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A NUT-like electrovac spacetime 
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Abstract. A solution of the Einstein-Maxwell equations corresponding to source- 
free electromagnetic field is obtained. The solution is algebraically special. A parti- 
cular case of the solution is considered which includes Brill's solution. The details 
regarding the solution are also discussed. 
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1. Introduction 

There are two types of  solutions of  Einstein-Maxwell equations in general relativity, 
namely algebraically general solution and algebraically special solution. Inspite 
the fact that an exact gravitational solution radiating f rom a finite source must be 
algebraically general (Sachs 1961), many investigators have shown keen interest in 
obtaining algebraically special solutions. One of  the reasons behind this is that  the 
Schwarzsehild exterior solution, the Kerr  solution (Kerr  1963) and the N U T  solution 
(Newman et al  1963) are familiar members of  this class. The aim of  the present paper  
is to derive a NUT-l ike algebraically special solution of  Einstein-Maxwell equations 
with the help o f  the complex vectorial formalism formulated by Cahen et al  (1967). 
A lucid account o f  this formalism is also given by Israel (1970). It  will not  be out  o f  
place to give a very brief  summary of  this formalism. 

2. Complex vectorial formalism 

Consider a four-dimensional pseudo Riemarmian space-time manifoM V 4. Let  1 

and n a be two future pointing real null vector fields and m~ be a complex null vector 

field on V 4. They are such that the metric on V 4 has the form 

ga/~ = 2 l(a nil) - -  2m(a roD' (1) 

with bar denoting the complex conjugation. Here and in what follows the Greek 
and the first ha l f  o f  Latin indices will range from 1 to  4 and the second half  of  the 
Latin indices will range f rom 1 to 3. 
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Introducing the basic 1-forms 

0 z - = l , , ~ l x  a, 04 = n  a d x  ~, 0 ~ = m  a d x  ~, 

One can write (1) as 

(ds) ~ - -  2 (0104 - 0203 ) = g ° n 0 ° 0 b .  

Here x ~ are the local co-ordinates in Va. 
63 of self-dual 2 forms, given as 

08 = 03. (2)  

(3) 

Let Z p be a basis for the complex 3-space 

z x = 0 3 A 0 4 ,  0 2 = 0 1 A  0 ~, z 3 = ½ ( 0 1 A  0 a -  0 ~ A  03). (4)  

The metric yp~ for the space ~a is given as 

VPq = 2 3(~ 8q).. _ 1 8 g  3~. (5) 

In the absence of torsion in the Riemannian space, the affine connection I forms oJfl 
and the curvature 2-forms ~2g are determined by the following equations known as 
Cartan's structural equations: 

dO ° = - -  o~ A 0 b, 

= a A  ,og, 

where d and A denote respectively the 

(6) 

(7) 

exterior differentiation and the exterior 
product. The connection 1-forms O~,b and the curvature 2-forms ~,~ are related to 
Ricci rotation coefficients I~ob, and curvature Rob,a as follows: 

°Jab ~--- ~abc Oc~ 

ilab = ½ Rat, ca 0 c A 0 a. (8) 

In complex 3 space ~:3. (6) is replaced by 

dz p ___ ½ ,pro. am A z .  (9) 

where am are three valued l-forms which serve as six connection 1 forms oJob. a~ are 

(10) 

related to oJob as follows. 

_ ~1 __ o,4, = ½ ( ~  + ~3) ; 

1 2 
033 = ~4 = -- ½ gl 

- o~ = o~ = ½ (% - ~ )  

4 _ _  3 
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Cartan's second equation of  structure (7) can be written in ~a as 

~ o n' A if ' ,  p = d % ½ % m .  (11) 

where 27p are three complex valued 2-forms which are related to 2-forms c ~  in 
exactly the same manner as % are related to %~. 27 n being a complex 2-form, 
can be expressed in terms of  z p and z -v: 

, = Gq z ,  --~1 R 7~o Zo + e , ,  ~'~. (12) 

Here Cp, is a complex-valued trace-free symmetric tensor which corresponds to the 
Weyl tensor, Ep6 is hermitian tensor corresponding to the trace-free part of the Rieei 
tensor, R is the scalar curvature: Cp~ are related to the five Newman-Penrose com- 
ponents CA in terms of which the Petrov classification can be made. In fact 

Cvq ----- 2 --¢2 --~* 2~a • (13) 

et  2A --4~21 

The Einstein-Maxwell field equations for the source-free electromagnetic fields can 
be expressed as 

Ra3 --- Fa~ , F~ - -  (I/4) ga/3 FeB Fra' (14) 

F~3~ = 0, (15) 

where F v are the components of the electromagnetic field tensor. 
Equation (14) can be written as 

Ep~ = - 2Fp r~, R = 0. (16) 

Here the self-dual part of  the electromagnetic field tensor F~/3 can be expressed in the 
form 

F+ = Fp zp.  (17) 

Equation (I 5) can be expressed in the form 

dF + : 0. (18) 

Thus Einstein-Maxwell equations in the language of complex formalism, are (16) and 
(18). 
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3. The metric and Maxwell equations 

We consider the metric (Patel and Thaker 1980) 

(ds) 2 = 2 (du + g sin ad/3) dr - -  2L (du + g sin ad/3) 2 

- -  M 2 (da  D 4-  sin 2 ad~Z). (19) 

Here L and M are functions of r, a and/3 also g is function of a and/3. We use 
r, u, a and/3 as co-ordinates. Introducing the basic 1 forms 

0 ~ = du + g sin ad/3, v '2  0 ~ = M (da + i sin ad/3), 

04 = d r - - L O  1, 03= 02 . (20) 

We can express (19) as 

(ds) ~ = 2 (01 04 -- 03 0s). (21) 

Using (20) we can obtain dO a, which by using the defining expressions (4) for z v, 
will give us dzp. Using these expressions for dz p, Cartan's first equation of structure 
given by (9) will then determine the connection 1 forms %. The calculations of 
% are given in Patel and Thaker (1980), we shall reproduce the expressions for % for 
ready reference 

cr 1 = - -2  [(M,/M) - i (f[m2)] 03, 

cr 2 = - - V ' 2  [ (LJM)  - -  i (L#/M) cosec a] 01 -~ 2L [(M,/M) - -  i (f/M2)] 03, 

% = - -2  [L, 4- i (L f/M2)] 01 - -  v / 2  ( F - -  iE) 03 4- ~v/2 (Vq-  iE) 03 

q- 2i ( f / M  2) 04. (22) 

Here 2f  = ga 4- g cot a, M 2 F = M q- M cot a, M 2 E = M/~ cosec a and suffixes 

denote partial derivatives viz. L,  = OL[ Or, etc. 

The absence of terms involving 03 and 04 in ~1 indicates that the congruence k ~ of 
null tangents is geodesic as well as shear-free. 

Using the expressions (22) for % in Cartan's second structure equation given by 
(11), we can compute the curvature 2 forms 27p. 

The expressions for 279 are recorded in Patel and Thaker (1980) and are not re- 
peated here. Using these expressions for 27~ and the identity given by (12) we can 
compute Eft; R and the complex valued trace-free symmetric tensor Cpq. E ~  and 
R are given by 

E x x  : 2 [(M,,/M) - -  (f~/M4)], 

E I ~ = E ~  = O, 
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/~;1~ = E a T  = ( l / m )  [(M,/m)a -¢- (f/M2)[~ cosec a 

q- i ( ( f /M~)a - -  (Mr/M)# cosec a]-], 

E2 .g ~- ff's ~ = ('v/2/M) [L,,~ + L(M, IM) a - -  {L(f/MZ)# 

+ 2L[3 (f/M~)[j} cosec a - -  i {L(f/M=)a + 2L a ( f / M  2) 

+ L , :  cosec a + L(M,/M)# cosec a]-], (23) 

E 2 ~ = (1 /M 2) [L=a + L a cot  a + L/3 # cosec = a] + L = E x i 

Ea~ = 2L,.r - -  4L {M~,/M ~ - -  3 f 2 [ n  "} + ( 2 / n  =) [(MJM),~ 

+ (MB/M)3 cosec 2 a + (Ma/M) cot a - -  1], 

1l = 2L,, q- 8L, (M, /M) q- 4L ~M~,/M z -q- f 2 / M ' ~  

- -  (2 /M 2) [(M, JM),~ -~ (MB/M)[ 3 cosec 2 a -k (Ma/M) cot  a - -  1] 

-~- 4L E x x  

Since E x ~r = 0 it follows f r o m  the field equat ion  E x ~ = --2F1F 2 tha t  either (i) F 1 = 0 
o r  (ii) Fz = 0 o r  (iii) F 1 = 0 and F 2 = 0. 

We take  F1 = 0 and  assume the fol lowing f o r m  o f  self dual  2 fo rm F + : 

F + = $ Z ~ + ~b Z z, (24) 

where $ and  ~b are  complex  valued funct ions o f  a,/3 and r. Since F 1 = 0, it fol lows 
f r o m  the field equat ions  that  E~ i = 0 and E~ ~ ---- 0. These equat ions  involve only  
one u n k n o w n  funct ion  M. The solution o f  these equat ions  can be expressed in the 
fo rm 

M 2 = ( : / y )  (X~ + y2), (25) 

where X a = - -  Y/~ cosec a, Ya = X/~ cosec a, 

X, = - -  1, Y, = 0. (26) 

Wi th  M given by  (25) and  (26) and  271 given in Patel  and Thake r  (1980) we have 
verified tha t  Cll  = C13 = 0. Therefore  the spacetime described by the  line e lement  
(19) is algebraical ly special. 

We shall n o w  t ry  to  solve the Maxwell  equat ion  (18). Using F + given by  (24), 
M 2 given by  (25) and  (26) and  the expression for  dz 1', we have verified tha t  the  equa-  
t ions dF + = 0 imply  the fol lowing four  differential equat ions  for  ~ and  ~b: 

~br "t- 2 ~b [(M,./M) - -  i (f/M2)] -~ 0, (27) 
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~b, + i ~b~ cosec a = 0, (28) 

2V~ (~bM), - -  (~a --  i ~b/3 cosec a) = 0, (29) 

( ~ / M )  (d~ G + i ¢[~ cosec a) + V/2 ¢ (F + i E) 

-- L ~b, -- 2 Z ~b [(M,/M) --  i (f/MS)] =- 0. (30) 

We can use (25) and (26) to solve (27). The function ~b is given by 

= K ( X - -  i I0 -2, (31) 

where K is a complex function of  a and ft. Substitution o f  $ from (31) into (28) 
yields 

e a = h t l c o s e e a ,  h a : - e / ~ c o s e c a ,  K = e + i h .  (32) 

Using (31) and (32) in (29) we obtain 

~b = (1/~/2 M) [K ( X - -  i y)-l]~. (33) 

Finally, using all the relevant results of this section, we have verified that (30) is satis- 
fied identically. 

4. The remaining Einstein-Maxwdl equations 

We set R = 0 and use M S given by (25) and (26) to determine the function 2L. We 
shall find that  

2L = 2S + (2E*X + 2F* Y) (X ~ + y2)-2, (34) 

where 2S = (Y / f )  [½(Y/f) ~72(f/ Y) cosec 2 a --  1 --  (35) 

(y/f)2 {( f /  I01 + (f /  Y)] } cosec~a], 

where V 2 =  0~ Dz Oz-- q + ~-#,  z = logtan a[2, 

E* and F* are undetermined functions of a and/3. 

Next we take E s ~  = --  2F3 fla. 
we find that 

E* + 2 S Y  + K~" = 0. (36) 
4 Y  

Using (25), (26), (34) and (35) in this equation 
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Further the field equation E ~  = - -  2F= F a will lead to 

F*= = - - ( E *  - q - ~ ) / 3  cosec ~, 

/ ff cosec - = ( e *  

381 

(37) 

(4o) 

We take the following solution of  (26) as an example 

(41) 

5. T h e  c a s e  f = Y 

In this case we have 

M 2 = X 2 q_ y2, 

where X and Y satisfy (26). 
(Patel and Thaker 1980) 

X = - -  r q-  A s in  fl cosec ~, 

Y = a - -  A cosfl  cot a, 

Using all the relevant results in the field equation E 2 ~ = --  2F2/~ we find that  K is 
a complex constant and S satisfies 

Sa Y~ ~ S/3 Y/3 e°sec~ a = 0. (38) 

The corresponding electromagnetic field tensor F~/3 can easily be obtained: 

F,= = (X~b, q- Y~bz)a, F,3 = (X@, + Y~b2)/3 cosec a, (39) 

Fz4 ---- ~b x, F~a ---- - -  g sin a (X~b 1 q- Y~b~) a --  M 2 ~b z sin a, 

Here we have named the coordinates as 

X l = u ,  X 2 = a ,  X 3 = f l ,  X 4 = r .  

Now E* is determined from (37) and S from 05). These expressions for E* and S 
must satisfy (36) and (38) and we have only one unknown function 2f(i.e. g= q- gcota) 

at our disposal. Thus we have one additional equation. 
However in the c a s e f  = Y we have 2S = -- I and (38) is satisfied identically. In 

the general c a s e f  ~ Y, we have verified that  (35), (36), (37) and (38) are not  consistent. 
Therefore we shall consider the c a s e f  = Y only. 
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where a and A are constants of  integration. 
therefore f rom (36) we have 

K K  
E * +  -- Y. 

4 Y  

Using this relation in (37) we get 

F * = A s i n / 3 c o s e c ~ - - m = X q - r - - m ,  

where m is a constant of  integration. In this case the result (34) gives us 

2 £  = 1 q- 2X(r  - -  m)  - -  KI</2 
X 2 + Y~ 

Using Y given in (41) in f =  Ywe obtain 

g s in  a = - -  2 a c o s  a - -  2 A c o s / 3  s in  a .  

One can therefore write the line element in the final form 

(ds) 2 ---- 2 [du - -  2 (a cos a q- `4 cos fl sin a) dfl] dr 

- -  ( X  s q-  Y~) ( d  a2 q -  sin a s dfl 2) 

i , s +  

In this cas e (35) gives 2S ----- - -  1 and 

(42) 

(43) 

(44) 

[ du - 2 (a cos ,, + ,4 cos/3 sin ~) dB] ~, (45) 

where X and Y are given by (41). The components of  the electromagnetic field tensor 
F B for  this particular case can be easily obtained f rom (39). When K ---- 0 the metric 

(45) reduces to the generalized N U T  metric, discussed by Patel and Thaker (1980). 
When A = 0, it is easy to verify that  the metric (45) reduces to  the metric 

(ds) ~ = 2 (du - -  2 a cos a dB) dr - -  (r ~ + a s) (da 2 q- sin s a d/32) 

+ [ 1 - -  2 (mr + a s) - -  KK/2] (du--2 a cos ~ d/3) ~. (46) 
r s + a s 

The metric (46) is the metric discussed by Brill (1964) with slight change of  notations. 
Putting K --  0 in (46) we obtain the well-known N U T  metric. Thus our solution 
(45) includes BriU's solution as a particular case. 
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