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Coefficients of viscosity of a gaseous plasma 
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Abstract. We presenLhere an order of magnitude calculation for the coefficients of 
viscosity with the assumption that the drift velocity introduces asymmetry both in the 
single-particle distribution function fl and the correlation function P(1, 2). These 
asymmetric parts have been estimated considering the self-relaxation of the system 
when the cause of drift velocity is suddenly removed. Using these, the kinetic part 
of the coefficient of electron viscosity has been calculated and the result fairly agrees 
with similar studies by others. The potential part of shear viscosity coefficient is 
found to be zero while both parts of the coefficient of bulk viscosity are non-zero. 
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1. Introduction 

Due to the long range of  Coulomb interaction, the correlational effects on the 
t ransport  coefficients in a gaseous plasma can sometimes be significant. The central 
p rob lem in calculating these effects is to determine the binary correlations having a 
definite type o f  inhomogeneity,  resulting in the transmission process o f  the dynamical  
equilibrium conditions. 

Following the idea o f  Balescu and De Gottal  (1961), we. developed a method  
(Majt tmdar et al 1973) to calculate potential  part  of  the thermal  cortductivity. In this 
paper  we calculate the viscosity coefficient by using the same method.  The essence 
of  the method is the following. 

In  the case of  t ranspor t  o f  momentum,  the macroscopic drift  velocity u introduces 
asymmetry  in the single-particle distribution f l  and the pair  correlation function 
P ( I ,  2), due to the irthomogeneity of  the system. Assuming u to be very small 
compared  to the thermal  velocities o f  ions and electrons, 

u < (2kOdM) ½ ~ (2kO,/m) ½, 

where 0e, m and O i, M are the temperature  and mass o f  electrons and ions respectively. 
We expand f~ and P ( I ,  2 ) in  power~ of  grad u 

f ;  = [~ + f b  ~uj, (1) 
t3x, 

o ,  

W,*' (1, 2) = / : g "  (1, 2) + P'~.' ~ (2) 
l~J tgX(' 
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where s, s' denote particle species (electron or ion) and summation over repeated 
index is implied, a n d f  0 and Po (1, 2) are the equilibrium values given by 

fo (1) = A, n exp [-- fl, (v 1 -- u)~], 

P~"(1, 2) -- e '  fo,(1)fo,, (2) exp ( - - k  D r)/r. 
ko, 

(3) 

A,=m,/27rkO,, fl,=rn,/2kO,, r = [ x  1 -  x21 and 1/k D is the Debye length. The asym- 
metric parts off~ and P "  (1,2) are then calculated by using the kinetic equations for 
fa" and P "  (1, 2) and observing the self-relaxation of the system towards equilibrium. 
The use of these asymmetric parts in the expression for stress tensor gives directly 
the coefficient of  viscosity. 

2. Kinetic part of the visc~ity coefficient 

The kinetic part of  the stress tensor is given by the following expression (Irving and 
Kirkwood 1950): 

¢~ ~- - - m , I  W wfl~ dSw, (4) 

where w = v - -  u is the peculiar velocity. Using the expansion (1) and (4), we note 
that the contribution o f f  o" to ¢~, is given by 

¢~ c°) = - -  m, j" w wJ  0" d w --. - -  n k O, no, 

which gives the scalar pressure at temperature 0,. The contribution of the second 
term in (1) to ¢,~, which gives the asymmetric part is given by 

cgx,I 
(5) 

To calculate ~rk t'~, we compute first the value o f ~  8uj/Sxt  by observing the relaxation 
of the system by suddenly withdrawing the condition due to which the drift velocity 
arises. Since tr~ is due to the momentum transfer processes, and since the momentum 
transfer in an electron-ion collision is small, we can safely use the one-component 
description of the plasma: 

(o~,,1,1at) = - -  vx af~' + ~ f d s x8 ~ vs a,/,=' (1,2), a P~' (1,2) 
Oxx m ,  axl  OVx ' 

(6)  

ss, 1,2 e whore ~ ( ) ~ , e,,/r, r -= x t ~  xa, is the Cou lomb potent ia l  between the l~Zticles. 
Since the magnitude and the gradient of u are small by assumption, we neglect higher 
powers and higher derivatives of u. Using then (1) and (2) in (6), we obtain 

(of?lat) = - -  v~. aye' + ! f a ~" 0,2).. a P~" (i, 2) d8 x~ d 8 vs 
Ox 1 m. 0 xx O V~ 

(7) 
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We note that  f0" and Pg" are the locally symmetric parts o f  the quantitiesf~x and P "  
in an inhomogeneous system, and their values change from point to point. The 
inhomogeneity is maximum at t=O, and relaxes to almost zero at t=%,  the relaxation 
time for the sth component.  Therefore, we can replace the right side of  (7) by the 
averages over these values. Integrating then (7) from t to t=tq-%,  we obtain 

/ x f l  _ _ e ,  a__u_,_ _ =,~, ,  J IJ ~ Xl (8) 

Of~ .+_ 1 f 0 q~_u (1,2) 0 P~' (1,2) dS xa d" v2]. 
% = ½ - -  vt 0 x x m'~ , /  0 x t 0 vl 

(9) 

Now, for the functions whose x dependence appear only through u(x)and  n(x), 
we can write 

8 _8 , , ,  o + ~ , ,  o_. 
8xxi Oxxt 8uj Ox 1, an 

._ tguj 0 + g, nuj Out 0 (10) 
Oxv auj Ox--v On' 

where g, = - -  m,/kO, - - - -  213~. 

In deriving the last step we have used the Navier-Stoke's equation. 
Using (8), (9) and (10) in (5) we obtain in a straightforward manner 

o(t~ ( Ou! Ouj 2 ~ 8ul ~ 5 8u, k,j = - -  ½ (nk O, %) + ~ - (11) 
~Oxu Ox], 3 "u ~ t z ] - -  g nk O, % 8,j . Oxxz 

Comparing with the general expression of the stress tensor cr o for a stream-line 
flow (Landau and Lifschitz 1959): 

a~j = ~ p  8tj ~ ~ ~Dxj Ox~ 3 t, Oxtl ~ ~ 8tJ Oxl~ ' (12) 

we immediately obtain the expressions for the coefficients of shear viscosity ~/and 
bulk viscosity ~ (the kinetic part): 

~lk = -  nk 0,, T,, 
2 

~k* -~- ~5 nk O, %. (13) 
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3. Potential part of the coefficient of viscosity 

Generalising the method of Irving and Kirkwood (1950), we write down the expres- 
sion for the potential part of the stress-tensor of  a two-component plasma : 

~ = 21~ f r-r ¢"' (r) (' --lr" a + "") L~'' 2 0x (14) 
S t 

where x and r are the centre of mass and relative coordinates of  particles 1 and 2. We 
write the two-particle distribution function f~"  in terms of the single particle func- 
tion f~  and the correlation function PS" (1,2) ir~ the form (Dupree 1961) 

t 

y;" (1, 2) = fx~(l)A " (2) + P "  (1, 2). (15) 

Substituting (15) in (14) and remembering the form of 4, ~' (1,2) we see that the non- 
vanishing part of av is given by 

l~frr4~'(r)(1--r.  O + )P'~'(1,2)dZrdSvldZv~. (16) 
O'v = 2 r 0-'-x "'" 

S" 

If  we now use the expansion given in (2) in (16), it is easy to see that the symmetric 
part PgS' (1, 2) produces a diagonal tensor giving 

1 kOkao, for 0~ = 0~. 
P~' - -  48~ 

This result agrees identically with Balescu (1963). 
To calculate the remaining asymmetric part of  o" v generated by the second term on 

the right side of (2), we require the expression for P~'s cguJOxs" For  this, we study the 
relaxation of  the system in the same way as we have done in the preceding section. 
Following Dupree (1961), we write down the equation of time evolution of  P~ (1, 2) 
for a two-component plasma in the centre of mass and relative coordinates: 

0 P~' 1 OPS~'(1, 2 ) - -  (m.~ vl-f-m~" v~). -k- - -  
0 t trt~ ~- m~, 0 x m~ -4- m~, 

x [Of~ (1)f~s' (2) -k- 0-f~' (2)~V 2 f~(1)] "cgF~s'(l'2)+r'G'(r'vl'v~)'(17)3x r 

Here, we have written 

E n, es e, ~ V(i,  3) ps,, (3, 2) d 3 x a d a v a : f ~ '  (2) F *s' (1, 2), 
t 

and similarly for f~ (1) F **' (1, 2). ff~s, (r) = es es, V (r), and the particle 3 belongs 
to the t-th species. 
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We can formally expand 

F 's' (1, 2) = F~" (1, 2) + F~:~, Ou, 
Oxz 

08) 

Using (2) and (18) in (17), we obtain after neglecting higher powers and higher order 
derivatives of  u, 

o e - '  (1,2) _ ~ (m, vx+ m:v2 ) . ~ Po'" (1,2) 
Ot m, + m,, O x 

+ 1 [0 / ,  (1) ,, fa 
m, + m,, O vx 0 vs J O x 

+ r.  G (r, v 1, vz). 
r 

We now apply similar arguments as we have used in deriving (8), and integrate the 
last equation from t to t+%~,, where %,, is the relaxation time between the s and s' 
particles. We thus obtain 

O'-xj --  ao r"  G (r' vl' vs) dt 09) 

_ 1 I u (m, v x + m,, v2)" O Pg" with B. ,  2 (m, + m,,) O xx 

o + f ;  ( 1 ) f  d (2). . (20) 
+ Ov x Ov a ~ x  

Now, it is easy to see that for many-component plasma, the transformation (10) 
should be replaced by 

O _ Ou, <9 + (g~ + g,) nu~ 8u--2 8_. (21) 
Ox~ Oxk Out Oxt On 

Using (21) and (3), and noting that F~ ~' (1,2) is independent of u and v, we obtain in 
a straightforward manner, 

B. ,  = - -  
2kO (m,+m,,) 

(m~ w~ w x, + rn~, w~ w21+m , m,, (wx~ wzz+wtt w:u ) 

+ m, ml  uk (wv+w2,) + m~ uk wx,+m; 2, u~ wz, } Po ~" (1,2) Ou.._.£~ 
Ox~ 

1 (m, + m,,) uk u, ( 2 - - k D r )  , ,  0uk - -  P; ( 1 , 2 ) _  
2kO ~ 2 Oxz 
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- -  f~  (2)  2kO 2 Po (1, 2) q - ~  On 

× (m~ wlk q- m,, w~k) ut tgU.._kk. (22) 
bXe 

With this expression (22) for B,, ' ,  we calculate the asymmetric part AP~j  by com- 
paring (2) and (19). Noting that the terms containing G.  (r/r) vanish on r integration, 
we obtain the contribution of  the second term of  (2) to a~ given by (16): 

k O k ~  Ou~ ~ n e ' k  D Ou~ 
r , , ,  8 u 8k, - -  q- %,, (fl, q- fl,,) u~ u, 8,j . (23) 

48~r 0 xz 8 0x~ 
$" S t 

The second term in (23) is small compared to the first term and can be neglected. 
Thus, f rom (16), we obtain finally, 

o~,,=4~rtk O kaD 3,, -k- ~ ~" k O k~ 3,S 3~tOUk-----2. (24) 
487r O x~ 

SP 

Comparing (24) with (11), we obtain the potential part of  the viscosity coefficients: 

~ = 0  (25) 

• 1 kOkaD~.r~," 
s a d  ~v = m 48~t 

St 

4.  C o n c l u s i o n s  

The following points could be noted. First, the value ~ computed with the value of 
rt given by Baleseu and De Gottal (1961) is fairly in agreement with that of Hochstim 
and Massel (1969). 

Secondly, the potential part of  shear viscosity % is zero in the stream-line flow 
approximation, for a plasma with central interaction among the particles. This fact 
itself is interesting. 

Thirdly, the method developed here is quite simple and strightforward, and can 
easily be extended to study other transport processes in a plasma. 
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