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Coefficients of viscosity of a gaseous plasma
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Abstract. We present_here an order of magnitude calculation for the coefficients of
viscosity with the assumption that the drift velocity introduces asymmetry both in the
single-particle distribution function f; and the correlation function P(1,2). These
asymmetric parts have been estimated considering the self-relaxation of the system
when the cause of drift velocity is suddenly removed. Using these, the kinetic part
of the coefficient of electron viscosity has been calculated and the result fairly agrees
with similar studies by others. The potential part of shear viscosity coefficient is
found to be zero while both parts of the coefficient of bulk viscosity are non-zero.
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1. Introduction

Due to the long range of Coulomb interaction, the correlational effects on the
transport coefficients in a gaseous plasma can sometimes be significant. The central
problem in calculating these effects is to determine the binary correlations having a
definite type of inhomogeneity, resulting in the transmission process of the dynamical
equilibrium conditions.

Following the idea of Balescu and De Gottal (1961), we.developed a method
(Majumdar er al 1973) to calculate potential part of the thermal conductivity. In this
paper we calculate the viscosity coefficient by using the same method. The essence
of the method is the following.

In the case of transport of momentum, the macroscopic drift velocity u introduces
asymmetry in the single-particle distribution f; and the pair correlation function
P(1, 2), due to the inhomogeneity of the system. Assuming u to be very small
compared to the thermal velocities of ions and electrons,

u < k8, M)t < (2k8,/m)t,

where 6., m and ,, M are the temperature and mass of electrons and ions respectively.
We expand f; and P (1, 2) in powers of grad u
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Poe (L, 2) = P (1, 2) + P, s_:{, @
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where s, s denote particle species (electron or ion) and summation over repeated
index is implied, and f, and P, (1, 2) are the equilibrium values given by

f:(l) = 4, n exp ['— Bs (vl - u)2],
PY(1,2) = — k% LW @) exp (—kp P, 6

A,=m,[2nk0,, B;=m[2k0,, r =|X,— X, | and 1/k, is the Debye length. The asym-
metric parts of /7 and P*' (1,2) are then calculated by using the kinetic equations for
/i and P* (1, 2) and observing the self-relaxation of the system towards equilibrium.
The use of these asymmetric parts in the expression for stress tensor gives directly
the coefficient of viscosity.

2. Kinetic part of the viscosity coefficient

The kinetic part of the stress tensor is given by the following expression (Irving and
Kirkwood 1950):

o= —m, [wwf dw, @)

where w = v— u is the peculiar velocity. Using the expansion (1) and (4), we note
that the contribution of f to ¢} is given by

O =—m (wwfidw=—nko,s,

which gives the scalar pressure at temperature 6,. The contribution of the second
term in (1) to o, which gives the asymmetric part is given by

P .-_-—m,fww(f,;gﬁ)ds w. ©)

Xy

To calculate ¢, we compute first the value of £ du,/dx; by observing the relaxation
of the system by suddenly withdrawing the condition due to which the drift velocity
arises. Since o, is due to the momentum transfer processes, and since the momentum
transfer in an electron-ion collision is small, we can safely use the one-component

description of the plasma:

0 ¢" (1’2) . opP” (1’2) (6)
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where ¢°'(1,2) =e¢; ey/r, T =X ~—X;, is the Coulomb potential between the particles.

Since the magnitude and the gradient of u are small by assumption, we neglect higher
powers and higher derivatives of u. Using then (1) and (2) in (6), we obtain
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We note that fj and P2 are the locally symmetric parts of the quantities f; and P*
in an inhomogeneous system, and their values change from point to point. The
inhomogeneity is maximum at £—=0, and relaxes to almost zero at t==r,, the relaxation
time for the sth component. Therefore, we can replace the right side of (7) by the
averages over these values. Integrating then (7) from ¢ to t=¢-r,, we obtain

Aff=f0%— o, )
Xy
ofe , 1 fo¢*(1,2) 0 P5*(1,2) ]
3|y 2o 1 dPx,d® v, |. 9
a %[ w2y L [REBED i xyar, ©

Now, for the functions whose x dependence appear only through u(x) and n(x),
we can write

o _oy 0  on B
8x1: X3t 6“1 ax],l on
ou; 9 ou; @
=t gy — —, (10)
dxy DU " oxy on
where gs =— m [k, = — 28,.

In deriving the last step we have used the Navier-Stoke’s equation.
Using (8), (9) and (10) in (5) we obtain in a straightforward manner

W — 1 (nk 6, 7, (% o 25 Q‘L)___nko 8, & (1
aku 2(” T) axu—{—axli 3 Uaxn s T, Ua ( )

Comparing with the general expression of the stress tensor o, , for a stream-line
flow (Landau and Lifschitz 1959):

ou; | ou 2. du ou
=—p 8, — ( d I3 l)__. ) L
Gy; Po;—n 3x1+3xi 3 uaxl £y, (12)

we immediately obtain the expressions for the coefficients of shear viscosity % and
bulk viscosity { (the kinetic part):
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3. Potential part of the coefficient of viscosity

Generalising the method of Irving and Kirkwood (1950), we write down the expres-
sion for the potential part of the stress-tensor of a two-component plasma:

o == ! z Ecﬁ”' (r) (1 —lr .2 + ...)}”2“'(1,2) drddv,dv,, (14)
r 2 ox

s

where x and r are the centre of mass and relative coordinates of particles 1 and 2. We
write the two-particle distribution funciion f5* in terms of the single particle func-
tion /3 and the correlation function P**' (1,2) in the form (Dupree 1961)

= (1,2) = £ () 2 @) + P (1, 2). (15)

Substituting (15) in (14) and remembering the form of ¢*'(1,2) we see that the non-
vanishing part of ¢, is given by

.,;=12 LY 4o (r) (1 —r-2 4 ...)P”' (1,2) d@®r dBv, d*v,. (16)
2 r ox

’

N

If we now use the expansion given in (2) in (16), it is easy to see that the symmetric
part P (1, 2) produces a diagonal tensor giving

. 1
= —_— kOK3,, for 6, = 4,.
P 487 !

This result agrees identically with Balescu (1963).

To calculate the remaining asymmetric part of o, generated by the second term on
the right side of (2), we require the expression for P, 9u,/ox,. For this, we study the
relaxation of the system in the same way as we have done in the preceding section.
Following Dupree (1961), we write down the equation of time evolution of P* (1, 2)
for a two-component plasma in the centre of mass and relative coordinates:

aPss’ aPss’ 1
— 1,2y =— m, vy nige vy) e
ot {.2) m, 4+ my (v, ) ox + mg+my
), Fss'

0F o o L Bf (D o]
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Here, we have written

(1,2)+ ‘: G (r,v;, V). (17)

ox

z noese, [ V(1,3) P (3,2) dx,d3 vy = £, (2) F*' (1, 2),

t
and similarly for f; (1) F*=*' (1, 2). ¢% (r) = e, ey V (r), and the particle 3 belongs
to the z-th species,
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We can formally expand

Fs(1,2) = F;" 1,2+ F;;l g:‘ 18)

Using (2) and (18) in (17), we obtain after neglecting higher powers and higher order
derivatives of u,

oP* (1,2) 1 oy, Pg (1,2)
> R (myv,+myv,) —x
1 3fo (1) st a (2) s (1 ] a F:)" (1r2)
ml+ms[ oY 1 f0 (2)+ fO() oXx

+;' G, Vs Vz)-

We now apply similar arguments as we have used in deriving (8), and integrate the
last equation from ¢ to t+ 7., where 7,y is the relaxation time between the s and s’

particles. We thus obtain

L ss' OU Tasi
AP Plu ax: = By 1o + fO ; G (l', 1ir V,) dt (19)
3 1 a Pu'
Wlth B_“; _- [—. ms v + my v,)- 0
2 (ms + ms') ( ! 2) 0 Xy
O |, 0\ i g OFY (L, 2)]
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Now, it is easy to see that for many-component plasma, the transformation (10)
should be replaced by

7] ou; ou O
2. 04 0 4 (o4 gy mu O 21
ox, Ox% Oy o ox; 312 @

Using (21) and (3), and noting that F¢¥ (1,2) is independent of u and v, we obtain in
a straightforward manner,

1

By =— m{"e Wi Wy +m, o, War+my my (Wi War+wa wyp)
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1 kprY pes oF (1,2
a2 Er L g o8 D)
X (mswy, + my e u gi'f (22)

With this expression (22) for B,y, we calculate the asymmetric part A ﬁlj by com-
paring (2) and (19). Noting that the terms containing G- (r/r) vanish on r integration,
we obtain the contribution of the second term of (2) to ¢, given by (16):

k6 k8 k
2753 Su &l %+ z ne D(Bs+ﬁs)ukul 8ua ., (23)
48~ oX;

The second term in (23) is small compared to the first term and can be neglected.
Thus, from (16), we obtain finally,

a:,,,_Tk 0 k% 5, + z = 1 0 k3, 8,,8,,,3;’. 24)

Xy

Comparing (24) with (11), we obtain the potential part of the viscosity coefficients:

7 =0 5

and 0= — __kBkD zf,,.

4. Conclusions

The following points could be noted. First, the value %} computed with the value of
7, given by Balescu and De Gottal (1961) is fairly in agreement with that of Hochstim
and Massel (1969).

Secondly, the potential part of shear viscosity 7, is zero in the stream-line flow
approximation, for a plasma with central interaction among the particles. This fact
itself is interesting.

Thirdly, the method developed here is quite simple and strightforward, and can
easily be extended to study other transport processes in a plasma.
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