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Abstract. The four-body dynamical equations for two distinct pairs of identical
particles derived earlier are applied to investigate the system }\OABe. The two-body

potentials have been taken to be of the Yamaguchi form, and the Bateman approxi-
mation has been used for the other amplitudes. From the set of coupled integral

equations, the separation energy, B, ,, for the two A particles in AlgBe is obtained
as 43-97 MeV.
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1. Introduction

The interaction of lambda-particle with other hadrons is not yet well
understood. There is some breakthrough in the understanding of A-N forces
by the study of hypernuclei and also by direct A-p scattering experiments.
The study of A-A interaction has been possible only through the study of the binding
energy of double lambda-hypernuclei. Experimentally two such hypernuclei have
so far been discovered. One of them &, He (Prowse 1966) and the other is often
interpreted asBe 2, (Danysz et al 1963). We have already investigated (Roy-Chou-
dhury et al 1976) the system §,He in a three-body model by using -exact dynamical
equations but with two-body local potentials. In this paper we explore the proper-
ties of 3 Be as a four-body system by using the set of exact equations derived by us
in Faddeev-Yakubovsky formalism (Faddeev 1970; Yakubovsky 1967) for two dis-
tinct pairs of identical particles (Roy-Choudhury et al 1977, to be henceforth referred
to as Ref. I and the equations from this paper to be indicated by Ref. (I.1) etc.).
Mitra et al (1965), Rosenberg (1965), Takahashi and Mishima (1965) and Alessandrini
(1966) have earlier derived four-particle equations as sets of six coupled equations
in which the kernels are the connected parts of the amplitudes for three-body
subsystems and also for the subsystems consisting of two non-interacting pairs.
However, no attempt seems to have been made to study the 1% Be system with the
four-body exzct dynamical equations. Calculations for the binding energy in the
four-identical-particle case have, however, been carried out (Kharchenko and Kuzmi-
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chev 1972; Kharchenko and Shadchin 1974; Kharchenko et al 1974; Narodetsky
1974; Narodetsky et al 1973; Tjon 1975). The calculations for the four identical
particle case are much simpler compared to those for the system of two distinct pairs
of identical particles. The number of dynamical equations in our studies is seven
as compared to two in the case of four identical particles (Kharchenko and Kuzmichev
1972). This difference is due to the symmetry properties of the A A aa system. Before
the non-variational exact equations came to be used, four-body systems were theore-
tically investigated with the variational shell model and resonating group methods
in which a variational procedure is also used (Fiarman and Meyerhof 1973). How-
ever, it is difficult to find out the error in a variational solution from these methods
as the choice is limited to a selective class of trial wave functions.

Binding energy calculations with variational approach have been made for Al,?Be
by treating it as a three-body system (A-A-®Be) (Dalitz and Rajasekharan 1964;
Tang et al 1964; Ali and Bodmer 1965). Subsequently, there have been variational
calculations for this A A-hypernucleus in four-body model (A-A-a-a) (Deloff 1963;
Nakamura 1963; Ali and Bodmer 1967; Tang and Herndon 1965, 1966; Bhamathi
et al 1973). These calculations clearly show that the four-body model treatment

for Al,gBe is better as compared to the three-body one.

The seven exact dynamical equations for A A ea system can be reduced to a set of
seven coupled integral equations in two variables after using separable forms for the
two-body interactions and making partial wave analysis (Roy-Choudhury et a/ 1977).
Further simplification of these equations have been made by using the Bateman (1922)
method which reduces them to a set of coupled one-dimensional integral equations.
Bateman method has earlier been used in three-body systems by Kharchenko et al
(1970) and more recently by Kharchenko et al (1974) and Saiwicki and Namyslowuski
(1975-76) for the study of four identical particle system. Our set of one-dimensional
integral equations has been used to calculate the binding energy of A A aa system.
The two a’s have been labelled as 1 and 2 and the two A’s as 3 and 4.

2. Theory

For the four-body system under consideration, the total angular momentum is zero,
and of all the possible partial components of the three-body scattering amplitudes,
only the s-component has been taken into account. Thus the set of equations (I. 8)
for s-wave reduces to the form (after dropping the angular momentum subscripts):
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The various notations occurring in the set of equations (1) are defined in Ref. I.

We will convert the set of two-variable integral equations (1) to a set of single
variable ones, by using separable representations for the amplitudes X, g and Yo, p
of Ref. 1.

To get the necessary representations for these amplitudes, we first apply Bateman
approximation for the s-wave components of the effective potentials U, g and Wa, g
defined in Ref. I:
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where the form factors U 8 and W;’ g are defined by
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In (4) and (5) p, and «, are corresponding nodal points in the range of the variables
p,p'and x, «.
Substituting the expressions for U, g and W, g in equations for the amplitudes X, g
and Y, g of Ref. I, one can get, after doing some algebra, the separable forms for the
latter pair. These along with the separable forms of U, g, and W, g [equations (4) and

(5)] yield the separable representations for 5, g and ¥, g occurring in Ref. (1.16)
and (I. 17). The representations are given below:
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The expressions for wq g’s and m,, g’s appearing in the set of equations (6) and (7),
respectively are quite lengthy. For want of space, only a few of them are given in
appendix 1. The rest are available with the authors. The nodal points pV, pt?, (1
and «{? correspond respectively to the systems (123, 4), (234, 1), (12, 34) and (23, 14).

We now substitute the expressions for #°,,8’s and ¥, g’s into the set of integral
equations (1) for the functions Q and R. Introducing the functions %, g and r defined

by
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(8d)
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%)

one can easily see that 4, g and r satisfy the following set of single variable integral

equations:
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The notations introduced in the set of equations (10) and (11) are defined as follows:
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The expressions for u(ﬁ%,, 23) (23, 34), u(}n%f’ 23) (23, 23) and u(?’%, 23) (23, 23) can be found
from (12b) by replacing the corresponding subscripts of the functions U” appearing
within the integral on the right-hand side. To cite an example the expression
forl uin 2 ‘/23: ) can be obtained by making the changes Uj, s3> UZ, o3 and
Ugs, 3 > Ujs, 23 in the right side of (12b).
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The expression for 2% %2 is found from (13b) by replacing U7, 5 by Usg 5.
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W\ B (2312 (84,23 (23.29) and 3(22(23:2) have expressions similar to that for

u(3423)(2312) [equation (14b)] but with appropriate replacements of U’s.
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Replacing Uy, 53 by Ujs, 93 in (15b) one can get the corresponding expression for
2123, 23} (23, 23)
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. (16a)
Wanr o SV (5, 4'5Z) = } J g [V, (5™ +sq’ )15 )

1 4m? im
Xy |zg——— |2 F — 2 g2~ F 'z')]
8 [ 2 2;1.34,1( @2m, + m,,)zq + 2m, + m, 7%

’ 4m?2 4m 1/2
x U 5%+ b 2 b s’z) , fﬁ’;z]dz,
20,2 [( G T ) q°+ S q Zy p 2 | 42y
(16b)
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1

2
w,‘,?ff’za’ (23,34)(s g:2)= | wr [ 2 ( mg s24 g’
f =3\ byt

—]——z—n—’——Sq 23)1/2 Z“)]x"zs[zz‘— ! (2—|—Mq

my + my 2oz (2my +- m,)?
) 2m, + my) ')J v U" [(_ (m, + m)
T o ) T (U G g
n 22(Z j: :1"1,,) sq' z ) 12, po z,} iz, (16¢)
b

Equation (16c) gives the expression for wiL! 3523 (2323 afier replacing U23 34 bY U;‘Is o5

m;

2 2
e S

(23,23) (23,12) . (2)
wum, ? (S’q” Z) f W28 23[ (

1/2 2
2 gz ) ;24] X T [21 — (s2 et ) g
b

m, + m 2pg1,0 (2m, + my)?
2(m, +my) , ,) ] U [( oy (ma+m)? .
+ 2m, + m, 9 a) | X Ul (& (2m, + my)* 7
2 (m, + my) ) vz } d 17
+m ‘124 S P50 | 42, (17

With the replacement U ;; 12 = Usgs, 23, €quation (17) gives the corresponding

: 2) (28, 23) (23, 23)
expression for wd !

For the binding energy calculation the integrals in (10) and (11) have been re-
placed by sums using the Gauss-Legendre quadrature method. By this process,
these equations are converted to a set of linear algebraic equations, the coefficients
of which depend upon 4% P @ (&5 @3 and WA > [equations (12) to
(17)]. Those u’s, s and w’s have been evaluated numerically by a similar
quadrature method. For finding a solution to (10) and (11), 16-point quadrature
has been used. Thus from (10) and (11), we arrive at a Fredholm determinant of
order 144144, which is evaluated for different values of the four-body energy
Z. We have found out that particular value of Z say Z; for which this Fredholm

determinant vanishes. Then Z, is the binding energy of the system i"ABe in our
model.
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3. Results and discussion

The form factors appearing in the two-body potentials [equation (I.10)] for AA, aA
and aa interactions have been chosen to be of the Yamaguchi form.

g1, == Yk + BY).

The values of the potential parameters A;; and 8,; have been taken to be the same as
those used by Monga and Mitra (1966) and Monga (1967) in their three-body calcu-
lations of the systems A Aa and aaA respectively (the reason for this choice will be
explained later). These parameters are listed in table 1.

For solving the four-body equations a simplification can be made by expressing
Xa,gand Yo, in a suitable form. As the number of coupled integral equations in
our case is quite large, we have decided to work with only one-ierm Bateman approxi-
mation for X, gand Y, g This approximation amouats to i’ n'"==1 in equations
(10) and (11). Consequently the effective potentials Uy, g and W, g reduce to one-
term separable form for N=N'=1. It may be noted that Kharchenko et al (1974)
have used a two-term Bateman approximation in their calculations on four identical
particle systems. They have chosen the points for the Bateman representation so as
to give reasonable values for the energies and the wave functions {or three identical
particle subsystems. As explained below, our choice for Bateman peints is optimal
in the sense that the correct binding energies for the subsystems involving non-
identical particles are obtained. We believe that, becausc of this optimal choice,
our one-term Bateman approximation is similar in accaracy to the two-term approxi-
mation used by Kharchenko et al.

We now describe how we have fixed up the Bateman points p'”, p.*’, ;"' and w®

L
11) and pf) correspond respectively to the subsystems «aA and

AAa. We have chosen the Bateman points p(ll) and p(f) so as to reproduce the

binding energies of these subsystems. Thus in our four-body calculations we need as
input the two-body off-shell -matrix for AA, eA and aa channels, as well as the
binding energies for the three-body systems, aa A and A Aa. So one has first to do the
three-body calculations and then proceed to the four-body calculations. But in the
present paper, one of the primary aims has been to provide the required machinery
for dynamical calculation of a system of two distinct pairs of identical particles. As
an application, we have calculated the binding energy Baa in AJPBe. We find in the
literature that there exist the calculations of Monga and Mitra (1966) and Monga

As defined earlier p

Table 1. The two-body potential parameters and the corresponding three-body
binding energies for the systems caA and AAea.

Two-body potential parameters Three-body binding energies (Mev)
Mfm—1)? A(fm-1) BAA (AA®He) Ba (A'Be)
AA —0-3942 1-8061 z
10-0

<A —0-3809 1-3198 3
% 6.5

aa —0-1191 0-7641
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(1967), who have determined the binding energies of the A Ae and aaA systems,
respectively, corresponding to suitable two-body one term nonlocal separable poten-
tials for AA, ¢A and aa channels. These parameters are, of course, not the best pos-
sible choice. Better parameters for the two-body potentials have recently become
available. In particular for the aa interaction, Buck et al (1977) have presented a set
of two-body local potential parameters. The corresponding nonlocal potential will
be more complicated than the rank-1 Yamaguchi form used by Monga (1967). One
can use such improved potentials within the framework of our theory, but the number
of coupled equations will be large and unwieldy. Moreover, the three-body calcula-
tions with these potentials need to be performed. Instead of doing this, we have used
the readily available three-body binding energies of aa A and A A « systems consistent
with the two-body potential parameters as employed by Monga (1967) and Monga
and Mitra (1966). These are listed in table 1. The values obtained for p'* and p(lz’
are 181 fm™ and 1-17 fm™! respectively. The Bateman point 1{2) has been chosen
to be 0-64 fm~! which is consistent with the a A binding energy 3-1 MeV. The Bate-
man point Kil’ is taken to be zero.

Then following the method described in the previous section we have evaluated

from (10) and (11), Baa, the separation energy for the two A particles in 3%, Be. The
result obtained is 43-97 MeV, which is larger than the experimental finding 17-5-4-0-4
MeV (Danysz ef ¢/ 1963). This is not unusual because with the approach followed
here, the binding energy in the case of four identical particles (Kharchenko et al
1974) has also been found to be higher than the experimental value. It may be men-
tioned that a better representation of the two-body potentials in different channels
is expected to give improved four-body results. An interesting calculation for four
nucleon system has been carried out by Tjon (1975), who used more than one term
separable approximation at the two-body and three-body levels and found good
agreement with the experimental data. Keeping in view that the number of coupled
integral equations (10) and (11) is nine against only two for the four identical particle
case, we feel that an attempt to work out A Aaa problem with Tjon’s approach is
not feasible at present.

Appendix 1

As mentioned in the text, the expressions for the w, B’s and =, B’s occurring in
equations (6), (7), (10) and (11) are lengthy. Therefore only a few of them are given
below and the rest can be made available on req:est.

’

onn

. (1) (1) .
U’1l2, 23 (pn s Pn s 21)

s
@1s, 12 (1) =

N
+ D wln (@) AP 02 (g, p)
m=1
. — 1
with wiy 1o (21) = - [(Ags (z1) + A5y (z1) + A5 (2)
’ A (2) Uy 4y (0, P 2) N
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A @) dE ™ B Gy ) 4 (A () + AP ()

(23,23) (23,12)

+ARED + A% D) dm CWEDE An

S,
;.:: 1 3) . an + 10 (23) a(u. 12) (12, 84) (Z K(l.))

W2 3 (<, 2 23)
=1

1

with e, 12 (Z3) = CYRGY) )
n .
A (2'3) ng’ 34 (Kn s Ky oy 23)
Ag;" (23) (JL}: »34) (34.12) (,. 2)) (A2)

In the above equations A}} (z;) and A}} (z;) are respectively the co-factors of the
ijth elements of the determinants

a,ﬁ

D= — AnF @) and A = |8 — o @) |4 A3
where
(23, 12 23,12
12, 23 12, 23
0 dmn (Zla p(l)) 0 dmn (21, p(l) 0
12, 23 12, 23
23,12 23,23
d:nn (le Pf.l)) 0 0 0 dmn (zls p("l))
(23, 23) (23, 23)
a 23,12 23, 23
|A » B(Zl)l —
dmn (219 pful)) 0 0 0 d,,,,, (21’ P:,l))
12, 23 12, 23
23,12 23, 23
dmn (219 Pfgl)) 0 dmn (213 p(l) 0 0
23,23 23, 23
23, 12 23,23
d’"" (zl’ p(l) 0 dmn (le P:,D) 0 0 (A4)
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34,12
(12, 34
0 Qmn (23’ Kinl))
I C:;uﬂ(zs) | = 12, 34
(34, 12)
Amn (Zay Kixl)) 0 (AS)
and
(5:%)
Bs Y
o (200 ) = dG P B (2, p)
_ U T - M 2
== Ug’ s‘v)’ pnv), . )f m ’ py ZV) ﬁ [ZV - 2mBMB p ]
x Ug ., (p P, PV ) p? ldp/2n®)] v = 1, 2, (A6)
a, B
)
e J- (ZF" KSV)) — a'(n:, ﬂ) (ﬂ’ a) (zl" K,(IV))
1 " x?
7 >f w0 s o
X Wh , (k& W) 2,) «2 [df(2mD)]) v = 1,2 p =3, 4. (A7)

In equations (A6) and (A7)
mg=my; =M—m, —my, Mg=M — mg

mm;

and Ba =ty = o m)’
i J

where m; is the mass of the ith particle and M is the sum of the masses of the three
particles /, j and k.

The zeros of the determinant A determine the binding energies of the three-particle
systems (123). The zeros of the determinant A are connected to the sum of the
binding energies of the two-particle systems (12) and (34).
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