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Abstract. Critical behaviour of a d-dimensional ideal Bose gas is investigated from 
the point of view of the renormalisation-group approach. Rescaling of quantum- 
field amplitudes is avoided by introducing a scaling variable inversely proportional to 
the thermal momentum of the particles. The scaling properties of various thermo- 
dynamic quantities are seen to emerge as a consequence of the irrelevant nature of 
this variable. Critical behaviour is discussed at fixed particle density as well as at 
fixed pressure. Connection between susceptibility and correlation function of the 
order-parameter for a quantum system is elucidated. 
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1. Introduction 

Theoretical understanding o f  the behaviour of  many-body systems near critical points 
has advanced significantly in the last few years as a result o f  the development of  the re- 
normalisation-group (RG) theory by Wilson and coworkers (Wilson 1971; Wilson 
and Kogut  1974). The new theory identifies the critical point  of  a system with the 
fixed point of  a series o f  transformations characterised by a change in the length 
scale. It  provides a satisfactory explanation of  important  qualitative features o f  
critical phenomena such as universality and also enables one to calculate in suitable 
approximation schemes values of  critical exponents, scaling equations of  state, etc. 

Although the basic ideas of  the R G  approach are quite general, the mathematical 
formalism for  their implementation has been developed almost exclusively in the 
context of  classical spin models of  the Landau-Ginzburg type (see, e.g. Wilson and 
Kogut  1974; Ma 1976). This formalism is not  immediately applicable to phase 
transitions which are basically of  a quantum mechanical origin, e.g. the ~-transition 
in liquid 4He. As a mat ter  of  fact, an essential ingredient o f  the formalism, namely 
rescaling o f  the field amplitudes, must be dispensed with in the case of  a system 
described by a quantum field since rescaling would not  preserve commutat ion rules 
obeyed by the field amplitudes. Attempts have b e e n m a d e  (Tanaka 1975; Baldo 
et  a l  1976) to overcome this problem by writing the parti t ion function of  a Bose 
system as a functional integral. This approach, however, is not  satisfactory since 
it requires one to introduce without justification (De Dominicis 1975) the classical 
limit (el  3E - -  1 ) ~  f iE. 

The primary aim of  this paper is to show that ideas of  the R G  theory can be applied 
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to quantum systems without requiring rescaling of field amplitudes. To this end we 
consider the simplest example of a phase transition of a quantum mechanical origin, 
viz. the Bose-Einstein transition in a d-dimensional gas of ideal bosons, and work out 
its critical behaviour. The method can be applied to an assembly of interacting 
bosons also (Singh 1975). The case of the ideal gas, however, is of special interest 
on account of the fact that calculations can be carried through without making 
assumptions or approximations which are unavoidable but difficult to justify when 
one considers the case of interacting particles. It may be pointed out that rescaling 
of amplitudes is not essential even for a classical field, the method of this paper being 
equally applicable to that case also. 

In the following sections the construction of  the RG transformation for an ideal 
Bose gas and its consequences as regards critical behaviour are presented in detail. 
It is hoped that the relatively simple nature of the calculations will enable readers not 
directly interested in quantum many-body theory to get a feeling of the essential ideas 
and methodology of the RG theory when applied to a system described in terms 
of a quantum-mechanical hamiltonian. The contents of  the various sections are as 
follows: § 2 explains how RG transformations may be performed on the hamilto- 
nian of an ideal Bose gas. A symmetry-breaking term is included in the hamiltonian 
to bring the theory at par with that of a ferromagnet. Scaling of the thermodynamic 
potential is discussed in § 3. In § 4 critical behaviour at fixed density is worked out 
while critical behaviour at fixed pressure is dealt with in § 5. Scaling of the correla- 
tion function of the order parameter and its connection with susceptibility forms the 
content of § 6. 

2. RG transformation for non-interacting bosons 

We consider a system of non-interacting, spinless bosons, each of mass m/2, contained 
in a d-dimensional box of volume V=L d. Using periodic boundary conditions, the 
hamiltonian of the system (in units such that t i :  1) may be written as 

~ k  2 
H = m a~ ak, 

k 

(1) 

where ak denotes the annihilation operator for the single-particle state of momentum 
k. The summation in (1) extends over the momentum space defined by 

27r "l'l 
k = - ~  1, n2,".,nd), (2) 

where the n's are integers. 
Bogolubov (1960) has pointed out that a convenient way to discuss the statistical 

mechanics of systems capable of possessing a condensed mode, is to supplement the 
hamiltonian by a suitable symmetry-breaking term. For the Bose system the sym- 
metry to be broken is the gauge symmetry and the term to be added to H is 

,lp 

h, = - -  f a v  [¢ (r) + (,') ], (3) 
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where v denotes a positive c-number and 

ak 
~b (1") = ~ -~  exp (ik'r), 

k 

(4) 

denotes the bosons field operator. In view of  the periodic boundary conditions, (3) 
can be rewritten as 

(5) 

In analogy with the case of  a ferromagnet, the real part of  ~b(r) is called the order- 
parameter for the Bose system and v is referred to as the field conjugate to the order- 
parameter. Although the physically interesting case corresponds to letting v-+0 
at the end of  the calculation, we shall allow v to stay finite since this offers the ad- 
vantage of  discussing the critical behaviour of the system in close analogy with that  
of  a ferromagnet in an external magnetic field. 

The grand partition function for the system can be written as 

Z ~ Tr exp (-- Ho), (6) 

where the dimensionless hamiltonian H o is given by 

Ho = E s(k~ P~2+r)a~ ak + Hs, (7) 
k 

17 { a0* __ ao ~_ V, / L =  (8) 

s = fl p~/m, r = - -  mtz ?~e, h = f l y .  (9) 

In the above equations, /x denotes the chemical potential and/3 the inverse of  the 
product o f  the absolute temperature T and the Boltzmann constant k B. We have 

introduced an arbitrary momentum Pc which, in what follows, will play the role of  
an upper cut-off in defining the RG transformation. Note that the reduced hamilto- 
nian (7) is independent of  Pc. 

The thermodynamic potential per unit volume (~ )  is given by 

~2 = (fiV) -1 In Z. (10) 

The thermodynamic average M of  the real part of  the order-parameter is 

(11) 
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The basic aim of the RG method is to eliminate short wavelength modes by per- 
forming a partial trace on the density matrix. For a Bose system, this purpose can be 
achieved by dividing the set of occupation number operators {a~ ak} into two subsets. 
Let S 1 denote the subset of occupation number operators having [ k I > pc and Sz the 
subset of  occupation number operators having [ k [ < Pc where pC denotes an arbitrary 
momentum. Let hi denote the space spanned by simultaneous eigenvectors of the 
subset S~ and h 2 the space spanned by simultaneous eigenvectors of the subset S 2. 
The Hilbert space of the system is then given by the product h 1 ® h z and the grand 
partition function can be written in the form 

Z = Tr Tr exp (--H0), 
(h~) (h~) 

= C(r, s, V; Pc, or) Tr exp ( - -  Ho (r, s, h; t k [ < p¢), (12) 
(h~) 

where C(r, s, V;p~, ~) = Trexp [ - - s  ~ (k 2p~-z+r) a~a@ (13) 
(h0 I k I >Pc  

H o ( r , s , h ; l k [  < p c )  = ~ s(k 2p~-e q_r) at~at,_k Hs, (14) 
Ik I <Pc  

The introduction of a cut-off momentum Pc, which may be assumed as large as we 
like, is an essential step in defining the RG transformation. Note that unlike the 
spins on a lattice where the wave-vectors are confined within a Brillouin zone, there 
is no natural momentum cut-off for a system of bosons. 

The space h 2 on which H0( ] k [ < Pc) operates may again be factorised by dividing 
the occupation numbers belonging to Sz into two subsets in the following manner: 
Let ~ denote a number large compared to unity. The two subsets of S 2 are then: 
(i) the set of occupation numbers corresponding to k's lying in the interval 
Pc ~-1 < I k I < Pc, and (ii) the set of occupation numbers corresponding to k's lying 
in the interval 0 ~ l k i  < Pc U 1. It is convenient to denote by q's vectors having 
magnitudes in the interval (0, Pc ~-1) and by p's vectors having magnitudes in the 
interval (Pc ~-1, Pc). The space h z can be factorised as 

h 2 = h(q) ® h(p), (15) 

where h(q) denotes the subspace spanned by simultaneous eigenvectors of all {aq t aq} 
and h(p) the space spanned by simultaneous eigenvectors of all {a~ ap}. We may 
now write (12) in the form 

Z = C Z o (r, s, V; Pc, ~--1 Pc) Z1, 

(h(p)} p 

exp ( - -  H 0, Z1 = Tr 
(h(q)} 

H 1 =  ~s(qZp~-Z +r)  a~aa+H~. 
q 

(16) 

(17) 

(18) 

(19) 
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We now try to bring the 'low momentum' hamiltonian H 1 into the same form as 
H 0 given by (14) by restoring the range of  momenta in (19) to the interval (0, Pc). 
For this purpose we rescale the wave-vectors q according to 

k 1 = ~ q, (20) 

and the volume V according to 

V1 = ~-d V. (21) 

The hamiltonian H 1 can then be written as 

111 = s ~ ( k ip  -3 + rx ) ~-2 bk it bk I __ "2hz Vll/s (bo_+_b,o) ' (22) 
Ikll <Pc 

where rl = [2 r, (23) 

hi = ~d/2 h, ( 2 4 )  

and the operators b, are defined by 

bk = ak~_l (25) 

They satisfy the same commutation rules as the ak's. It  may be pointed out that  al- 
though the kl vectors in (22) lie in the interval 0 ~< I ks ] < Po in view of  (2) and (20), 
they have components given by 

_ 2rr 
k l  - -  (L /~ )  (//1, n2 . . . .  , na)- 

The kl's in other words, are wave-vectors 

(26) 

corresponding to periodic boundary 
conditions on a box of  volume V 1 given by (21). 
space accordingly is 

The density of states in the k 1- 

V 1 d d kl/(2,r)d. (27) 

In the theory of  classical spin fields, the factor g-2 occurring in the first term in (22) 
is absorbed trivially by rescaling the field amplitudes which play the role of random 
variables in the theory. In the ease of a quantum system this cannot be done with- 
out altering the commutat ion rules. For example, if we try to absorb the factor g-~ 
by defining new operators 

Ak = ~-lbk, (28) 

the commutation rules satisfied by the Ak'S  a r e  

[Ak, A~,] = ~-s 8k, k,- (29) 
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The simplest way to avoid this difficulty is not to rescale the quantum amplitudes b,. 
One may rather rescale the parameter s (or equivalently the mass m of the particles) 
according to 

The hamiltonian HI then takes the form 

where h (k,) denotes the space spanned by simultaneous eigenvectors of all the 
operators {b: b,,). It is identical with the space h (q). 

The process of obtaining H, (r,, s,, h,; V,) from Ho (r, s, h;  V) is an example of 
the RG transformation. Equations (23), (24) and (30) connecting the parameters 
(r,, s,, 11,) with (r, s, h) are called recursion relations. 

The hamiltonian HI (r,, s,, h,; V,) being of the same form as H, (r, s, h;  V), we 
can repeat the process by which H, was obtained from Ho. After I renormalisation 
group transformations, we get 

The parameters (r,, s,, h,, V,) are related to (rl-,, sl-l, h~-1, VLI) by 

Each factor Z0 (r,, s,, V,) in (34) is defined according to (17) with the provision 
that the p vectors entering into the right-hand side of (17) be those appropriate to a 
box of volume (L/5m)d. 
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In the terminology of relevant and irrelevant variables (Wegner 1972), (r, h) are 
relevant variables while s is an irrelevant variable. Equation (39) shows that V, 
if finite, is also an irrelevant variable. However, as true critical behaviour is exhibited 
by a system in the thermodynamic limit V-+ oo only, we can take V~ itself as appro- 
aching infinity. 

In the limit V-~ oo the transformation (36)-(38) has a fixed point (r*, h*, s*) 
given by 

r* - -0 ,  h* = 0 ,  s* = 0 .  (40) 

It is also clear that this fixed point is reached only if 

r -+0 ,  h-+0.  (41) 

The RG theory identifies the fixed point with a critical point of the system. Keeping 
in view the definition of r (equation 9), we conclude that the critical point of the ideal 
Bose gas corresponds to 

/z-+0, h-+0. (42) 

As is well known, these conditions characterise the point of  Bose-Einstein transition 
is an ideal Bose gas. We shall show in § 4 that at fixed particle density, and at tem- 
peratures lower than the temperature Tc corresponding to (42), the order-parameter 
M is non-zero. 

The parameter s being an irrelevant variable, plays no role in determining the 
critical point of  the system. Its scaling behaviour, however, is of importance in deter- 
mining the critical behaviour of the system as will become evident in the following 
section. 

3. Scaling of thermodynamic potential 

On using the expression (33) for Z in (10), we obtain for the thermodynamic potential 
per unit volume 

l ln c-[- l ln At - t3 f~  = p z 

q- - - I n  Tr exp [ --  H~(r l, hi, sl; Vl)] (43) 
v, 

The expression (34) for A~ can be simplified by noting that 

K .Pc Pc) --- Zo Vm-1; pc ~ ) .  Zo(rm, S . . . . .  "~, (rm-1, Sm- 1 , ~-~, (44) 
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One gets 

vP~ - ~  (45) 

Equations (36) to (39) and (45) show that the result (43) obtained for the thermo- 
dynamic potential by l successive R G  transformations, each with a cut-off factor ~, 
is the same as would be obtained by a single R G  transformation with a cut-off factor 
~t. This is an illustration of  the semi-group property of  the R G  transformations. 

In what follows, we shall denote ~l by b, and (r t, hi, st, Vl) by (r i, h i, s i, Vi). The 
recursion relations connecting (ri, hi, si, Vi) with (r, h, s, V) are then given by (23), 
(24), (30) and (21) with ~ replaced by b. Equation (43) for 12 takes the form 

--flFZ=~,I l n C +  l l n Z o ( r , s , V ; P c  )-~,p~ 

b-a 
+ - -  In Tr exp [ - -  H 1 (r i, s t, h i, V0], (46) 

vl 

Hi(ri, si, hi, VO= ~ si(k2p:2+rOb~bk--½hiV1/2(bo+bto) .  (47) 

Ikl<p~ 

The symmetry-breaking term in (47) can be got rid off by performing the following 
canonical transformation: 

Bk = bk, k ¢: O, 

Bo _ bo _~___,l h i V~/' r l ~ O. 
2 sir  i 

The result is 

= $1 ~ . .  ( k2 Pc  2 "-1- /'1) B~ B k - -  H1 

Ikl<Pc 
vq . 

Tr exp ( - -  H 0 = exp \4  s - ~ i !  I k I < Pc 

(48) 

(49) 

th~ V~ 
, ( 5 0 )  

4 s~ r~ 

[ l - -exp  (--s i k~ p-~ ~ -  s I rO]. (51) 

Equation (51) is meaningful only if r 1 (and hence r) is non-negative; otherwise 
Tr exp ( - - H  i) is divergent. The Z 0 in (46) is given by an expression similar to 
the second factor on the right hand side of(51). On taking the limit V -+ oo, we find 

- -  f i ~  = L t  V - 1  I n  C - -  
V---~ co 

d d k 
f In [1--exp (--sk 2 p-~2 _ sr)] 

pcb- i<lk l  <Pc 

__ b_ a f d a k In [1--exp ( - - s  i k z p-~ (2~r)------ ~ c - -  si r0] 
O < l k l < p c  

b -d h~ 
4 sl rl 

(52) 
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It may be pointed ou t  that,  unlike the ordinary theory o f  the Bose gas without  a 
symmetry-breaking term (Munster 1969) replacement of  summations by integrations 
offers no problems in the present case since r a cannot be zero so long as the 'external 
field' hi is non-zero (of. equation (50)). 

In d-dimensions 

d d k 
A o (d) f k e-1 dk, (53) 

7r--d/2 
A o (d) = 2 -a+i - -  (54) 

r(dl2) 

Integrating the second and third terms in (52) partially, we get 

- -  3 ~ = L t  I In C -- A(d) In [1--exp ( - - s - - s t ) ]  
V 2 

f b -a h~ 
q.+i dq q_ __ _ _  

q- sA(d) [exp (sq2+sr) - 1] 4 sir i 
b- i  

1 

qe+i dq (55) 
@ b -a s I A(d) f [exp (slq2@sirl)--l] 

0 

where A(d) = 2 pa Ao(d)/d. (56) 

An important  simplification which has no counterpart  in the theory of  a classical 
spin field, and which, as we shall see, leads to scaling property of  the free energy, 
now occurs on account  o f  the irrelevant nature o f  the parameter  s. By choosing b 
sufficiently large, we can make s 1 as small as we like. The last term in (55) can there- 
fore be simplified to the form 

1 
f q~+l dq. (57) b -a A(d) J 

q~-}-r 1 
o 

We may now write the thermodynamic potential as the sum o f  two parts: 

- - 3 ~  = - 3 ~ 1  --3g~2, (58) 

- - /3~  1 = Lt  1 In C - -  __A In ( l - - e x p  (--s--sri))  
V 2 

1 

f qa+i dq + sa  (59) 
b -1 exp (sq2+sr)--i ' 

1 

f qa+l dq h ~ --[~1)~ = b -~  A + ~ .  ( 6 0 )  
(q~-~b2r) 4st 

0 



220 K K S m g h  

The R G  treatments, in general, assume (Wegner 1972, Fisher 1974) that ~ l - - w h i c h  
is the contribution to ~2 from short wavelength modes t k / > Pc b - l - i s  a regular func- 
tion of the scaling variable (e.g. r) which is a measure of  the deviation from criticality. 
The scaling (or singular) behaviour is consequently associated with the long-wave- 
length part of  the thermodynamic potential. An examination of (59) however shows 
that this, in general, is not true. The reason is that, in order to obtain a scaling form 
for ~ ,  we must choose b -1 proportional to r 1/2. It is easy to see that a similar contri- 
bution arises from the last term in (59) from wave-vectors q of  order b -1. This point 
has been emphasized by Ma (1976) in the context of  a classical field. 

In order to separate out the relevant contribution from the integral in (59), we 
write 

b = bl bz,  (61) 

i.e., we regard the R G  transformation with cut-off factor b as the product of two R G  
transformations, one corresponding to a cut-off factor b 1 and the other to a factor b 2. 
Equations (59) and (60) then become 

- -  fl ~ 1  = - - f l ~ l  + b l  d A Y, (62) 

1 
f qa+l dq -r h2 

--/3 D,~ = (01 b2) -a A (03 -k b~ rt) ~ s r '  
0 

(63) 

- -  fl ~ .  = Lt 1.L In C --  A,_,I  n t d ~  [1 --  exp ( - - s  - -  sr)] 
V 2 

1 

f qd+1 dq (64) 
-q- s A (d) [exp (sq~ + sr) - 1 ]  , 

bf a 

1 1 

f qd+ldq f qa+l 
sl [exp (slq 2 -q- s 1 r 1) --  1] q~ +dq,rl 

Y (65) 

b~ "1 b~ a 

r 1 = b~ r, s I = b~ -~ s. (66) 

The second equation in (65) holds on account of  the fact that sl can be made arbit- 
rarily small by choosing b 1 appropriately. 

Very close to the fixed point, r 1 is a small quantity. We choose 

b~ 1 : pr1112, (67) 
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where p is a positive number.  This gives 

P 

f qe+Z dq h 2 - -  3 ~ 2  = A ( d )  r el2 + - - .  
qZ + 1 4sr 

0 

(68) 

The first term on the right hand side of  (64) represents the contribution to the thermo-  
dynamic potential o f  momenta  larger than Pc. It  can be written in the form (cf. 
equation (52)). 

GO 

1 = -- A o (d)pa f dq qa-1 In [1 - -  exp ( -  sq" --sr)], (69) Lt  In C 
V J 

1 

and admits of  an expansion in powers of  r around r = 0. The introduction of  an 
arbitrary cut-off Pc required to define the RG  transformations for a Bose system 
thus has no effect on the singular behaviour of  12. The second and third terms 
on the right hand side o f  (64) are also regular at r =0.  It  follows that the first term 
in (62) is a regular funct ion of  r. As regards Y we note  that by allowing p in (67) 
to be large compared to  1 we can expand the integrand in (65) in powers of rx. We 
then find 

(_; ) 
Y = d - - 2  d - - 4 - -  " '"  

pe-~ pd-a ) (70) 

if d does not  equal an even integer. It  is thus clear that,  besides a regular part,  ~2 z 
contains a term similar to the first term in (68). 

We denote the regular and singular parts of  ~2 by ~2, and ~2s respectively. After  
some algebraic manipulat ion we find 

oo 

_ f l o , = _ 3 ~ 0  - d) s 
exp (sq~)--I 

bi-X 

oO 

exp (sq ~) --  I 
b? x 

h 2 
- -  fl f ~  = K (d)  A (d)  r a/~ + 

4sr 
p 

fq +x q K (d) ----- q~ + 1 - -  
o 

pn-~ pa-4 ) 

d--2 -~ d--4 - -""  

(71) 

bla+~] r 
+'d'------2J +cr~ (72) 

(73) 

(74) 

(75) 

P . - - 4  
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The coetficient c o f  the r ~ term in (72) is a positive number.  The quantity K defined 
by (75) has been written as a function of  d only because p being an arbitrarily intro- 
duced number ,  the thermodynamic potential must  be  independent  ofp .  For  the same 
reason ~2, must  be independent o f  b 1. I t  is easy to check that  the coefficient o f  r in 
(72) is simply 

CO 

s ad ~ qa-X dq 
- -  2 d ( e x p s q ~ - - l ) "  

o 

(76) 

For  2 < d < 4, we can write 

p 
qa-3 ( pa-4 pd-e ... ) 

K ( d ) = f  q 2 + l d q +  - - d _ _ 4 + d _ _ 6  , 
o 

(77) 

and, for 4 < d < 6 

p 

q 2 +  1 dq q- d-~-~6 d.--~----8 + . . . .  (78) 
o 

In  particular, for  d : 3  the series within the parenthesis  in (77) is simply the expan- 
sion of  arc tan (p- l )  for  p > 1. Thus 

• r (79) K (d = 3) = arc tan p + arc tan p-1 = - .  
2 

4. Critical behaviour at fixed density 

The variables which have appeared in the theory so far  are h and  r. I t  is conventional  
as well as convenient  f rom the experimental poin t  o f  view, to present results con- 
cerning critical behaviour  in terms of  the temperature  deviation 

t = (T--Tc)/T c. (80) 

Since (--[2)  equals the pressure P exerted by the system, we can use (71) to (74) to 
determine r as a function of  h, t and P. Alternatively, we can express r as a function 
of  h, t and  the particle density n by using the relation 

o a  o (81) n ~ ~ 

0 I • 0 (sr) 

In  this section we discuss critical behaviour o f  the ideal Bose gas at  constant  n. The  
case of  constant  P will be  considered in § 5. 
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On differentiating (71) with respect to r, we get 

n =fo(/3) --A(/~) r(a/~-l)+A(~)h" _ 2_Cr, (82) 
r s 

Go 

A a  f qa-1 aq fo( ) = T a (83) 
o 

f~(fl) = Kad/2s,  (84) 

f~(~) = 1/4s. (85) 

For  a given density n, the critical temperature T~ (n) is determined by the fixed point 
condition (41). Although (82) holds only when h and r are non-zero, the result 
corresponding to the fixed point can 
allowing r ~ 0. Thus 

n -----fo(fl,), 

[3 ~ = (K  B Tc) -1. 

be obtained by first letting h-+ 0 and then 

(86) 

(87) 

It may be pointed out that (86) holds for d >  2 only; for d <~ 2, (82) gives the 
unphysical result n = oo at the fixed point for any non-zero temperature. 

The functions fo, f~, fz can be expanded in powers of  (T--Tc).  Close to the critical 
point, one gets the following equation for determining r in terms of  t and h: 

h g 
t = clr(n/2)-I - -  c z ~  + car, ( 8 8 )  

K A d  
c1 - -  2-s--w-w ' ( 8 9 )  

2 c  
c~ = 1/4sZw, c a = - - ,  (90) 

S W  

w ----- - - /3of  o (/3c). (91) 

Note that the coefficients c 1, %, c z are all positive. Equation (88) cannot be solved 
explicitly for r. We can, however, obtain formal solutions by rewriting it in a 
scaled form. For  2 < d < 4, the last term in (88) can be ignored. Introducing 
the variable 

X = r [ t  [-2/(a-~) (92 )  

the equation takes the form 

x 2 - -  CxX d+2/~ = - -  c~ ( h / I t  [A)L ( 9 3 )  
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where E denotes the signature of t and 

d + 2  
A = 2(d --  2 - - ~ - ~ "  

Let f ~  (h /[ t  I A) denote the positive root of (93). Then 

r = I t  i~/(d-~'/~ (h / I t [A) .  

The asymptotic forms off~ can be obtained from (93). 

f, (y) ---> 
y->O 

We find 

( V ' c 2 Y - - ½ c z c ~ / i y  a/2 + . . . ) ,  e = - -  1, 

( ~z Y ~ + " ' )  ' ¢ = 1 "  
C~- 21(d--2) 2c  c 2/(d-2) 

+ d - - 2  

'> (a(d)y  4/(e+2) [1 + eb(d)y  -(~a-a)/a+z + ...]), 
y-+OO 

a(d )  -= (c,./cl) 21~a+2), 

2 (C_.~l(2-d)l(2+d) 
b(d) = y - ~  w l l  

For d > 4 ,  the first term on the right hand side of  (88) may be ignored. 
can then be written in the form 

¢ x ~ - -  c a x  s = - -  c z ( h / I  t ~ 8,'~)~, 

x = r / I q .  

Denoting by g~ (hi  [ t l */2) the positive root of (101), 

r = It I g,  Olltl~,~). 

The asymptotic forms of g are 

( V ' c e y  - -  ½c~qy  ~ + . . . .  ), • = - -  1, 
g,(y) > 

y-->O 
(c~ 1 + c : 3 y  ~ + . . . .  ), • = + 1, 

g , ( y )  ~ ~ y3/e @ . . . .  

y.-+ oo C 3 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

(I00) 

The equation 

(1ol) 

(lO2) 

(103) 

004) 

(105) 

(106) 
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The free energy f per unit volume is given by 

- - f i r  = - -  f l ~  + nsr = - -  r e __0 ([3fi/r).  
Or 

(lo7) 

On substituting for £~ from (71), we find 

h 2 
[3f = [312 o + KA d - 2  r n/2 - -  ~ +  cr ~. 

2 2sr 
(108) 

The variable r can be eliminated in favour of t and h by using (95) and (103). The 
result is 

d 

flf = ,8120 + ]tld--2F~ (h/ltla), 2 < d < 4, (109) 

F ( y ) = K A d - - 2  d/Z Ye 
2 f"  (y) 2sf , (y) '  (110) 

fly = / 3 a o  + It[ ~ G,(h/lt]3/~), d > 4, (111) 

G, (y) = c g~ (y) yZ (112) 
2s g, (y) 

The forms (109) and (111) for the free energy conform to the homogeneity hypo- 
thesis proposed by Widom (1965). In particular for d >  4, the exponents of t in (111) 
agree with the values given by Landau's theory of continuous phase transitions 
(Landau 1937). To see this in a more transparent fashion, we write the free energy 
in terms of the order parameter M rather than the field h. 

Equations (11) and (71) imply 

M = h/2sr. (I 13) 

Substitution for h in (88) and (108) yields 

t + 4 c s s  ~ M  s = c  zr  d - ~ / ~ + c  3r, (114) 

fl g ( M ,  T) = fl ~o + K A ( ~ - ~ ) r d / *  q - crz, (i 15) 

where the Gibbs function g (M, T) is defined by 

f ig  (M, T) = f l f  + hM. (116) 
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For d >  4, (114) and (115) give 

f ig : fl f~o + ao t2 + a2 t M s + a4 M ~ (117) 

s z w 2 s 2 w s 2 (118) 
ao-  4c'  as=-~e, a4--4c. 

The form (117) for the free energy is identical with that postulated in Landau's 
theory. The critical behaviour of  the Bose gas with dimensionality larger than 4 is 
consequently identical with that predicted by the Landau theory. We shall not dis- 
cuss this case any further. 

For  2 < d < 4, the Gibbs potential (115) takes the form 

- - 2  (t  + 4c_~ s2 M~) ~/(d-2, (119) 
fl g = fl l2o + KA d 2 cl " . 

The equation of  state is given by 

h = 0___(fl g). (120) 
~M0 

On differentiating (119) with respect to M and substituting for e 1 and c2 from (89) 
and (90), the equation of state can be written in the Griffiths form (Griffiths 1967) 

(h/M ~) = ¢ (tlM1/[~). (121) 

1)2/1d--2) 
where ~b (x) ----- (2s)a/(a-2) ~-K-Ad] ( w ~2/(a-z) ( x + - (122) 

and the critical exponents b and/3 are given by 

3 _ d + 2  a (123) 
d - - 2 '  f l = ~ "  

Since w is a positive number, we see that M can be finite for h ~ 0 provided 
t < 0; for t > 0, M-~  0 as h-+ 0. The order parameter in zero external field 

thus exists only for T < To, and is proportional to (T c --  T) t3. 
The susceptibility X can be easily calculated from (121). One finds that for h -~ 0, 

X diverges proportional to h -(4-n)/~ for t < 0, while for t > 0 

X = c +  t-z" (124) 

~, = 2/(d--2) (125) 

C+ : (2S) -a/(a-~) ( W ]-~/(a-~) (126) \k--~/ 
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We next determine the behaviour of entropy and specific heat near the critical 
point. The entropy per unit volume S can be calculated from the formula 

( S / k B )  = - - [ 3 f - - ( 1  + t)  ~t  (flf)" (127) 

The specific heat per unit volume Cv, is given by 

o (s/%). (cd%) = (l+t)  b-/ (128) 

To calculate S and C v in the limit h -+ 0, we need expansion of  the function F E (y) 

defined by (110) for y -+ 0. Use of the asymptotic forms (96) and (97) yields 

F+(y)  - .  AI + A2y2 + O (y~). 
y - ~  O 

(129) 

F_ (y) > B I y + Ba ya/~ + O (y~-l), 
y - + 0  

(130) 

[3f+ = fl K2 o -I- A 1 t 2 - e  -~- A 2 t 2 - a - 2 a  h ~ + 0 (ha), (131) 

[3f _ =[3  f l  O -Jff B l  l t l 2 - a - A h -~- ~g hd/2 I t l ( 2--a-- -~-- )' (132) 

A x = K A d  - -  2 [ 2sw ~a/<a-z) 
2 ~ - - d /  ' (133) 

Az = __ ½ (2s)_am_~) [ w ]-~/<a-a) (134) 

B1 = - - w  1/~, (135) 

B9 = - -  KA/4s2w,  (136) 

d- -4  
a = - -  (137) 

d--2" 

From (131) and (132), we find 

S+ _ S ,  _ (2--a) A 1 t 1-a + O (ha), (138) 
% % 

S_ _ S~ ~_ Bx h I t ]l-~-a + O (h n/z) (139) 
% % 

S ,  _ [3 f l  o - -  ( l + t ) O ( f l  ~2o). (140) 
% 
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S+ and S_ denote entropy for t > 0 and t < 0 respectively; Sr denotes the regular 
part of the entropy. The specific heat in zero field is given by 

C__.~v = C .  t < 0, (141) 
k B 

Cr 2 A i d  . . . .  t -a, t > O, (142) 
(d--2) ~ 

where Cr denotes the regular part of the specific heat. For d=3,  a = - - l .  In this 
case the specific heat has no singularity at T~. For other values of d, one of the deri- 
vatives of Co becomes singular at To. 

In addition to the critical exponents fl, ~, y and a, two other exponents ~ and $ 
connected with the entropy are defined by the following relations (Gunton and Buck- 
ingham 1968) 

( S c - - S )  oC MI+~, T =  To, (143) 

( T - - T c )  oc M ~, S = So, (1-~) 

Sc denoting the value of the entropy at the critical point. These exponents cannot be 
calculated from the expansions (138) and (139) which are valid for (hi[ t [a)_+ 0. 
The easiest way to determine them is to use the formula 

S --= - -  0 g  ( M ,  T ) ,  ( 1 4 5 )  

O T  

in conjunction with the expression (119) for the Gibbs potential. One finds 

S _ Sr _ K A d  ( t%-4  c 2 s 2 MS)Z/. (d--g) (146) 

k B k B 2 c x c I 

which implies 

1%-~ 4 ^ - -  - -  - -  a .  ( 1 4 7 )  
d--2 

5 .  C r i t i c a l  b e h a v i o u r  a t  c o n s t a n t  p r e s s u r e  

According to equations (71) to (74), the pressure exerted by the system is given by 

h ~ 
[3 P = - -  [3 ~2 o - -  S fo  ([3) r + cr 2 %- K A r  d/2 -t- 4--ssr; (148) 
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with f0 (/3) defined by (83). For a given P, the critical temperature T~ (P) is defined 
by the fixed point condition r -+ 0, h ~ 0. Equation (148) implies 

P = -- ao (tic)- (149) 

Close to the critical point, one can write (148) in the form 

h a 
fl uo t ---- s f o  (fl) r - - - -  - -  K A r  a/~ - -  c r  2, 

4 sr  
(15o) 

uo =/3~ \--~-F/t~ > O. 

Ignoring terms of order r d/~ and r 2 in (150) and solving for r, we find 

r = tx + (t~÷h~) I/~, 

t~ = fl ~o t/(Z~ fo  (t~)), 

Equations (113) and (152) yield the equation of state 

(151) 

(152) 

(153) 

(154) 

where 

M =f~/2(fl) 2 a/~ , (155) 
(a -q-l) --FE 

a = h i ~ I t 1 ] ,  (156) 

and e, as before, denotes the signature of t. For t<0 ,  as h-~0, M~oo. Since M z 
represents the density of condensed particles, we conclude that temperatures less 
than Tc (p) colrespond to unphysical states of the system. 

For t and h both approaching zero, the value of M depends upon the limiting value 
of  the ratio a, and can have any value between zero and infinity. This result is not an 
artefact of having introduced a symmetry-breaking term in the hamiltonian. If  one 
discusses the theory of  the ideal Bose gas (without a symmetry breaking term) in 
terms of the variables P and T, one finds that in the thermodynamic limit V~oo, 
the density of zero-momentum particles on the critical line / ~ 0  depends on the 
manner/z approaches zero, and can have any value. 

For t > 0  and h->O 

M : hfo (fl) / 2fl  Uo t 

The susceptibility exponent ~, thus equals 1. If h #0  but t~0, M ~ [ f  o (tic)]½. 
critical exponent ~ consequently cannot be defined in this case. 

The entropy per particle S is given by 

P ,  v m v 

(157) 

The 

(158) 
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For h->0, (152) gives r : 2 t  1. 
terms on the right-hand side of(150), we get 

Substituting this value for r in the third and fourth 

r = 2t 1 H- KA (2tl)a/z -b 4ct~. 
sfo(fl) Sfo(fl) 

It follows that for 2 < d < 4 ,  the singular part of  S is proportional to t ta-~)/2. 
specific heat at constant pressure therefore diverges proportional to t -a with 

(159) 

The 

4 - -d  
a - -  (160) 

2 

6. Scal ing of  correlation function 

In this section we wish to consider two points: (i) the relationship between suscepti- 
bility and the correlation function of the order-parameter, and (ii) the behaviour of  
the correlation function near the critical point. 

For  a classical system, the susceptibility is proportional to the zero wave-vector 
Fourier component of  the correlation function (see e.g., Ma 1976). For a quantum 
system the relationship, as we shall see, is not  that  simple. Moreover, since one can 
define more than one susceptibilities for the Bose gas (depending upon whether pres- 
sure or density or some other variable is held fixed) it needs to be made explicit as to 
which susceptibility is directly connected with the correlation function. 

The order-parameter M by definition is 

[ ( %  at° ~] /Trexp ( - -Ho) ,  M = ½ Tr exp (--H0) ~--~-{- v 'VI  (161) 

where H o is given by (7). On allowing the external field h to increase by an amount  
8h, H 0 changes by 

a H  o = - -  ½ V ~/2 (ao-l-ato) ah. (162) 

On using the expansion (Abrikosov et al 1963) 

exp (--Ho--aH o) = exp (--Ho) --exp (--Ho) 

One obtains 

1 

f dr  exp (rH0) aH o exp (--THo) -]- . . .  
0 

(163) 

1 

o 

(A o (-r) A o (0)> dr --M~V, (1~)  

where a 0 if) = exp (zH0) ½ (ao-Fato) exp (--  rHo), (165) 
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is the imaginary-time Heisenberg operator associated with the k = 0  component of  
the order-parameter and ( > denotes thermodynamic average. Equation (164) 
shows that the susceptibility at constant chemical potential and temperature is given 
by the integral of the imaginary time correlation function of the zero wave-vector 
components of the order-parameter fluctuations. The result, though derived in the 
context of the Bose gas, is of general validity for quantum systems. 

The ordinary (time-independent) correlation function of  the order-parameter 
fluctuations is defined as 

F ( x l _ x z ) _ -  ( ( ~  (xl)q-2 ~ t ( X ) - - M ) ( ~ ( x 2 ) - k ~ b t ( x z ) - - M ) > 2  (166) 

This can be written as a Fourier series, viz. 

1 X r (Xl--X~) ---- ~. F (k) exp [, k (x 1-x2)], 

k 

(167) 

r ( k )  = A_,) -8 ,o VM , (168) 

Ak = ½ (ak + at_k). (169) 

F(k) for k = 0  is not the same as the expression (164) for the susceptibility. To bring 
out the connection between F(k) and the right hand side of (164), we define the 
imaginary time Green's function 

G(k, v) = - -  ( T  A k (r) A_ ,  (0)~, (170) 

where -- 1 < r < 1, A k (r) is defined in the same was as A0(~- ), and T denotes the 
time-ordering operator which orders earlier times to the right. Invariance of  trace 
under a cyclic permutation implies 

G(k, ~- < O) = G(k, 1 q- r). (171) 

The function G(k ,  ~-) can be expanded as a Fourier series in the interval 
- -  1 < T < 1. Using (171), one gets 

G(k, ~-) = ~ e x p  (--  .o.  ~-) G(k, oJ.), (172) 
n 

1 

G(k, ~o.) = f dr exp (.o. z) G(k, .c), 
o 

(173) 

where oJ. = 27rn, n ranging over the set of integers. Equation (164) can now be 
rewritten as 

(OM/i)h)¢, T -~ - -  G(k = O, oo,, ---- O) - -  M~V, (174) 
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while r (k)  takes the form 

F ( k )  = - -  G(k ,  ¢o,, = O) - -  ~ko M 2 V  - -  ~ exp (--~¢o.3) G(k ,  to,), (175) 
nv~0 

where 3 -+ + 0. It is evident that the co. = 0 component of  r ( k  ----- 0) equals the 
susceptibility at constant tz and T. 

The Green function G(k,  -r) can be expressed in terms of  the elementary Green's 
functions of  ak and a~, viz. 

/ x  v 

G(k,  ~-) = ¼ [fg(k, 7) -k ~?(-- k, --7) -5 (q(k, 7) + ~(k, 7)], (176) 

fq(k, .r) = - -  (Ta~  (~-) a~ (0)), (177) 

" k  = --  (q( , 7) (Tak  (-r) a-k (0)), (178) 

v A 

(Y(k, .r) = - -  ( T a ! ~  (7) a t (0)) = (~*(k, 7). (179) 

The elementary Green functions can be expressed as Fourier series similar to (172). 
As a consequence, one finds 

, , x  A 

G(k,  %) = 1 [(~(k, ~o.) -}- ~ ( - - k ,  --oJ.) -{- ~?(k, ton) + (~* (k , -  o~.)] (180) 

A 

The simplest way to calculate ~, ~ is to solve the equation of  motion of ak(7), viz. 

dak/d7 = --  [ak, Ha], (181) 

One finds 

hVl /2  [1 - - exp  ( - -  EkT)] 3k,o, ak(-r) = exp ( - -  ~kT) ak(0) + 2,-----~--- 

~k = s (k~p~ 2 + r). 

(182) 

(183) 

On substituting for ak(7) in (177), (178), and making use of  the boundary condition 
(171) which is satisfied by all the Green functions, we obtain 

fq(k, o~.) = 1 h z V "  ° (184) 
" - -  -- ~ 20k~o O¢'On~O~ 

tO~ n - -  E k ~ E  k 

^ h s Vcsk, ° ~oj.,o, (185) cg(k, % ) =  -- 4E~ 

Ek/2 h ~ V .  
- -  9 - -  ~ . ~  6 k , o  ~Wn,o"  G (k, w. )  ('con) z _ %" 4"0 

(186) 
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The expression (175) for F(k )  now takes the form 

_ 1 ~ ~k/2 exp (--Le% ~). 
r (k )  2 ~  (,.,~)~ - .~ 

~ o  n 
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(187) 

As lkl and r-~ 0, eke0 .  Thus close to the critical point and for small I k l, the 
dominant part of the correlation function is represented by its co, = 0 Fourier 
component which equals the susceptibility at constant/z. The classical relationship 
between susceptibility and correlation function is thus seen to be valid at long 
wavelengths for a Bose system close to its critical point. The result is believed to 
hold for quantum systems in general. 

Denoting the dominant part of I'(k) by p(c)(k) 

1 
r (  c, (k) = 2s(k~p~ -~ + r)" (188) 

The scaling properties of FtC)(k) at fixed density are 

1 i_2/(a_~, f ~ l  (h/i r co) (k) , - I  t tla), (189) 
k ~ 0  2s 

I ~c~ (k, t = O, h = O) = p~/2sk z, (190) 

wheref~ is given by (96) to (98). 
Let us see how these properties follow from the renormalisation group argument. 

For k # 0 

I ' (k)  = ~ [(at, ak t )  q- (at_ka_~)]. (191) 

It is therefore sufficient to consider the scaling property of  

g (k, r, s) = (a~ t as) (192) 

If  I k [ < Pc ~-1, we can carry out a partial trace as in § 1 over momenta p lying in 
the interval Pc ~-x < ]p [ < Pc and write 

g (q, r, s) = Tr [e-H~ a*q a~]/Tr e-Hx, (193) 

where H x is given by (19). On rescaling momenta according to (20) and defining bq's 
according to (25), we obtain 

g (q, r, s) = g  (~ q, r~, s~), ~ Iq[ <pc, (194) 

where r 1 and s 1 are given by the recurrence relations (23) and (30) respectively. 
As the R G  transformation is repeated, sz-~0. To infer the scaling properties of  g 

it is necessary to ascertain the dependence of the fight hand side of  (194) on s 1 since g 
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need not be a regular function of s i at s i=0 .  This introduces an element of comple- 
xity in the theory of a quantum system which is absent in the classical case. The 
problem, however, is not insurmountable since what is required is the dependence of 
g on s 1 near s~ =0. In the present case of the ideal Bose gas, the problem is trivial 
since g can be easily known. One finds that for Sl->O, g is proportional to s -x 
(cf. (188)) so that 

g (~ q, si, ri) = s ~ i f ( ~  q, ri). (195) 

In the general case of an interacting system, the problem can be solved by examining 
the perturbation expansion of the quantity concerned (Singh 1976). 

Combining (194) and (195) we get 

g (q, r, s) = s - i  ~ f ( [ q ,  ~ r). (196) 

Choosing [- i  equal to [q ] p~-i 

g (q, r, s) = s - i  p~ I ql-~f(p,, p~ [q [-~ r). (197) 

A critical exponent V is associated with the correlation function by requiring that at 
the critical point, g be proportional to]q ]-~+v. It is evident that provided f ( p c ,  O) 
exists, ~7 for the Bose gas is zero. Also, in order that the susceptibility for r # 0  may 
be finite 

A 
f (Pc, x) -~ - ,  (198) 

X .--> oo X 

where A is a constant. The critical behaviour of the susceptibility found in § § 4 and 5 
can be obtained from (197) and (198). 

Finally, we consider the correlation length defined customarily in terms of the 
behaviour of  the correlation function r (xi--x2) for large [ x i - - x  ~ [. I f  

F (x) oc exp (--I x l/~), (199) 
Ixl~oo 

then ¢ is defined to be the correlation length. Wilson and Kogut (1974) pointed out 
that for practical purposes it is more convenient to define ¢ in terms of  the singu- 
larity of l-'(q) for small q. If the leading singularity of  l"(q) is at q2 = _q~, then 

= qo ~. The location of  this singularity is determined by comparing the derivative 
o r / o q  ~ with F (q) itself for q->0. Thus 

~ oc - O_ln r (q) [ (200) 
Oq ~ [ q = 0 

Choosing [=r  -1/~ in (196) and noting that g is a function of  lq [ only, one finds 

r - 1  
g (q, r, s) = - -  f ( q z  r-i ,  1). (201) 

$ 
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The definition (200) gives 

off. r -lIe. 

At a fixed density, r is given by (95). For T >  Tc and h-->0 

oc t-% 

v = 1/(d--2). 

For T < Tc, ~-+ oo as h-+0. 
on h as T--> To. The result is 

( T  ~--- To) oc h -zlCa+2} 
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(2o2) 

(2O3) 

(204) 

Using (98), we can also determine the dependence of 

(205) 

7. Concluding remarks 

The work in the preceding sections demonstrates how ideas of the renormalisation 
group can be used to discuss critical behaviour by starting with the description of a 
system at a microscopic level in terms of a quantum mechanical hamiltonian. Re- 
scaling of field amplitudes has been avoided by introducing a scaling variable s 
(Equation (30)). The scaling behaviour of various physical quantities in such a scheme 
emerges as a consequence of the irrelevant nature of s. Recalling the definition (9) 
of s, we may conclude that a Bose system near its critical point is properly described 
by a fictitious hamiltonian which contains only momenta vanishingly small in com- 
parison with the thermal momentum (m k B T) 1/~. The conclusion appears to be of 

general validity although it is difficult to establish it satisfactorily when interactions 
among the particles are present (Singh 1975). 

An interesting point about the renormalisation-group transformation constructed 
for the Bose system is that while the parameter-transformation (36) to (38) has a fixed 
point, the fixed-point hamiltonian H* vanishes on account of s* being zero. Bell and 
Wilson (1974) remarked that the renormalisation-group transformation must have a 
non-trivial fixed-point hamiltonian in order that it may be useful for obtaining 
critical exponents. The transformation studied in this paper shows that the existence 
of a non-trivial fixed-point hamiltonian is not essential. Even when one is right at 
the critical point (r=0, h-----0), one can calculate the quantities of interest by taking s 
arbitrarily close to, though not equal to, zero. 

Finally, it is of interest to note that there is a correspondence between the critical 
exponents of the ideal Bose gas at a fixed density and the spherical model of ferro- 
magnetism introduced by Berlin and Kac (1952). It turns out (Gunton and Buck- 
ingham 1968) that in the transition region, the logarithm of the partition function 
for the spherical model has exactly the same form as the logarithm of the partition 
function of the ideal Bose gas. As a result, the thermodynamic properties of the 
two models are the same in the transition region. 
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