of  Alurninium. For  the present purpose we 
have felt it sufficient to limit our calculations to one typical simple metal A1, because 
of  the reasons mentioned below. 
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Aluminium is a close-packed, simple polyvalent metal. The area of the Fermi 
surface of this metal, and its general topology, do not really deviate very much from 
the free electron sphere. The small pockets of holes and the reefs and islands of zone 
boundary projecting through the surface, do not make any significant contribution 
to the thermodynamic properties as the total area of the free surface is very large. 
From an analysis of the results of measurements of the Fermi surface in A1, it is 
possible to conclude that non-locality plays a very small role in the effective electron- 
ion interaction (Ashcroft 1963; Kimball et al  1967 and Lee 1966). Again the role 
of higher order terms gwing rise to non-pairwise forces is not so important in 
reproducing the phonon frequencies of this metal (Williams 1973; Bertoni et al  

1974, 1975). In the long wave method, however, the contribution of the third and 
fourth order terms to the elastic constants is significant (Bertoni et al 1974; 
Brovman and Kagan 1974). But a homogeneous deformation theory confined up to 
the second order perturbation terms effectively includes terms up to the fourth order 
of long wave approach (Brovman and Kagan 1974; Wallace 1969). Thus AI 
appears to be one of the few polyvalent elements for which local model potentials 
with second order perturbation theory can be used with confidence provided the 
elastic constants are calculated by the method of homogeneous deformation. More- 
over, an initial attempt to make a unified study of the lattice mechanics of simple 
metals using Ashcroft pseudopotential shows that the results are more disastrous in 
the case of AI. When the parameter of the Ashcroft pseudopotential is determined 
from the equilibrium condition, the model is found to reproduce the static properties 
of the alkali metals fairly well, whereas a discrepancy of about 40 % is observed in the 
case of zone-boundary phonons. But a similar calculation repeated in the case of AI 
gives elastic constants which are about four to five times the experimental values. All 
these facts justify our choice of A1 as the representative metal. As the suitability of a 
potential can be judged only through a comprehensive unified study, we have used 
the modified AshcroR pseudopotential to study the different properties like the co- 
hesive energy, equilibrium lattice parameter, second order elastic constants and 
their pressure derivatives, equation of state and the phonon dispersion along the 
symmetry directions for A1. Previously, Das et al  (1980) have made a unified study 
of alkali metals using this modified Ashcroft pseudopotential and obtained encourag- 
ing results. 

2. The modified Asheroft pseudopotential 

The Ashcroft pseudopotential in r-space is given by 

V(r)  = O, r < rc 

Z e  ~ 
- -  , r >  r e ,  

r 

rc being the parameter of the potential. 
correspondingly given by 

4~r Z e  ~ 
V(q) = - -  ~ q~ cos q re, 

where ~ is the volume per ion and Z is the valency. 

(1) 

The Fourier transform of this potential is 

(2) 
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We propose a simple modification of this potential in q-space by assuming r~ to be 
q-dependent and write it in the form 

re(q) = r c t  + ( r~ - - r¢ t )  (1 - - e xp ( - -q~ /q~ ) ,  (3) 

In (3) re1 and rc~. are the two parameters of the modified potential and q0 is an arbit- 
rary parameter, the value for which in the present calculation is chosen to be 10-' 7r/a, 
2a being the lattice constant. It may be pointed out that the calculated properties 
are insensitive to the value of q0 chosen provided it is sufficiently low. It may be 
remarked here that rc 1 and rc~ are the two values of r~(q) in the long and short wave- 
length limit respectively, i.e., r~(0) = re1 and r¢(q) = r~ 2 for q ~, qo- 

The potential in r-space corresponding to this modified pseudopotential is given by 
QO 

V(r)  = - -  2 Ze  2 ; cos (q r~(q)) sin qr dq. (4) 
• r r  a q 

0 

We have numerically computed the potential for A1 which is shown in figure 1. 
The potential in r-space is found to be continuous and except in a small region near 
the boundary of the core it is found to be zero everywhere inside the core. 

3. Energy of  a metallic solid 

For simple metals having Z valence electrons per ion, the second order pseudopoten- 
tial theory expresses the static energy per ion as 

u = z E , + z  Eo,+ z B (5) 

Here the first two terms are purely volume dependent energies. E o includes the 
kinetic, exchange and correlation energies. In the present calculation we have con- 
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Figure 1. Curve showing the potential in r-space for AI (rot = 1"2805 a.u and 
re2 = 1.1600 a.u.). Dotted portion indicates the extention of the Coulomb potential. 



422 S K Das, D Roy  and S Sengupta 

sidered the correlation energy in the form suggested by Pines (1963). The second term 
is the non-Coulomb part of  the first order pseudopotential energy and is given by 
(according to the present model) 2rr Z ~ e ~ r~t/£~. It may be pointed out here that the 
first order energy depends only on the parameter rc 1 of the modified pseudopotential. 
The third term in (5) is the electrostatic energy of an array of point ions in a uniform 
electron gas and has been evaluated by Fuchs (1935), The last term is the band 
structure energy and is given by 

E ' ~ G21V(G ) 12, (G)-- 1 
/ r B  = - , ( 6 3  

G 

~P --~"' 2rr Z z e ~ cos~ G r~( G) e ( G) - -  1 _ ~ G~" , 
' [2 G ~ c (G) 

G G 

(6) 

where G is a reciprocal lattice vector and ~ (G) is the dielectric function. It may be 
noted that the band structure energy given by (6) will almost entirely depend on the 
parameter rc~ as the lowest value of the reciprocal lattice vector is about hundred 
times larger than q0. Thus the first and second order pseudopotential energies are 
controlled by the two different parameters r, 1 and re2 respectively. This in fact 
justifies the arbitrary procedure adopted by Price et al (1970) and points to the 
fact that the present modification is a natural extension of the Asheroft pseudopoten- 
tial that will explain both the static and dynamic properties of metals. 

In order to account for the exchange and correlation between the conduction 
electrons, a large number of dielectric functions have been proposed and almost all 
of them can be reduced to the form 

(q) = 1 -k "H (q) - -  1 
1 - -  f ( q )  (E H ( q ) - -  1) '  

(7) 

where EH(q ) is the Hartree dielectric function and f (q)  accounts for the correction due 
to exchange and correlation between the conduction electrons. A number of different 
approximate expressions for the function f (q)  have been proposed by Sham (1965), 
Kleinman (1967), Langreth (1969), Shaw and Pynn (1969), Singwi et al (1970), 
Geldart and Taylor (1970), Toigo and Woodruff(1970), Vashishta and Singwi (1972) 
and Taylor (1978). In the present calculation we have used the dielectric function 
proposed by Taylor (1978), because it can be represented by a simple analytical for- 
mula and exactly satisfies the compressibility sam rule, which is essential in order 
that the dielectric function correctly accounts for the change in the exchange and 
correlation energy due to the fluctuation of the electron gas density. In order to esti- 
mate the role of the dielectric function on the different properties of the solid we have 
repeated the calculation with the dielectric function proposed by Vashishta and Singwi 
(1972), which also closely satisfies the compressibility sum rule. 

Starting from the energy expression given by (5) we have calculated the second 
order elastic constants and their pressure derivatives by the method of homogeneous 
deformation following the procedure outlined by Sen et al (1980). We have also ob- 
tained the equation of state of the crystal in a straightforward way. 
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4. Phonon ~equencies 

Phonon frequencies of metals depend on the effective interaction between ions which 
is a sum of the direct Coulomb interaction between the ions immersed in a uniform 
compensating negative background and the ion-electron-ion interaction arising from 
the screening of the ionic motion by the conduction electrons. The contribution of 
the first term to the dynamical matrix has been evaluated by Vosko et al (1965). The 
contribution of the second term to the dynamical matrix is given by 

G G 
(8) 

where F G is the energy-wave-number characteristic and is defined by equation (6). 
Once the dynamical matrix is evaluated, the phonon frequencies can be calculated 
in a straightforward manner. 

5. Results and discussions 

The present model is used to make a comprehensive unified study of A1. The model 
contains two adjustable parameters re1 and re2. As the pseudopotential parameters 
enter into the dynamical matrix through the band structure energy which depends 
only on re2, we adjust the parameter r~ so that best agreement is obtained in the 
phonon dispersion. Next, using that value of r~, the parameter r~l is adjusted 

to satisfy the equilibrium condition 0 U/~n I fl = ~ = 0 exactly (~2 is the harmonic value 
of ~2). The fact that the present model parameters r~l and rc 2 are consistent with 
the equilibrium condition at zero pressure is also apparent from our calculated results 
of the equation of state (figure 3). The calculated properties include cohesive energy, 
equilibrium lattice constant, second order elastic constants and their pressure deriva- 
tives, equation of state and phonon frequencies along the symmetry directions. The 
calculated static properties along with the experimental results are shown in table 1. 

It is seen from the table that the calculated cohesive energy according to the present 
model agrees within 0.5 % with the experimental values. For the second order elastic 
constants, the picture that has emerged through the unified study indicates that there 
is a genuine problem here. For Cll and C44, agreement between the calculated and 
the experimental values is reasonable for Taylor's dielectric function, but for C1~ the 
discrepancy is very high (about 36 %) for both the Taylor and the Vashistha-Singwi 
dielectric functions. Use of the Vashishta-Singwi dielectric function improves the 
agreement of C n but impairs the agreement of C44 considerably. 

We have also calculated the elastic constants of A1 using the empty-core Ashcroft 
pseudopotential coupled with Taylor's dielectric function. The lone parameter rc 
is determined from the equilibrium condition. The results of such a calculation are 
shown in table 1. Here the discrepmacy is so high that even the order of magnitude 
of C~ does not agree with the experimental results. Kachhava (1973) used Ashcroft's 
pseudopotential to calculate phonon frequencies and the second order elastic constants 
of A1. He confined himself upto the second order perturbation in electron-ion 
pseudopotential and calculated the elastic constants by the method of long waves. 



T
ab

le
 

1.
 

va
lu

es
. 

M
od

el
 p

ar
am

et
er

s 
an

d 
ca

lc
ul

at
ed

 s
ta

ti
c 

pr
op

er
ti

es
 o

f 
A

1.
 

E
xp

er
im

en
ta

l 
va

lu
es

 w
hi

ch
 a

re
 w

it
hi

n 
pa

re
nt

he
si

s 
ar

e 
ex

tr
ap

ol
at

ed
 h

ar
m

on
ic

 

M
od

el
 

P
se

ud
op

o-
 

D
ie

le
ct

ri
c 

te
nt

ia
l 

fu
nc

ti
on

 

E
la

st
ic

 c
on

st
an

ts
 i

n 
P

re
ss

ur
e 

de
ri

va
ti

ve
s 

of
 e

la
st

ic
 

M
od

el
 

C
ry

st
al

 
E

qu
il

ib
ri

um
 

l0
 is

 d
yn

/c
m

 a 
co

ns
ta

nt
s 

la
tt

ic
e 

pa
ra

m
et

er
s 

en
er

gy
 

a.
u.

 
R

y
d

/a
to

m
 

co
ns

ta
nt

 
dC

n 
dC

x~
 

dC
44

 
a.

u
. 

C
ll

 
C

1~
 

C
~

 
-~

- 
dp

 
dp

 

A
sh

cr
of

t 
T

ay
lo

r 

M
od

if
ie

d 
T

ay
lo

r 
A

sh
cr

of
t 

M
od

if
ie

d 
V

as
hi

sh
ta

- 
A

sh
cr

of
t 

S
in

gw
i 

E
xp

er
im

en
ta

l 

rc
 =

 
1"

61
66

 
--

4.
12

87
 

7.
58

11
 

5.
15

8 
2'

16
7 

3.
06

0 
5.

56
4 

2'
83

7 
3"

38
1 

g~
 

re
x 

= 
1"

28
05

 
--

4.
12

30
 

7.
58

11
 

1.
05

1 
0-

40
6 

0-
32

3 
8.

14
4 

2"
71

9 
3-

97
2 

rc
~ 

= 
1"

16
00

 
~'

~ 
0~

 
re

1 
= 

1.
26

08
 

--
4.

14
83

 
7.

58
11

 
1"

08
1 

0.
42

7 
0.

43
3 

7.
40

7 
2"

59
6 

4.
40

8 
re

2 
= 

1"
15

00
 

--
 

--
4"

14
20

 
(7

"5
81

1)
 

(1
"1

99
) 

(0
"6

54
) 

(0
"3

37
) 

7"
35

0 
2"

45
0 

3"
10

0 
4-

0"
23

0 
4-

0"
16

0 
4-

0"
12

0 
(a

) 
(b

) 
(c

) 
(c

) 
(c

) 
(d

) 
(d

) 
(d

) 

(a
) 

H
an

db
oo

k 
of

 C
he

m
is

tr
y 

an
d 

P
hy

si
cs

 (
19

75
), 

(b
) 

S
ut

to
n 

(1
95

3)
, 

(c
) 

G
er

li
ch

 a
nd

 F
is

he
r 

(1
96

9)
 

(d
) 

T
ho

m
as

 (
19

68
) 



Pseudopotential study of alumlnium 425 

But, as pointed out by Bertoni et al (1974), one has to include the effects of the third 
and fourth order perturbation terms while calculating the elastic constants by the 
method of long waves. 

Thus the values of elastic constants obtained by Kachhava are wrong. Again the 
value of rc with which he got good agreement for the phonon frequencies will not 
reproduce the cohesive energy of the metal in question and will also not satisfy the 
equilibrium condition. 

The problem concerning the elastic propertyof A1, surprisingly enough, seems to be 
common to all the existing pseudopotential calculations, either local or non-local. 
Gupta and Tripathi (1970) using Harrison's (1965) two-parameter model potential 
combined with some arbitrary cut-off procedure (Animalu and Heine 1965) obtained 
good results for the phonon frequencies and binding energy, but their calculated 
compressibility was too low with respect to the experimental value. Suzuki (1971) 
used the local form of Heine-Abarenkov (1964) potential in  conjunction with the 
Hartree and the Hubbard-Sham (Hubbard 1957; Sham 1965) screening functions to 
calculate the second and third order elastic constants of A1. Here, except for C n, the 
agreement between the calculated second order elastic constants and the correspond- 
ing experimental values is very poor. Recently Sarkar and Sen (1981) have also 
employed the Heine-Abarenkov model potential to make a unified study of Ah They 
have used both the dielectric functions of Taylor (1978) and Vashishta-Singwi (1972). 
Discrepancies in their calculated values of Cll, C1~ and C~ (using Taylor's dielectric 
function) are 23 ~o, 20 ~o and 22 ~o respectively. Use of Vashishta-Singwi dielectric 
function slightly improves the situation. 

Hafner (1975) has attempted a unified study of static, dynamic and electronic 
properties of A1 by incorporating the valence-core exchange and correlation effects 
in the framework of Harrison ab-initio-pseudopotential theory. He used an improved 
valence-core exchange potential containing two parameters. He has not calculated 
the individual elastic constants. For bulk-modulus which he has calculated the dis- 
crepancy is about 22 ~.  For the other properties, the agreement with the experimental 
results is more or less reasonable. But the major defect in his calculation is that 
there is a discrepancy of 4 ~o in his calculated zero-pressure lattice constant--this 
partly destroys the significance of the entire calculation. 

The above calculations are based on second order perturbation in electron-ion 
pseudopotential. Inclusion of the third order perturbation terms does not lead to any 
improvement in the second order elastic constants of A1. In the calculations of 
Bertoni et al (1974), the discrepancy between the theoretical and the experimental 
values of C1~ was about 46~o. Brovman and Kagan (1974) carried out a unified study 
of lattice mechanical properties of some simple metals including A1. For AI, their 
calculated values of second order elastic constants, including the third order pertur- 
bation term, show a maximum discrepancy of about 27 ~ in C~. 

The above facts suggest that at present a genuine difficulty exists in the calculation 
of second order elastic constants of A1, which has also been stressed by Sarkar and 
Sen (1981). In most of the calculations it is found that the agreement between the 
calculated and the experimental phonon frequencies is reasonably good. It appears 
that there is some interaction missing in all the investigations so far made in the 
framework of pseudopotential theories. Except dC~/dp, the agreement for pressure 
derivatives of elastic constants is more or less reasonable when the present model is 
combined with the Taylor dielectric function. Using the Vashishta-Singwi dielectric 
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function the agreement of dCltldp and dC12ldp improves (the agreement with the 
experimental values is almost exact), but the discrepancy of dC44/dp increases appre- 
ciably. One interesting point to be noted here is that the agreement between the 
experimental and the theoretical values of pressure derivatives of elastic constants 
calculated on the basis of Asheroft's (with the Taylor dielectric function) pseudo- 
potential is far better than that of the elastic constants using the same model. 

The equation of state (at T = 0) obtained with the present model gives good agree- 
ment with the experimental results. The results are shown in figure 3. The present 
pseudopotential coupled with the Vashishta-Singwi dielectric function gives better 
agreement. 

Phonon frequencies along the symmetry directions calculated on the basis of the 
present model are displayed in figure 2. The overall agreement between the theoretical 
and the experimental values of Stedrnan and Nilson (1966) is good (Vaskishta-Singwi 
dielectric function gives a slightly better result) for both the dielectric functions. For 
Taylor's dielectric function, phonon frequencies along [110] T t mode become slightly 
greater than the corresponding values along [110] T 2 mode for low values of q. This 
is in contrast to the experimental results. This defect disappears when calculations are 
made with the Vashishta-Singwi dielectric function. Thus, it appears that dielectric 
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Figure 2. Phonon dispersion curve for AI at 80°K. Experimental points which are 
taken from Stedman and Nilson (1966) are indicated by O for 'longitudinal branches, 
A and • for transverse branches, - -  curve present model + Taylor's dielectric 
function and ......... curve present model + Vashishta-Singwi dielectric function. 
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Figure 3. Equation of state (at T = 0) for AI. Experimental points (indicated by 
O) are taken from Vaidya and Kennedy (1970); curve present model + Taylor's 
dielectric function;' and ......... curve present model + Vashishta-Singwi dielectric 
function. 
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func t ion  plays an  impor tan t  role in reproducing the fine structure of  p h o n o n  disper- 

sion curves of  metals. 
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