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Helicon-phonon interaction for oblique propagation in potassium 
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Abstract. The disperstionequation for oblique propagation of the wave in the x y  
plane for helicon-phon0-'n interactionhave been derived and numerical studies have 
been carried out on the nature of variation of the four different modes with the magnetic 
field and the inclination of the magnetic field with the direction of propagation. 
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1. Introduction 

In two earlier papers (Viswanathan 1975; Viswanathan and Sekher 1976), the disper- 
sion equat ion for helicon-phonon interaction for propagat ion of  a wave parallel 
to the direction of  the magnetic field as well as at an angle to the magnetic field were 
derived. The results of  the numerical studies in the case of  cubic crystals were also 
presented for  the nature of  variation of  the four modes with the magnetic field 
(Sekher and Viswanathan 1978; ldiculla and Viswanathan 1978). These results have 
clearly demonstrated that in the resonance region where the velocity o f  the helicon 
is nearly equal to  the velocity of  one o f  the acoustic waves, mode conversion takes 
place and the interacting modes are of  a hybrid nature, behaving like neither helicons 
nor  phonons.  No numerical study has so far been carried out on the nature o f  the 
helicon-phonon interaction for oblique propagation, when the helicon mode  is pro- 
pagated at an angle ff to the direction of  the impressed magnetic field. Such studies 
could throw light on the difference brought about  in the nature o f  the hel icon-phonon 
interaction by the inclination of  the magnetic field to the direction o f  propagation.  
In fact, the numerical study for oblique propagation is much more complicated than 
the case of  parallel propagation, in view of  the complexity o f  the dispersion equation 
in this case. In the present paper, we repor:  the results o f  the numerical study of  the 
hel ieon-phonon interaction for propagation, of  the wave inclined to the magnetic field 
at angles ~----0 °, 10 °, 20 °, 30 °, and 40 ° respectively for the metal potassium. Non-  
local effects have been neglected. The numerical studies reveal that  for  oblique 
propagation,  the helicon interacts with the longitudinal mode also even when the 
propagat ion  is along a symmetry axis. Also~ we show that  as the inclination is 
increased, the modes are hybrid for a larger range of  the magnetic field. In ~4, we 
reproduce a few figures giving the nature of  variation of  the velocities of  the four 
modes with 4', and these figures show that helicon-phonon interaction makes the 
acoustic modes also sensitive to the inclination of  the magnetic field. 
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Our numerical studies also show that for parallel propagation along the principal 
axes, the helicon interacts with only one of the two shear modes, namely the mode 
that has the same circular polarisation as that of the helicon, and the interaction lifts 
the degeneracy of these modes. 

2. The dispersion equation for oblique propagation in the xy plane of a cubic crystal 

The general dispersion equation for oblique propagation is given by (Viswanathan 
and Sekher 1976) 
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where aik denotes the elements of  a matr ix  A given by 

a,k -= (Ci~ik k ~ - - P  ~°2 31k). (2) 

C l !  lk denotes the elastic constant  referred to a set of  o r thogona l  axes e 1, eg, e 3 such 
that  the direction of  p ropaga t ion  coincides with the e 1 axis. cr~ is the element of  the 

t t t conductivity tensor  of  the med ium referred to a set o f  o r thogona l  axes el, e2, e 3 in 
which e~ coincides with the direction of  the external magnet ic  field making  an angle 

with the el axis, while e~ coincides with e 3. The components  o f  the conductivity 
tensor are given by 

(r~2 --~ (Ne ~ v/m ~2) ,  

Ne C 3rr 
t - -  

call H 8 
• N e "  v 

k R  cos ~b tan ~ q~ -t- ~ ,  
m ~ .  ~ 

' ' ( N e  c/n) ,  0"23 ~ ~ 0'32 

0"" = 0"~3 + c o s ~ l "  

(3) 

Collision introduces a small damping factor to the wave but  the damping  rate is so 
small that  we can ignore it. Besides, we neglect the nonlocal  effects also so that  the 
component  o~a alone survives in the conductivity tensor. 

The elements of  the matr ix  A in the case of  wave propaga t ion  along a direction e t 
inclined at art angle 0 to the x axis in the xy plane, are well known and are quoted in 
Auld (1973). Using these expressions and writing kS = x  R q - i x  I we can write the 

dispersion equat ion (1) as 

al (x R -t- ix I) -'}- bl a5 (x R -~- ix 1) ib2 ibs 

a~ (x R + ~x~) a.(x R + ~xil + bl it,. ib. 

- -  ib~ - -  ib 4 all (x R + ix 1) -k- bt b n 

b e b 7 0 ia 4 (x R q- ixl)  q- ib s 

where a x - = C i x - - ( C l t y  Ciz C44) sin '  20, 

= O, 

(4) 

all ~ C44, 

a~ = ½ cos  ~ ,  (5)  
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a s = - -  - - -  sin 20 cos  20, 

b t = -- p~o ~; ba : s in ~ (Ne  coil /C);  b3 = t an  ~ ( - -  Ne/2) ;  

b~ = cos  ~b ( - - w H N e ) / C ;  b n = N e / 2 ;  b6 - -  ( - - 4 r ro~N e  sin ~)/C"; 

bv = (4run~Ne cos ¢)/C~; b 8 : (--2~.o. ,Ne)/CH. 

T h e  d e t e r m i n e n t a l  equa t ion  (4) cart be  e x p a n d e d  in  p o w e r s  o f  x R a n d  x 1. It  is a 

c o m p l e x  e q u a t i o n  a n d  hence by equa t ing  the  rea l  a n d  i m a g i n a r y  pa r t s  s epa ra t e ly  to  
zero ,  o n e  c o u l d  o b t a i n  two equa t ions  f r o m  w h i c h  x R a n d  x I cou ld  be de te rmined .  
A f t e r  h e a v y  a l g e b r a i c  work  one  ob ta in s  

Az (x~g --[- x ) - -6x~R x~) q- Az x R ( x ~ - - 3 X ~ r ) -  Aa (X~R--X~) 

- -  A 4 x R + A s = 0 ( 6 a )  

4A1 x R x I ( x ~ - - x ~ ) - -  A,  xz ( 3 x ' R - - @  + 2A3 x R xz + A, x I ---- 0 (6b) a n d  

where  t he  coeff icients  A I, A 2, A a, .4 4 and  .4 5 a r e  g iven  by  

A 1 = a  I a z a 3 a 4 - - a z a  4 a~, (7a) 

A 2 - -  a t a9 a a b s q- a 1 a z a 4 b 1 + a 1 a3 b 1 b 4 + a~ a~ a 4 b 1 

- -  a 3 a~ 0 8 - -  a 4 a~ b 1, ( 7 b )  

A 3 ~ - - - a l a  2 b  l b  8 q - a ~ a  a b  l b  s - +  a ~ a  4 b ~ - k - a ~ a a b a b 8 + a , z a ~ b x  g 

-t- az a4 b~ - -  a x a 4 b~ ~ a a a a b n bT - -  a~ b x b a -~- a 4 a n b z b 4 

q-  aa a5 b~ b n -[- a~ a n b~ b 4 - -  a~ a 4 b~ q-  as ba an b7 ~ a~ a 3 b a b n, 

(7c) 

A4 = (axb~b8 q- azb~bs q- a 4 b ~ - -  a l b ~ b 8 - -  a4blb~ 

q- axbTb4b ~ - -  a lbxbsb  ~ - -  a3b lbsb  7 q- asb~b4b 8 - -  anb~bnb 6 

+ anblbnbe q- asb~b4b 8 -  anb~bsb 7 - -  a2b~b 8 + a~b2bnbn 

- -  a4 bl b~ + anbl b3b7 - -  a2bl b3b n - -  az bl b3 bn), (7d) 

A.~ (ban b 8 ~ ~ =" bl b 4 bs q- bl b4 b5 b~ ~ b~ b 5 b~ - -  b 1 b~ bs ÷ bx b~ b~ bs 

q- b~bsb7 ~ bzb4bsb e - -  b~b3b ~ ~ bzb~ b~b7 -1- b~ b~bs). (7e) 
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An obvious solution of  (6b) is x i=O.  This means that  undamped propagat ion  is 
possible even if the wave vector is inclined to the magnetic field provided we neglect 
nonlocal effects in the expression for the components o f  the conductivity tensor. The  
real part  x g of  k 2 is then determined by the equation 

a l  x~  + A2 ~ - -  A2 x~ - -  A, x R + A5 = 0. (8) 

This equation is a quartie in x R and gives four real solutions for it. 

3. Numerical results 

We denote by 0 the angle between the direction of  propagat ion of  the wave and the x 
axis, whereas $ denotes the angle which the magnetic field makes with the direction o f  
propagation of  the wave. A computer programme was written to obtain the four  
real roots of  the quart ic equation (6a) for different values o f  0, ~ and the magnetic 
field for  the metal potassium. Our numerical calculations were carried out for a typi- 
cal value oJ = 2,r x 10 a H z for the frequency of  the exciting wave. The values o f  the 
other constants used in the calculations are as follows: 

Clx : 0"457 x 10 ix dynes/era ~, 

C12 = 0.374 x 10 u dynes/era ~, 

C~ = 0.263 x 1011 dynes/era ~, 

p = 0.91 gm/cm s, 

and N ---- 1 .40x10  ~. 

Computer  calculations were carried out for values of  the magnetic field ranging f rom 
0-2 x 105 G to 4-4 x 105 G at intervals of 0.2 x 105 G. The computer  could mix up  the 
roots for  the different modes, especially in the resonance region, and a proper  assign- 
ment o f  the nature o f  any mode, whether it is a helicon or elastic wave, could be 
ascertained only by studying the eigen vector of  this mode. (Idiculla and Viswanathan 
1978). 

The velocity o f  a pure helicon mode has been given by Kaner  and Skobov (1971) as 

ub = I cos ~ I (o~ CHI4~ Ne), (9) 

and this indicates a parabolic increase of  the velocity with H. The velocity of  a non-  
interacting ph onon  mode is independent of  H. As H is increased, the velocity of  the 
helicon increases parabolically until it becomes resonant with the velocity o f  one o f  
the acoustic modes. Then interaction takes place and the helicon no longer shows 
the regular parabolic increase with H, while at the same time, the interacting acoustic 
mode shows a variation in the velocity with H. Thus in the interaction region, neither 
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of the modes shows the characteristic behaviour of a helicon or a phonon but are 
of a hybrid nature. When the interaction region is passed, the helicon again shows 
the parabolic increase with H until it interacts with another acoustic mode. 

Figures l(a) to l(c) give the variation in velocities of the four modes with the 
magnetic field, when the magnetic field is inclined at angles 0 °, 20 ° and 40 ° respectively 
with the direction of propagation, which coincides with the x axis (i.e. 0=0, ~-----0 °, 
20 ° and 40°). From figure l(a) it follows that the velocity of the mode marked as (3) 
increases parabolically with the magnetic field until H is nearly equal to 0.8 × l0 s G. 
Thus mode (3) represents the helicon till this value of the magnetic field. Between 
0-8 × 105 G and 1"4 × 105 G, resonant interaction takes place and mode (1), which has 
been behaving like a phonon, starts showing a small increase with the magnetic field. 
Thus in the range of Hbetween 0.8 × 105 G and 1-4 × 105 G, the modes (1) and (3) are 
hybrid waves, made up of both electromagnetic as well as elastic vibrations. After 
H-----1.4x 105G, mode (1)shows helicon-like behaviour, and modes (2), (3) and (4) 
exhibit the characteristics of acoustic waves for all higher values of the magnetic field, 
thus showing that the helicon does not interact with the remaining two acoustic modes. 

In figure l(b), which corresponds to the case 0=0, ~=20 °, the same pattern of 
behaviour is followed as in figure l(a), until the field reaches the value H = l . 4 ×  
l0 n G. After this, mode (1) behaves like a helicon till H = 2 ×  l0 s G. Between H- -  
2.0× 10nG and H=2"4× l0 n G, we find that the modes (1) and (2) exhibit hybrid 
nature. In this region, interaction takes place between the helicon and the longi- 
tudinal acoustic mode, which had till now been represented by mode (2). From 
H-----2.4 × 10nG onwards mode (2) shows the characteristics of a helicon, while mode 
(1) represents the longitudinal phonon mode. 

As can be seen from figure l(c), the primary consequence of increasing the angle 
between the magnetic field and the direction of propagation is that the waves exist as 
hybrid modes over larger ranges of the magnetic field. The region of interaction 
between modes (3) and (1) ranges between H--1.0× 10nG and H = l ' 8  × 10nG. After 
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Figure 1. Variation in the phase velocity with magnetic field for potassium a. 8 = O, 
~ = O ° ; b .  0 = 0 , ~ = 2 0 ° ;  c. 0 - ~ 0 , ~ = 4 0  °. 

this, mode (3) behaves like a phonon. But mode (1), which started showing the 
characteristics of  a helicon, interacts with the longitudinal phonon mode (2), and 
retains its hybrid nature until H = 2 . 6 ×  105G. After this, the velocity of mode (2) 
increases parabolicaIly with the magnetic field just like a helicon. We note that the 
mode (4), which represents one of the shear modes, takes no part in the interaction 
and remains almost unaffected by the magnetic field. Since the velocities of the 
two shear modes are equal for wave propagation along the x axis, the two transverse 
modes can be resolved into a left circularly polarised mode and another right 
circularly polarised mode. Since the helicon is right circularly polarised, it will 
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interact with the right circularly polarised acoustic mode only. This statement can 
be mathematically proved also, starting from the dispersion equation for parallel 
propagation (Viswanathan 1975). Thus of the two shear modes propagating with the 
same velocity along the x axis, only one mode will interact with the helicon. This 
accounts for the fact that the velocity of the mode (4) exhibits no change with the 
magnetic field. Again when the acoustic mode regains its phonon characteristics 
after passing through the interaction region, its velocity is lowered slightly. The 
helicon-phonon interaction thus lifts the degeneracy in the velocities of the two shear 
modes. 

In figures 2(a) to 2(c), we plot the variation in the velocities of the four modes for 
wave propagation at an angle 30 ° with the x axis for different orientations of the 
magnetic field. The behaviour of the four modes is similar to the previous case. 
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Figure 2. Variation in the phase velocity with magnetic field for potassium. 
a. 0=30°,4,=0°; b. 0=30%4,=20°; e. 0=300,4,=40 ° . 

Again, the mode (4), representing a quasi-shear elastic wave, does not interact with 
the helicon, except showing some kinks in the resonant region. 

4. Variation o f  the velocities of  the four modes with the inclination of  the magnetic field 

From equation (9), it follows that the velocity of a pure helicon is proportional to 

x/cos ~ (~<rr/2), while a phonort should show no variation both with the direction as 
well as magnitude of the magnetic field. If one plots the graph of the tunction 

y(~)= [ F(0)---F(~)]/F(~) against 1--X/cos ~ for different values of ~ and for any value 
of 0, the graphs for the helicon should be a straight line passing through the origin 
inclined at 45 ° with the x axis, while the graphs for the phonons should coincide with 
the x axis. 

In figure 3, we plot the variation of [V(0)-- V(~)]/V(O) against 1 - -  X/cos ~ for 0 : 0  
and for the magnetic field H = I  × 10 5 G, when helicon-phonon interaction is present. 
The mode marked as (3) in the figure represented the helicon for lower values of the 
magnetic field, but its graph deviates from the line y -x .  Similarly the modes marked 
as (1) and (2), which represent a right circularly polarised shear mode and a longi- 
tudinal mode respectively, are inclined both to the x axis, whereas in the absence 
of interaction, their graphs should coincide with the x axis. We have also drawn the 
graphs ofy(,~) for different values of 0 and H, but for lack of space we do not reproduce 
them. All these figures dearly demonstrate that in the interaction region, the graphs 

of  y(ff) against (1--x/c--~-s ~) are curves inclined both to the x axis as well as to the line 
y = x  and depart significantly from the behaviour of a pure helicon or phonon in the 
absence of interaetion, 
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Figure 3. Variation of  the parameter for propagation of  the wave along the x axis 
and for the magnetic field H = 1 × 105G. 

5. Concluding remarks 

Our numerical investigations show that in the resonant region the waves are of a 
hybrid nature and that the helicon interacts with the longitudinal mode also at inclined 
magnetic fields. For parallel propagation along a symmetry axis, the helicon inter- 
acts only with the shear mode that has the same sense of circular polarisation, and the 
helicon-phonon interaction removes the degeneracy in the velocities of the two 
modes. Further, the helicon-phonon interaction has the effect of lowering the values 
of the velocities of  the interacting shear and longitudinal modes. All the four modes 
show variation with the inclination of the magnetic field near the resonant region. 
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