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Abstract. For each of a couple of two-dimensional forms for quark mass matrix, it 
is discussed how that form may be realised in a certain gauge scheme (one of them in 
the standard model and the other in a scheme based on simple rank two times U(1)) 
by imposing suitable discrete symmetries and how under a certain small angle approxi- 
mation that form may be regarded as the simplest member of a family of higher 
dimensionality forms. 
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1. Introduction 

In the following, some discrete symmetries are imposed in elementary gauge schemes 
based on SU(2) (simple rank two) times U(1) as gauge group having four quarks 
(four ordinary plus four superheavy quarks, their intermixing being forbidden). 
This allows realisation of  two specific forms for quark mass matrix, one in the former 
case and the other in the latter. The ucds mass matrix being a direct sum of  two 
2 × 2 matrices is therefore collectively referred to as a 2 x 2 form in the following. 
The 2 × 2 form realised in the former (latter) case relates Cabibbo angle 0 c to the 
quark mass ratio m,,/m, as 

m~ ~ ~ " 

These forms thus endowed with some physical significance are also observed to have 
the following property of  some mathematical interest, independently of  any further 
gauge model considerations. In analogy with a 2 x 2 form for mixing between two 
negatively (and also two positively) charged fermions, one may also envision an n x n 
form for mixing between n negatively (as well as n positively) charged fermions. With 
a specific n x n form it is found that for arbitrary n under a suitable approximation 
for 2n fermion masses m~, m~:, . . . .  , m~ (which are diagonal entries resulting on 
biunitary diagonalisation of  the n × n form) there are to leading order of  approxima- 
tion n-1 Cabibbo-like angles related to fermion mass ratios as, 

81 ,~ ~ ; 81 ,-~ mi-+l, 
m 2 m~" 

- (m+lm+)  ; oi , - ,  -(m+/m++t)~/z], 
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for 2 ~< i ~< n--1. This result suggests that these specific higher-dimensionality forms 
may be regarded as different-sized members (obtained when n assumes values 2, 3, 4, 
etc.) of a common family. The family for which the former (latter) result holds 
includes as its first member (i.e. n =  2) the 2 x 2 form implying 0c ~ (md/m,) [0c:  
(md/m~) 1/2 or more precisely, 0c ~(md/ms)tm--(mu/m~)ll 2] and for the validity of 
this result the fermion mass approximation required in the two cases is different. 
To sum up, the focus of attention here is a pair of 2 x 2 forms that may each be 
rea lised in a certain gauge scheme and in the sense outlined above may each also 
be generalised to an n x n form. 

The scheme based on SU(2) x U(1) is the well-known standard model (Weinberg 
1967; Salam 1968; Glashow et al 1970) with four quarks. The derivation of the 2x  2 
form in this case (see § 2"1) adds little to the spirit of original derivation of Pakvasa 
and Sugawara (1978) who were also incidentally led to the same result for 0c, i.e. 
O~ ,~ ma/m,. Since the form realised in § 2.1 is different from what they derived (e.g., 
whereas their form constrains m~ to vanish, in the following case a small nonvanish- 
ing value for m, may be consistently allowed), elucidation of some of the mathematical 
details becomes essential. The permutation group found useful in this context is 
discussed in group-theory text-books. The other scheme considered in § 2.2 has 
0(5) as the simple rank two group (Soni 1979). In this case, details of derivation 
are omitted for the reason that 0(5)x U(1) effectively reduces to the left-right sym- 
metric gauge group for which Fritzsch (1977) (see also Wilczek and Zee 1977) derived 
an identical form modulo some irrelevant phase factors. In addition to these papers 
of Fritzsch and others, literature on the subject has grown rapidly in the past two 
years. The interested reader may consult the references given in the talk by Illio- 
poulos (1979). Finally, § 3 is a discussion of diagonalisation of the two n x n forms. 

2. Realisation of the 2 x 2 forms 

The following is a derivation of the pair o f  2 x 2  forms. On setting the essential 
notation they are treated separately, the standard model form in § 2.1 and the 0(5) 
x U(1) form in §2.2. The negative results summarised in §2.1a originally found by 
Gatto and others (for many relevant references, see IUiopoulos 1979) prove instructive 
for the partially successful attempt at derivation of the 2 x 2  form given in § 2.lb. 
Grouping quarks of given charge (subscript 4- for positively and negatively charged) 
into a column vector, the quark mass term may be written as, 

¢-Dllla$$ 
~quark = Q+LM+Q+R + Q-LM-Q-R q- b.c. (1) 

and on diagonalisation as, 

m a s s  
"~'quark = q+Lm +q+R -t- ~l_Lm_q_R q- h.c. (2) 

m, are diagonal matrices with quark masses as their entries. Quark states in Q±L(~) 
are mixtures of corresponding diagonal states in q+L(R), i.e. 

Q-t-L(•) = V-t-L(R) q=t=L(R)' (3) 
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where V+L(R ) is a unitary matrix. The mass matrix M+ ~ M_ is diagonalised as, 

V(_~M, V+ R = m,.  (4) 

This biunitary transformation is equivalent to the following pair of unitary trans- 
formations, 

V~:tLM±M+~ V±L=m~, 

- 1  + _ _  2 V=t=RM ~ M± V~R -- m ±. 

The left-handed charged-current matric¢ defined through 

Q.+LQ-L - -  - c c  = q+L U q-L is given by, 

U cc = V:LV_L. 

(5) 

(6) 

(The superscript on 17+/. stands for hermitian disjoint). 

For the well-known 2 × 2 ease, this matrix is an orthogonal matrix parametrised by 
Cabibbo angle 0c equal to the difference of mixing angles in the left-handed negatively 
and positively charged quark sectors. 

2.1 The standard model form 

In the standard model, the left-handed and right-handed gauge multiplets, 
isodoublets and isosinglets respectively, may be grouped into three column vectors 
¢'L, ¢~ (see eq. (8)) so that the most general gauge invariant Yukawa interaction 

i odoob.o, o (;°)  ow , on 

~Yuk = ~L r+ # ¢'R + ~L F- #c ~R + h.c. (7) 

Here ~)c is the charge conjugate of • and, 

eL = ((6 Z3) L, (~ g)D, 

~? = C.  S .  (8) 

F ± is a 2 × 2 matrix with the arbitrary Yukawa coupling constants as entries, e.g., 
_ _  (;o) 

the first term in (7) is F~l (U D) L U R. Denoting the vacuum expectation value 

(vev) of po as (po), the mass-matrix is (F+~  r - ) (po ) .  In the ease of a number 
of similar higgs is0doublets, 

¢,  ($o~, i=1, 2, etc. 

equation (7) is correspondingly a sum of similar terms, one for each Higgs isodoublet. 



574 S K Soni 

2.1a Summary o f  negative results. To begin with, consider a single Higgs. Let it 
be multiplied by an arbitrary phase factor simultaneously with multiplication of 
SL' ~ by arbitrary 2 × 2 unitary matrices denoted (upto overall phase factors) by 
S L, S~ each with unit determinant. Under this arbitrary discrete transformation, the 
gauge boson interaction with fermions remains invariant because for any gauge 
boson (suppressing weak isospin indices) this interaction is simply of form, 

2 

A , , ,  + A+ + 
i = l  

where the appropriate 2 × 2 matrices A, A ± act in weak isospin space. Under this 
transformation, the Yukawa coupling matrix becomes 

s, .  r +  (s1 )-I,SL r -  

In arriving at this expression the overall phases multiplying S L, S~ are adjusted to 
absorb the phase factors with which ~ and ** are multiplied. For invariance of 
Yukawa couplings, 

s L r • = r* .  

For a nontrivial solution (i.e. F ± does not vanish identically), S~ is related to S L by 
a similarity transformation. S L may be parametrised as 

cos a exp (i~tl) sin ~ exp (i~t~) ~, 

i 
--sin a exp (--i,/1,) cos ~ exp (--i~lt)]  

considering separately the following three ranges for values of parameters 

(i) a=0,  0 < ~11 < ,r 

(ii) ---~2 < a < + 2 ( a # 0 ) '  0 < ~ l t < T r ,  0 < ~ t ~ < , r  

(iii) a = 4- ~, 0 < ~1~ < ~" 

The resulting nontrivial solution for I '± correspondingly implies constraints on form 
of mass matrix and hence on 0 c. For case (i) ((iii)), 0c equals 0 (90 °) and for case (ii) 
0, is indeterminate (i.e. not expressible as a mass-ratio and may lie anywhere between 
0 and 90°). Equivalently, in place of requiring invariance of Yukawa coupling 
matrix under arbitrary discrete transformations on gL, gR as done above, the same 
result (i.e. Cabibbo mixing is absent, indeterminate or maximal) follows with the 
requirement that Yukawa interaction transforms as identity representation of any 
discrete group under which ~kL, ~ transform as its two-dimensional representations. 

The two Higgs case that is now considered proves instructive for the final attempt 
with three Higgs discussed in § 2.lb. In this case, I-Iiggs potential V(Ot, @~) is an 
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arbitrary superposition of bilinears 0 + ¢~ (i, j = l ,  2) and biquadratic terms like 
(0 + ¢~), (0 +. 0,) (k,/, m, n = 1, 2). Its form is constrained by requiring invariance 
under following pair of discrete transformations (i) interchange of labels 1 and 2, 
¢~ <-~ ¢~ (ii) multiplication of ¢1 and ¢ ,  by arbitrary phase factors, 

O1 ~ exp (i,1) O1 and Cz ~ exp (--i~7) ¢~, 

where ~ can have any value between 0 and zr. Since the invariant form for potential 
does not depend on the precise value of ~, this suggests the following. 0~ and 0~ 
may be regarded as top and bottom members of the two-dimensional irreducible 
representation, 

(oxp,  i,n, 0 
a = 0 exp (--2rri/n) ' b = , 

of the nonabelian discrete group which is semi-direct product of the n-element cyclic 
group C,=(e, a, a ~, . . . . ,  a"-l); a"=e and the reflection group P : ( e ,  b); b2=e. Here 
n ~> 3 and, by definition, bg b -1 =g-1 for each element g of C,. The action of b is the 
transformation (i) above and that o f g ( # e )  is the one labelled (ii) above with a specific 
value of ~7, e.g. '7:2~r/n for action of a. Hence invariance under this group also 
results in a form for potential identical to that obtained above. Having seen this 
equivalence, the latter viewpoint is adopted henceforth. Without loss of generality 
n may be assumed equal to 3. The nonabelian group for this special choice of n 
is the familiar permutation group S s which is also the simplest nonabelian group. 
Having decided how Ox and 0~. transform under Sz from invariance considerations 
of Higgs potential, a variety of Ss-invariant forms for Higgs-fermion Yukawa 
interaction are permissible depending on representation content of 

under S 8. Each of these two-component objects may transform according to a repre- 
sentation that is equivalent to ! -m~ ~ F m, I ~cl) ~ F (2) or I 'cs~. In the following, 
' ,~'  stands for ' transforms according to '  and F u~, 1 ~2~ and 1 ~s> are the identity, 
signature and two-dimensional (here, a is diagonal) irreducible representations of S s. 
To give a simple illustration, when 

the Ss-invariant Yukawa interaction is of form, 

a + 0 2 

- ~ 
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where a t, 13 ± are the only nonvanishing Yukawa couplings. The resulting quark 
mass matrices involve ( 9~ ° ) and ( po ,~. As a consequence of the constrained form • ' '¢  . 
for potential, the extremum conditions on it (i.e. 0 V/O¢IIt = 0 V/0O + = 0, = 1, 2) are 
such that for consistency they require I ( p o ) ]  = [ (p0)I" Using this result, it is 
found that irrespective of how ~bL, ~b~ are chosen to transform under S z diagonalisa- 
tion of M± M + implies 0 c is zero, indeterminate or maximal. In the following three 
Higgs case, ®1, ~ ,  and O8 have definite transformation properties under S 3 with 
which invariance considerations of Higgs potential allow vev of only two of the three 
neutral fields to be independent• 

2.1b Partially successful attempt. Let 

(®,) ~ r  ,~ , {ll 1 ~ r " ,  a n d  03 

As in the previous case of two Higgs, an invariant form for Higgs potential is con- 
structed. The following form is invariant under the two-element subgroup (e, b) 
of S 3. 

V ( ~ l  ~2 {1}8) ---~ V| (11) 1 I]~ll ~3) "+ VII (1111 09. 03) 

V I = a ( ~  + '1) '  + b~b + ~ + c (($+ ~b,) 2 +(~b + ,n) 2] 

+ d(~ b] 4'.) (~+ 4'3) + e (4,2 + 4'.) (4 '+ 4',) + f  [~+ 4'2 

-6 4, + 4,.] + g 4 ,+ 4,~ (4 '+ 4,~ + 4 ,+ 3 ~3) -~- h [(~+ ~1)((~+ ~2) 

+ + ) + (4, ~ 4,,) (~ ;  4,~)] + ~ [(4 ,+ 4,,) (4, + ,~) - (~,+ 4,,) (4,~ ,/,, ] + b.c. 

+4, VII = j [~b~ ~3 -~- ~+3 ~b,] + k ~b~- (~, --  ~3) -~- t ff~- ffa [ff+ ~3 + ~n ,] 

(,~, 4,~ -4 ,1  4,.) + .  [(4, + 4.,) (4 ,+ ,/,.) - (4 ,+ 4,~) (./,+ 4,,)] + m ~ ~b 1 + + 

+ ( + + + + o [(4,~ 4.~) 4,~ 4,3) - (4 ,+ 4.~) (,~ 4,~)] + p [(4.~- ,~) (4,~ 4.,.) 

- -  (4 '+ ~bs) (~ b+ ~3)] + q [~ b+ ~ba] [4 '+ ~b, + ~ b+ ~3] -t- h.c. (9) 

The potential thus written has two parts. VI is an arbitrary superposition of bilinear 
and biquadratic terms each invariant under S 3 and VII that of such terms as are in- 
variant only under its {e, b)  subgroup. Arguing as in the previous case, the 
extremum conditions 

oz_-o±_-o 
c94', 0¢3 04'; 
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are consistent if and only if (9  °) = --(gs°>. Thus the above constraints force 
vev of 9 ° and 9 ° to differ only by a phase difference of ft. In contrast, vev 
developed by 9 ° is not related to that of 9 °. If VII is omitted (i.e. potential is S~- 
invariant) and Yukawa interaction is required to transform as identity representation 
of $3, it is found impossible to relate Cabibbo angle to quark mass-ratios, irrespective 
of the choice for SL, ~b~ representations. The line of reasoning leading to this 
conclusion is essentially that which was outlined in the previous section. With the 
inclusion of VII ( th is  maintains the constraint ( ~ 0 ) = _  ( ~ 0 ) t h a t  proves 
crucial), it is now discussed that the following choice for Yukawa interaction sur- 
vives the test of invariance under (e, b} subgroup of S 3 with a suitable choice for re- 
presentation content of SL, $~" 

(lo) 

Besides its yielding readily the result 0 c ,-, md/mv the following invariance argument 
for its justification.leaves much to be desired. Let, 

~" FtX); ¢L2 ~ '  Ft~J, 

\ a /  (11) 

Then the LHR type blocks in (10) have definite transformation properties under Sz 
as given by 

a ~bL1 09, ~b~l t '~ F ta', 

(®: + r 

( ;  ~L2~)~  bR11 
02) 

Equation (10) being direct sum of these blocks is thus invariant under {e, b)  
subgroup of S a. As seen in (11), a and /3 transform nontrivially under Sz. 
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However, we cannot say what the implications of this unavoidable choice are. 
Replacing neutral fields by their vev, ($~) = -- ( ~ )  ----- x 1 and  ( ~ )  ----- x~ the 
result for M,  M + ~ is, 

+ ! Xl I '  
M+M + I 

\ ~x~x~ 
;~2 xl xg I , M_M+_ = A_; ( I x~ [ ~ 0 ) 

I x,l / o tx, I 
(13) 

where 2 + = [ ~ l  2+[ t3[z ,  22---!aLl~-[191 a and 2 l = l ~ , i  ~. Cabibbo mixing 
arises solely from mixing in positively charged sector (obtained by diagonalising 
M+M+). In terms of quark masses, 

2~/2+ = [1 _(m,mc 
~mams 

+ 
m] + m-~g/ J 

½ tan 2Oc - 23 mams (14) 
~+ m~ -- m,~ 

clearly 2z/A + ~ 1 and O c ~ maims. Consistent with this result for 0 c, a small value 
of mu is allowed. This completes the discussion of realisation of the 2 z 2 form 
given by (13) in the standard model by imposing suitable discrete symmetries. 

2.2 The 0(5) × U(1) Form 

The motivation for this scheme has been given elsewhere. The following salient 
features of this scheme may be recalled here for the present discussion. The ordinary 
left-handed fermionic pairs (U, D) L, (C, S) L, (oe, e) L and (vt, /z-) L are placed in 

t t C t t t t t four quartets partnered by the pairs (U6,3, D_x,3) L ( 2/3 S'I,a)L (v" e )L and (vt~/~ )L, 
respectively of superheavy fermions (their charges are labelled by the subscripts). 
The left-handed charged-current interactions between ordinary fermions are mediated 
by a single W ~ associated with generator(s) of an SU(2) subgroup of 0(5) under 
which the above ordinary (superheavy) fermions transform as doublets (singlets). 
Their corresponding right-handed components are also arranged in four quartets 
by interchanging their 0(5) assignments in going from the left-handed to the 
corresponding right-handed quartet of identical weak hypercharge assignment e.g. 
for the right-handed quartet of 

U e D e (U~I3 D'~I3)e 

the 0(5) assignments tally with 

(u;~,3 D~-~,~)L (u, o) L 

respectively of the corresponding left-handed quartet with identical U(I) assignment. 
The fermions acquire arbitrary masses by Yukawa coupling with 10+5 dimensional 
Higgs multiplet with null weak hypercharge assignment. An RU type of discrete 
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symmetry forbids weak mixing between ordinary and superheavy fermions of equal 
charge. Consequently the 8 x 8 quark mass matrix is a direct sum of four 2x  2 
matrices (two for positively and two for negatively charged sector). Furthermore, 
in this case the gauge-boson interaction with fermions is invariant under interchange 
of the corresponding left-handed and right-handed quartets provided this is accom- 
panied by an appropriate relabelling of the gauge boson indices. In view of the 
absence of light-superheavy mixing and this left-right symmetry, the realisation of 
the following 2 × 2 form in this ease reduces effectively to the derivation of that form 
in the SUL(2 ) × SUR(2)× U(1) scheme considered by Fritzsch (1977). 

0 
M, = /3~ ~ ]  (15) 

Here the nonvanishing elements are unique only up to multiplication by an arbitrary 
phase factor because all these phases are absorbable by redefinition of the phases of 
basis states. /3~ and fl~ are chosen real and the latter in addition to be positive de- 
finite,/3~ > 0. This symmetric (but negative, det M,  < 0) form yields the well- 
known result, 

0c - - t an  -1 (mdm~) 11~ -- tan -1 (m,/mc) xl2 (16) 

Here since M+ and M_ have identical structure, the functional dependence of 0_ 
(i.e. mixing in negatively charged sector) on mdms is identical with that of 0+ on 
mdmc, Cabibbo angle being their difference. 0~ ,~ (maims) llz -- (m,/m,) 11~. This 
outlines how the 2 x 2 form given by (15) may be realised in the 0(5)x U(1) scheme 
by imposing suitable discrete symmetries, one of them being the left-right symmetry 
peculiar to this scheme. 

3. Generalisation of the 2 x 2 forms 

Generalisation of the 2 x 2 forms is discussed (one in § 3.1 and the other in § 3.2) 
by constructing approximate solutions to the exact equations derived in Appendix B 
for the n x n ease. 

3.1 The n × n form of first kind 

When those symmetric n x n  forms are examined which all correctly reduce on 
putting n = 2  to the symmetric 2×2  form given by (15), the following form referred 
to as the n x n form of first kind is found such a candidate. In addition to this 
form there are a couple of other symmetric forms that also satisfy the same above 
requirement. One of them may be obtained from the form of first kind by grouping 
all its off-diagonal entries,/3~,/3 . . . . . . .  /~-1 into the corresponding positions of its 
first row (column) (i.e. 12 (21) element is fl~, 13 (31) element is/3~, etc.) and the other 
obtains by similarly grouping these fls in its last row (column). Going to the next 
higher case of n = 3, however, makes it manifest on diagonMisation that these two 
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alternate forms are unsatisfactory: the former is inconsistent with small angle approxi- 
mation and the latter constrains one of the quark masses in either sector to vanish. 
For this reason only the form of first kind is discussed at length which is given by, 

M ,  = A. (/3;, /3g . . . . .  ,/3±.), (i  100 00) 0 {/1 0 /3 2 0 0 0 
A,O1/3,. . . . .  / 3 . ) =  /35 0 /3~ o 0 7 )  

0 0 0 0 /3.-1 
0 0 0 /3.-1 

Phases of the nonvanishing entries are absorbable by a redefinition of the phases of 
basis vectors. For this reason, all/3s may be chosen real and, for reasons explained 
later,/3, is also chosen positive definite,/3. > 0 

3.1a Identification of fermion masses 

Characteristic polynomial for A. is 

n 

(A. - hE,) = det a t ( - - ~ )  n - t ,  

i=0 
a 0 ~ 1, 

a l  ~ / 3 n ,  

as  _ / 3 n L  1 5 5 = - -  /3n-2 -- /3n-$ - - ' ' ' "  - - /32 ,  

a3 = ( - -  ~.) (--/3.~-1) + 8, as, 

a,  = (- /3. '-1)  ( - /3 , ' -3  - 8.'_, - . . - .  - ~;) + 

(__ 2 5 2 /3,_,) ( - / 3 , _ ,  - t~,_~ - . . . .  - t3~) + . . . .  + ( -  t3~) ( - / 3 ~ ) ,  

a ,  /3, ( - / 3 , " - I )  ( - / 3 L 3  5 - . . . .  = - - ~.-4 - / 3 ~ )  +/3 .a4 

{ ( - / 3 L : )  " (_/~I_,) . . . .  (--/3]) (--/3~) n even 

a n .~- 

/3, (__ 2 /3._,) . . . .  (--/3~ (--/3~) n odd. 
(18) 

Here E. denotes identity matrix of dimension n. This may be verified by induction 
on using the identity, 

det (A. (~1, ~ 2 '  " ' ' ' '  [in) - -  ~ E n )  -~" (--~t) det (A.- i (/3~,/33 . . . . .  ,/3.)--aE.-i) 

+(--/31) det (An_ 2 (/38,/3z,' " , /3 . )  --)~En-2)" (19) 
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Let the eigenvalues of symmetric form denoted by ~,  A n . . . .  ~,, be ordered as 

l a . l >  [ > la.- l > . . . .  > la . I > la ]. 

It may also be verified inductively that if 

(for ] 1 <~i ~< n) ~, = (--)"-' m~ 

where mi > 0, then the signs of coefficients of the different powers of h in the 
n 

expansion of II (~--~t) match correctly the signs of coefficients of corresponding 
i = 1  

powers of ~ in equation (18), remembering that/~, is chosen positive. Thus the 
characteristic equation for A, may be taken as, 

n 

de t (A , - -AE, )  = II [(_),- t  m, _ A] (mr>  0, 1 ~ < i ~ n )  (20) 
i = 1  

This equation also shows that each/31 is uniquely expressible (apart from sign ambi- 
guity that is inconsequential) in terms of the n positive definite quantities ms intro- 
duced above, e.g., 

ft, = ax, flnl_l - -  a3 - -  am ax, etc. 
a l  

where az is coefficient of (--~)" -~ on the right-hand side of this equation. Clearly 
m, > m~l  > m,_9. > . . . .  > m~ > ml. When the symmetric matrix d ,  is diagonalised 
by an orthogonal matrix V, i.e. V -1 A,  V is a diagonal, the diagonal elements are 
~z, ~ ,  . . . . ,  ~, (the order in which they are arranged on the diagonal becomes clear 
later when an explicit form for V is given). However, if the orthogonal transforma- 
tion acting on right of A is taken V R = V K where K is a diagonal matrix such that 

K ~ = E ,  then Kmay be chosen such that diagonal elements of V -~ An V R are m x, m2, 
. . . .  , m,. This is nothing but biunitary diagonalisation of A, to a positive definite 
diagonal form. For this reason, m~, m~, . . . . ,  m, ~ are identified with fermion masses 
in the picture when M~ describes mixing of n positively charged (n negatively charged) 
fermions among themselves. 

3.1b Small angle approximation. This paragraph is a discussion of what is referred 
to as small angle approximation under which the following results for A n hold, for 
l <<. i <~ n - -1 ,  

(a) I e, i,...ip,/p,+,l, 

(b) ft, ,~ m., [ fli I ,.~ (m, m,.l)X/2, 

(c) I O, I ~ (m'lm'+:):/~' (21) 

where 8z, 02, . . . . ,  0._ 1 are the only angles of the diagonalising orthogonal matrix 
that are nonvanishing to leading order of this approximation. 
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The diagonalising orthogonal matrix V is the product V1V2V 3 . . . . .  , Vn-  1 of ortho- 
gonal matrices where the orthogonal matrix V.__ 1 is parametrised by n--1 angles 
denoted by 01, 02 . . . . .  , 0._1, V,,_ 2 by n--2 angles denoted by On, 0.+1, 0.÷3, . . . . .  
02._ 3, etc. Under small angle approximation, it will become clear that each of V._ 2, 
11,,_ 3 . . . .  , V~, I/2, V1 reduces simply to the identity matrix. The first n -- 1 angles 
are in turn related to elements of the symmetric matrix being diagonalised through 
n--I coupled equations of the form, 

½ tan 201 --/V1/D1, 

t an01-0Nx/00~ 2 <~ i < n - - 1  
ODI[O0~ 

(22) 

The details may be found in appendices A and B. 
To motivate small angle approximation, let/31--0. This also constraints ml and 01 

to vanish. In this special case, the following obvious looking recursion relations 
may be verified inductively using equations (22) and (20). (i) 0._1, 0,_ 2 . . . . .  , 83, 02 
associated with diagonalisation of the n × n form A ,  (/31--0,/32,/33,. . . . .  /3,) are given 
respectively by 0,_ 2, 0._ 3 . . . . . . .  ,01  of the n--1 × n--1 form A. -1  ([32, [33 . . . . . .  /3.). 
(ii) The expressions for/32,/3a . . . . .  ,/3, of the n × n form A.(/31--0,/33 . . . . .  /3.) in terms of 
( m l ~ O ) ,  rn2 m3 . . . .  m ,  are identical with corresponding expressions for/31,/33,..../3,-1 
of n--1 × n--1 form An-l(/31,/33," . . . . . .  /3.-1) in terms of m's with mi replaced by m m  i.e. 
m I is replaced by m 2, m s by m3, etc. In the case when/31 does not vanish identically, 
but [/31 [ ~ 1/311 for 2 ~< i ~< n these recursion relations hold approximately and the 
small value of 01 (/31) in this case may be obtained by substituting the values of 02 03.. 
0,_ 1 (fl2/33../3,_1) into the first (last) equation of the set of equations (22) and (18). 
Next beginning with n = 2 and following the inductive route, the recursions relations, 
equations (22) and (18) may be used repeatedly to establish (a), (b), and (c) under 
1/311 '< ]/32 ] '< ]/3a] 4 . . .  '</3. or, equivalently, rn 1 ,~ rn 2 ,< rn 3 ,< . . .  ~ m . .  With O's thus 
related to m's through (c), V.  diagonalises the symmetric matrix and it is seen that 
the subscript i (on m or ~) corresponds to ii th position on diagonal. This means 
that all angles except the first n--1 angles are negligible. 

The result (c) holds for M~ under fermion mass hierarchy 

m~ ~, rnn~_l ~, rn~-2... ~, m~. 

The n-- 1 Cabibbo like angles which appear in the charged current matrix U cc (equa- 
tion (6)) are given by the differences 

O, = 07 - -  0 +, t 071 '~  (m~ ] m~+l) x,2 

There is ambiguity in the sign of 0 F. If they are all assumed positive 

O, ,.,o (mT I rnT+l) 1/2 - (m+ [ m++x) x/2. 

This result suggests that the higher dimensionality forms given by equation (17) 
may be regarded as members of a single family that includes the 2 × 2 form given by 
equation (15) as its first member. 
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3.2 n X n form of second kind 

For this form, 

M_ M +_ = a_ diag (Ixll  ~, Ix212 , . . . . ,  Ix, l=) 

M+ M + = 

a, xgx,  a lx, l '  a,x x, . . .  a,x',x, 

a, x g <  a=,¢x= axlxd= . . .  

. . .  axl ,l 

(23) 

Here )t t, A2, •., A~ are n real parameters and xl, xa .... , x~ are n complex parameters. 
(m:~) 2, (m~) ~ (m~) ~. These 2n (mass) ~ From equation (5), eigenvalues of  M , M  + are ~ 1 

terms involve the above 2n independent parameters. To us equation (23) seems the 
only obvious candidate for an n × n form of 2n parameters that correctly reduces to 
the 2 × 2  form given by equation (13) on taking n=2 .  This form is diagonalised 
under the following small angle approximation. M+M + reduces to a real sym- 
metric matrix because the arrangement of  x's is such that their phases are absorbable 
by a mere redefinition of  phases of  the bases vectors. Hence the results given in 
appendix B may be used. The orthogonal matrix V (+) diagonalizing M+M~ is the 
product 

V(+) ~___ v (  +1 v (+ )  V(+) V(+) 
- 1  - -2  . . . .  n - l "  n-1 

+ + V(+)  of  orthogonal matrices, vt+~. ~-, involves the first n--1 angles 0~-, 0~,,..,0._ 1 and . ._8 
the next n--2 angles 

0~+, 0++x, . . . .  0~_s 

and so on. It is straightforward to show the following exact results in the special 
case when ht = hi i.e. We simply have (M+M+)u --- h,(xixj) 
(a) of  the n masses m T all except m+ vanish. 
(b) All except the first n--1 angles 0~-, 0~ + . . . .  ,0+_1 vanish. For these angles, 

- -  s I ----- pxl, 

C1C ~ = px~, 

Clgr, C 3 = px3, 
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Ciszs 3 ... s ,_z C~_~. = t* x~_~, 

Cis~s 3 ... s ,_~ C,_ i = t~ x,_a, 

Ciszsz ... s,_~ s,,_ i = /~  x,, (24) 

where /z is an undetermined parameter, C, -= cos Ot and st -- sin 0z. This exact 
result suggests the following approximation. Let ~q m h i (2 ~< i ~< n). This means 
that m + is the dominant mass in positively charged sector and the set of expressions 
(24) hold to a good approximation. Furthermore, if m~ < m~ and m~ >> m~ >> m~ ~, 
... >> m~ (or equivalently Ix i [ <Ix2 I, [ x, [>> [x,+i [ for 2 ~< i ~< n--l),  the angles 
0+, 0+,..., 0+_i are given by, 

- 0 +  ~ ,  x l / x 2 ,  

0 + ~,, x l+i /x i  2 ~ i <~ n - - 1 .  (25) 

The n--1 Cabibbo-like angles that appear in U cc are simply 0, = - - 0 [  because the 
negatively charged sector is already diagonal. There is ambiguity in the sign of 0 +. 
Assuming that all the mixing angles have the same sign as 0 + (which is taken positive), 
it follows that to a leading order in this small angle approximation, the n--1 Cabibbo 
like angles are related to mass ratios as 

0 i , ~  m-~/m~, Oi ~ m-~+xlmT, 2 <~ i <~ n - -  1. 

This observation makes it plausible that the higher-dimensionality forms in equation 
(23) form a single family of whose simplest member is the 2 × 2 form given by equation 
(13). Note that the fermion mass hierarchy underlying the small angle approxima- 
tion in this ease is entirely different from that involved in § 3.1. 

4. Conclusions 

The above discussion has many loose ends, For each of a pair of 2 × 2 forms, it 
was discussed how this might be realised in a certain gauge scheme by imposing suit- 
able discrete symmetries and how in a sense this may be regarded as the smallest 
member of a family of higher dimensionality forms. Whereas realisation of the 
specific forms adds nothing new to the spirit of original derivations found in the 
literature, another obvious limitation of the present work is that no physical 
significance has been attached to any higher dimensionality form in the face of the 
growing evidence for more than four quarks. 
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Appendix A 

The following is an explicit parametrization of an ortbogonal n × n matrix in terms of angles 0~, 
1 < i < n(n - 1)/2. This is followed by the same for an n × n unitary matrix in terms of ½ n(n -  1) 
angles and ½(n-1) (n-2)  non-absorbable phases. The following m × m matrix is defined, 

Um (0~, O~ . . . . .  Om_O = 

Cl SlC2 SlSzcs slszs3c4 . .. SlSz..,Sra_zCm_x SlS2. . .Sm- 1 

- - S  1 CzC i C lS~C~ CxSaS~C~ .. .  C1S~S~...Sm_~Cm_ z C1S~,,,Sm_I 

= 0 - - s z  CzC~ C~S~C~ .. ,  c~sz...Sm_~Cm_z e~Ss . . ,Sm_ 1 

0 0 0 0 ...  Cra-zCm-1 Cm-~ 3:/1-1 

0 0 0 0 ...  - -  Sin-1 Cm-1 

(A1) 

where ci -- cosOi and s~ =- sinOl. The above ordering of c and s makes this an orthogonal matrix: 
However, this is not the most general m × m orthogonal form. The most general n × n orthogonal 
form V involving ½n(n-1) angles is the product V1 V~... Vn-1 of n--1 orthogonal matrices each of 
dimensionality n and given by, 

Vn-1 = f / l  (01,  0g . . . . .  0n_ l ) ,  

1//I--2 = E1 ( ~  U/l_ 1 (0tl , 0/l+1 . . . .  05n_3) , 

Vn-~ = E2 (~ U._~ (O~._~, 0~._1 . . . . .  0~._~) 

V~ = En_, ~ U, (0M-2, 0M-D, 

V1 = En_~ ~ U2 (OM), (A2) 

where E K is identity matrix of dimension K and 
n 

M = ½ n ( n - - l ) =  ~ (m--l). 

m--2 

Thus Vn-1 involves the first n - 1  angles, Vn_2 the next n - 2  angles and so on, VI involving the last 
angles. Equivalently, equation (A2) may also be interpreted by the following action on n vectors 
e l ,  e2, . . . .  , en. 

n 

e~, = ~ (Un)t'jej 

j = l  
n 

ef = e~; e'b,= ~_ (Un-Dl"f e~, 2 < i" < n 

j ' = 2  
n 

e//I ~ i /:/ ~ y x,2 e[ 2 ; et,,, (Vn_2)i'"/' ej,, 3 _ < i '~ < n 

f = 3  

.(n-. e ~  ep-~), , ( n - l )  " --" e(n-, ~) n-Z ,  ©n-1 ~- C M -~- s M 

e~ n-~) = -  s ~  e ~ : ~  + c u e~ n-~ (A3) 

To introduce explicitly the ½n (n-1)  (n-2)  non-absorbable phases in an n × n unitary form, define 
the n-dimensional matrix, 

~m (01, O~ . . . . .  Om_~, ~ ,  ~, . . . .  ~,~-0~ 
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which obtains from Um on multiplying each element of its ith column by exp (i*/l-x), 2 < i _< m. 
For this reason Urn is unitary. The phases thus introduced are (the only) non-absorbable possible, 
the vectors on which Um acts have all their phases predetermined. The n × n unitary form V is the 
product ~ Vz... lTn_x of n-dimensional unitary matrices: Vn-x ----- Un involving the first n -  1 angles, 
Vn-2 = E1 ~ ~rn_l involving the next n - 2  angles and the first n - 2  phases, Vn-8 = E2 (~Un-2 
involving the next n - 3  angles and the next n - 3  phases and so on until V~ = En-2 ~ U2 involves 
the last angle and last phase. The preceding remarks make it apparent that the phases thus intro- 

n-1 
duced (number 27 m - 1  = ½ ( n - 1 )  ( n - 2 ) )  are non-absorbable. 

2 

Appendix B 

In the following the diagonalization equations for a symmetric matrix H to be diagonalised by an 
orthngonal matrix V are developed. For this purpose, the n × n orthogonal form parametrised in 
appendix A is written as 

(n-1)e~ 

(n-1) enT 

where T (for transpose) indicated that the entry is a row-vector (n components) and row vectors in 
n - l t h  set are related to those of n - 2 t h  set as, 

(n-x)~T __ (n-2)eT 2 (n-1)eT_l (n-2)eff_l ~ 1 , ~ ,  . . .  n - 2  - -  , , . . .  n - 2 ;  = C M -{- SM(n-z)eT; 

(n-x)eT = - - s  M (n-2)eT_l + C M (n-2}eT (B1) 

Similarly, vectors in ith set are related to those in i - l t h  set as, 

¢~-~)~T (i # 1) (i)eT2, ..., i-1 = ~1, 2, ..., i--1 

( i )eT  = (Un-i+l)kl ( i -a)e~ 1 <- i <--. k,  1 <- n (B2) 

where '°}e T = I,  0, 0 . . . .  0), co,eT = (0, 1, 0 . . . . .  O) etc. 

(V  H V-x)ij  = ¢n-l)eT H ~n-at}ej 

Diagonalisation of t4" by V means that off-diagonal elements of (B3) must vanish. 
(B1) this amounts to, 

c,-~e T/4~n-2eJ = 0  l ~ < i < n - - 2 ,  i + l  < j < n ,  

033) 

Using equation 

(n-2)ey_ 1 14 ¢n-2)e n 

tan 20 g = -  _ ,n_z,eT_ a Hln-Z'en-1 + en-~, e T  H tn-Z)en 
(B4) 

Using equation (B3) ( i = n - 2 )  and equation (B4) it also follows that, 

t ,-S~eTH~n-SJej = 0  1 < i < n - 3 ,  i + l < j < n ,  

tan 20M_2 = Na-a/Da-s, 

tan OM_~ = ~ Nn_J~OM-1 
On_=/~ OM_I 
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- -  Nn_~ ~ In-aleT2 H)'~, 

T Hen_~ + y T H y 2 ,  2 Dn-z = --en-~ 

~n-3, T in_3~eT (B5) Y2 :--- C M - 1  en-t l- SM_ ~ n 

This procedure may be continued iteratively until for the first n -  1 angles the expressions are, 

tan 20~ = N1/D ~, 

tan 01 ONt/OOl2 < i < n - - l ,  
~D1/~Ot 

- - IV  1 -~ I°~eT H Yn-1, 

201 =-- --t°~eT/4 ~°~ea -~- yT_l H Yn-1, 

Yn-1 ~ c,. t°~ez ~- szca C°~ea + s2sac~ ~°~e~ -t- ... -t-s2sa ... Sn-z cn-~ t°~en_t 
+ s~sa ... Sn-1 '°~e,. (B6) 

Since ~°~e~/4 ~°~ej is ijth element of/4,  these equations express the first n - 1  angles in terms of 
the matrix dements of H. These equations proved useful in § 3. 
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