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Abstract. In this paper we develop a simple method for adapting the closed-shell 
many-body perturbation theory to an arbitrary point group symmetry taking account 
of various classes of diagrams exactly to all orders. The method consists in deriving 
a linear operator equation for the closed-shell wave-operator W which is then symme- 
try-adapted to the pertinent point group G. It is shown that the system of equations 
thus derived enables one to include orbital-diagonal h-h, p-p and h-p ladders to 
all orders in a perturbative framework. The way to generalise the method through 
inclusion of a larger classes of diagrams to all orders is also indicated. Finally, the 
connection of the present mode of development with the non-perturbative coupled- 
cluster formalisms is briefly indicated. 
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1. Introduction 

Recently we developed a method of incorporating spin-adapted configuration in the 
framework of many-body perturbation theory (MBPT) for closed-shell systems 
(Mukherjee et al 1977a; hereafter called 1). The present paper serves to introduce 
another method, which is more suitable for adapting MBPT to an arbitrary point 
group symmetry. 

The key-steps involved in the spin-adapted MBPT [I] may be summarised as 
follows: 

(i) The Hugenholtz matrix-elements were cast into ' spin-free' form through the 
use of  Wigner-Eckart theorem; 

(ii) the hole-hole (h-h) and particle-particle (p-p) orbital-diagonal ladder inser- 
tions are shown to form a geometric series; 

(iii) a certain class of orbital-diagonal hole-particle (h-p) ladders were also shown 
to form a geometric series; and 

(iv) the remaining (h-p) orbital-diagonal ladders were shown to be summable by 
setting up two geometric series with, respectively, second, fourth, s ix th . . .  
order and third, fifth, seventh.., order perturbation terms (see e.g. equations 
(40) and (42) of  I). 

535 



536 Debashis Mukherjee and Dipan Bhattacharyya 

It appears that a similar procedure would not work out so neatly if we want to 
adapt MBPT to a general point group symmetry. The reason for this difference 
lies in the structure of the spin-adapted M BPT: When we use the reduced Hugenholtz 
matrix-elements in the process of spin-adaptation, we couple the spins of the ingoing 
and outgoing pair of electrons, respectively, to a given resultant spin S - -  which can 
take on only two values 0 and 1. But in a general point group G, the orbitals would 
be labelled by indices :~ whose total number would depend on the dimensionality of 
the particular irreducible representation (IR) of the point group - -  so that the index 
F, analogous to S, for the coupled ingoing and outgoing electron pair states would 
take on more than two values in general. Moreover, for a particular IR, 1" may 
appear more than once from the coupling scheme (say, for example, for the point 
group K," Griflith 1962). In that case, the step (iv), described above, leading to two 
geometric series, cannot be attempted, and there does not seem to be any straight- 
forward procedure to sum all the (h-p) orbital-diagonal ladders to all orders. We 
would resolve this difficulty by replacing the MBPT series by an equivalent o n e -  
written in terms of  the associated symmetry-adapted wave-operation W (Lowdin 
1966), and providing equations which determine the reduced matrix-elements of W. 
§ 2 discusses this aspect. The equations for W derived by us are closely related to 

V x /  

the closed-shell coupled-cluster equation (Cizek 1966, 1969; Paldus, 1977; Paldus and 
v v  

Cizek 1975) and also the direct CI equations of the vector method (Roos and Siegbahn 
1977) in the non-perturbative framework. Recently Kvasnicka and Laurinc (1977) 
and Bartlett and Silver (1976) have used restrictive perturbative arguments to derive 
approximate equations analogous to ours. We have, however, derived a completely 
general equation for W, from which Kvasnicka-Bartlett type of recursive equations 
would follow as a special case. Because of the generality of  our approach, we have 
been able to explorc the connection between the perturbative and the non-pertur- 
bative approaches to the closed-shell problem*. This has been discussed in § 3. 

2. Equation for the direct determination of W 

Using the Haxtree-Fock (HF) determined as the vacuum we may write the Hamil- 
tonian H in normal order as follows: 

H = EHF -~ ~ (A N [a~ axl 
A 

+ <ABlvlCD>,,Nt'  a az) aC] 
• A , B ,  

C, O (1) 

Let us now suppose that we have a point-group G, commuting with H. For the 
closed-shells, the HF operator itself would commute with G, and the orbitals A 
would transform as bases for the various IRs of G. A general spin-orbital can then 
be labelled as 

a - -  (2 )  

*This same approach has proved profitable for elucidating the connection between perturbative 
and non-perturbative many-body theories for open-shells also (Mukherjee 1979). As a matter of 
fact, out success in the open-shells prompted us to look into tho corresponding aspects for the closed- 
shell. 
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where F and y stand for the index of  the IR and the particular component  o f  the 
IR corresponding to the orbital a, and the function u. is the associated spin function. 
We also classify all the spin-orbitals into hole orbitals and particle orbitals in the usual 
manner, and label holes by a, fl, etc and particles p, q, etc. Specifically, any hole 

spin-orbital, say, would have the form a F 13r a . 

We now parti t ion H into the unperturbed and perturbed components  Ho and V 
in the usual manner  (Kelly 1968), with V defined by the two-particle part  of  H in (1), 
and define the wave-operator W through the relation 

1¢> = W [ 0 > ,  (3) 

with [ ¢> as the exact ground state wave-function, satisfying the Schr6dinger equat ion 

HI%b> = El%b>. (4) 

Using the Gell Mann-Low-Goldstone theorem (Kelly 1968; Fetter  and Walecka 
1971), W can be factored out as 

w l 0> = w,~ I 0> <0 E w I 0>, (5) 

where W L is a collection of  all operators which induces all the h-p excitations with 

the restriction that  there are no dosed-diagrams (that is, no ' vacuum fluctuations').  
W L thus stands for all the linked diagrams in W. Let us emphasise that  the linked 

diagrams of  W are not  all ' connected ', they are linked only in the sense of  having 
no vacuum fluctuations. F rom (4), it follows that 

E = <01 n w L  I 0>. (6) 

W L can be written as a formal power series in V (Kelly 1968): 

_- 700__ 0 {[ev/(eo - -o)].},. (7) 

where Q is the projector on to the virtual space and { [QV/(E o --  Ho)]"}L stands for  
the nth order term in the expansion of  W L. 

Now we show that,  by a simple manipulation of (7), we may arrive at a linear 
equation in W L. The derivation is analogous to, but simpler than, the one we follow- 

ed in the open-shell case (Mukherjee 1979), and we shall therefore describe the pro- 
cedure rather briefly: 

We break up (7) as 

W L = I q- ~n°°=l ([QV/(E o -  Ho)]n}L, (8) 

and dissect one [QV/(E o -- Ho) ] from the series in (8), then (7) can be rewritten as 

wL = x + - no)] w£]-L. (9) 

P.--6 
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W L stands for classes of all diagrams left after dissecting the [QV](E  o - -  He) ] term. 

I f  we now note that (i) the class of diagrams obtained by dissecting one 
[QV] (E  o - - H e )  ] term are all linked (as we cannot introduce vacuum fluctuations 

by the dissection procedure) and (ii) the terms in the infinite series in W L contain 

the same diagrams as would be obtained from W L (i.e. (8)), clearly then W L ~- W L 

and we have 

W L -~ 1 q- [QV[ (E  o - - H e )  WL] L. (10) 

Writing WI. " as W L = 1 + ~/L" 

we have, from (10) 

WL = [QV/(Eo - -  Ho)] q- { [QV/(Eo - -  He)] ~VL}L" (11) 

Equation (10) or, equivalently (11), gives us a linear operator equation determining 
the wave-operator matrix-elements. Because of  the presence of  the projector Q, ~'L 
can have matrix-elements only between virtual space states <if* I and the unperturbed 
ground state [ 0>. From (11), we may easily derive 

- ~ - ~ m [ < ( ° ~ ] E o  - 
(12) 

where, again only those terms in the sum over states 4,* are to be retained which lead 

to diagrams with no vacuum fluctuations. 
We shall briefly show in § 3 that the equation (10) generates the coupled-cluster 

V 

equations for W in the non-perturbative framework (Ci~ek 1966, 1969). For the 
present let us only remark that if one wants to include very many classes of  diagrams, 
then it is advantageous to go over to the non-linear representation of  W L as an ex- 

ponential operator (Coester 1958; Coester and Kummel 1960; Cizek 1966, 1969). 

This is because we are lumping together in the p-body operator component W(LP) of  

W L all the diagrams withp incoming and outgoing lines and are not explicitly keeping 

track of  whether they are all connected or not. As a result, in the joining of  
Q V / ( E  o - - H e )  and W L in (11), we would not be sure that we are not introducing 
vacuum fluctuations. This difficulty would have been obviated in a coupled cluster 
representation of  W L where the connected and disconnected components are clearly 

differentiated*. For  our present purpose, however, where we would really confine 
our attention to only the two-body part of W L and would keep only certain special 

class of  diagrams in (12), the linear representation suffices. We now invoke to the 

*For a more extensive discussion regarding the difficulty concerning the disconnected diagrams 
we refer to our recent work on the connection between perturbative and non-perturbative open- 
shell theory (Mukherjee 1979). 
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usual approximation regarding the dominance of pair-correlations, and retain only 
the two-body part of W L. The functions ¢~' that would enter the equation (12) 

would be of the form 

FP F3 az q~' aaJ  

L 71 flTe 0.2 

We want to approximate (12) still further. For a given set of  IR, characterising the 
hole and particle orbitals 

Fs F, ) ( ,z F ~ fl~2 a2 ' P7~ qm a4 J ' 71 al' a3' 

we choose only those doubly excited states ~* which are formed by lifting two elec- 
trons-one from each of the degenerate components 

( aFl ~ 8F~ 
)- 7, a,} and ~,-Ts %1 

and putting them--one in each again--into the degenerate components 

f .F ,  ak} and ( -F,  v:,~ ~ ~ ,  at ~ • 

It just means that, if we expand W~' in (12), using (7), we would get a perturbation 
series in which scattering takes place only between the states involving hole and 
particle levels labelled by the same set of IRs r'l, F~, Fa and F4 respectively. 
Diagram-wise this implies that all the diagrams which are orbital-diagonal (h-h), 
(p-p) and (h-p) ladders in all orders are taken into account in the calculation of  
E. An orbital-diagonal (h-p) insertion would, for example, involve a matrix-element 

<a ~o ~Faok Ip I ~_ . F s  Ot>a 7i 1 FYk ~7J ~d PTI 

with the same labels F1 and Fa on a and p respectively; the component indices 7,, 
7k, 7j and 7, and the spin-functions o,, etc would take on all possible values however. 

Clearly the equation (12)--as approximated above--is equivalent to the perturba- 
tion series analogous to the spin-adapted MBPT for an arbitrary point group. It 
only now remains to adapt this series explicitly to the point-group symmetry by way 
of introducing reduced Hugenholtz matrix-elements-analogous to what was done in I. 
We have, corresponding to the spin-adapted matrix-elements [see e.g. equation (10) 
of I], the defining relation 

<a F1 o e F* % d P' a4> ° .P. I I l b ; a 2 v  7, 

r ,  7, n 
s, s 

, M S >  7:>" (13) a~ \ MS % 
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The supercript n appearing in (13) would take care of the fact that the direct produce 
I'1®['2, etc. for a general point group may not be simply reducible (Koster 1958). 
A similar equation also holds good for the reduced matrix-element for W L. Using 
the phase-convention as in Griffith (1962), and using the reduction procedure as 
outlined in I, through the graphical methods of spin-algebra (EI Baz and Castel 
1972; Briggs 1971), we end up with the following system of linear simultaneous equa- 
tions: 

{Pq I1 W2 II ~ [3)Fsff' n _ (Pq II v I1 ~/3} rk'sk n 

+ [{Pq 11 v [IPq)SF: '" X 

#ar~, .  (2 -- 8.~)/2] (2 --  3p,)/2 q- {=/3 II v 11 ~ -s~ 

+ 

rt, r{ 
st, sj 
tni, gnj 

[I'k] [r,] [rj]  [S,] [St] [S~] X 

m t  FSISI [ { p  II v ll ~p~-s rt' k. (r~, r#, F~, F~, r,, Fj, rn,, mj) 

,~ "~ri, m t  FStSj 
-+- {p/3 II v II PP)s,  kn (I'[~, I'~, I'p, r , ,  I',, Fj, m,, mj) 

"~ r t ,  m l  ~ S i S j  
q- {q ct II v 11 ~ qSs, rkn (r~, r~, F~, rp, r, ,  r j, m,, mj) 

-[- -(q fl ]Iv l[ [3 q)FS~' m, FS, Sj kn (F~, F~, rq, Fp, r i ,  F j, mi, m j)] × 

- -  _ o l I ' J ,  m j  (Pq II w2 H (14) 

for all choices of (p, q), (a, fl), k, n, and S,. The quantity (r ,) ,  etc. are the dimen- 
sionality of the corresponding IR. The quantity ~s1S, is defined as * kn 

Fg~S~ 
k n  - (F1, ['2, F3, F4, Fs, F6, ml, m~) 

(ra F3 rs, mx) 
-- rk,. r4 r3 sk ½ ½ , 

rs r , , m ,  r l  ½ s~ ½ 

(15) 
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where the entries on the right hand side of(15)containing Fs is a 9-J symbol appro- 
priate to the point group (labelled by ' extra '  indices m 1, m S and n). Solution of  
(14) would provide us with-the matrix-elements of W~) including all the (h-h), (p-p) 

and (h-p) orbital diagonal ladders to all orders. 
The expression for correlation energy would be given by 

~)r~ , .  = I , r , , , .  £pq [1 ~'~l -Jsk tr,,] ts, J A E  t ~ (af l l lv  Pq)s, 

P, q 
r,, s,,. 

(16) 

3. Connection with the coupled-cluster theory 

Let us first note that, in (12), if we include in the summation over ff~" all the doubly 
excited states for each ~b~, then the system of equations thus generated would embody 
all the (h-h), (h-p) and (p-p) ladders (diagonal as well as off-diagonal) to all orders. 
This is an obvious and straightforward extension of the scheme outlined in § 2 and 
follows closely the spirit expressed in I. An analogous systems of non-perturbative 
equations were derived recently by Paldus (1977) who has also discussed the relation 
of his work with those of  Roos and Siegbahn (1977). 

We now briefly show the connection of equation (10) with the coupled-cluster 

theory of  Cizek (1966, 1969). Rewriting (10) as 

(E o -- Ho) W L = (E o -- Ho) -q- Q (VML) L, (17) 

and pre-multiplying (17) with Q, post-multiplying by P, and using the idempotency 
of Q, we have 

Q [Eo --  Ho] W L P : Q (VWL) L P. (18) 

Using the relation 

(19) 

we easily obtain from (18) 

Q IHo, WL] P + Q (VWL)LP = O. (20) 

V g  

Now we shall use the linked-cluster factorisation theorem in the spirit of  Cizek's 
theory, but shall use the algebraically expressed factored-out version as developed 
recently by Mukherjee et al (1975a, b; to be henceforth called Ila, and l ib res- 
pectively) in the context of  a general non-perturbative formalism, Using the Urs¢ll- 
Mayer representation of  WL: 

W/., =- exp (T), (21) 
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V W  L = V exp (T) = exp (T) U, (22) 

(see, e.g. equation 25(b) of IIa) 

The quantity {T"I VT"~)con n was denoted as {T"a V T " , ) L  in lla, but we have 
changed this notation here to emphasise that they consist of connected diagrams 
only--though they may be closed. Further, for closed shell, T's cannot be con- 
tracted to H from left, hence n 1 = 0. 

Now, using (22) with V replaced by H o, we have 

Ho W L = H o exp (T) = exp (T) U o :  W L U o 

where U o would be of the form (23) with H o replacing V. 

CO 
1 

Uo = H ° - ~  Z ~.l'~HoTn}conn : H ° - ~ -  ~o' 
n=l  

we have, from (24), 

Q [Ho, WL] P = Q [WL Uo] conn P" (26) 

~r o consists of all the connected diagrams obtained by joining H o with several Ts~ 
Now the Ts always induce transition from the P space to the Q space, and the operator 
H o, being diagonal, when acting after the Ts would keep the resultant function still 

in the Q space. Hence U0 acting on a P space lifts it onto the Q space. Hence 

P O o P : 0 and we have no vacuum fluctuations. Equation (26) may thus be 
written as 

Q [Ho, W L ] P :  Q ( W  L Q~Jo)L P :  O W L  Q U o P "  (27) 

Let us note that W L does not have any line joining Q Uo. 

Dissecting U into closed-diagrams Uc and the linked diagrams U L, we have 

(HWL) L = exp (T) U L = W L U L. (28) 

Hence, Q (VWL) L P = Q W L U L P. (29) 

As U L consists only of open diagrams, P U L P = 0, and Q U L P  = V L P, hence 

Q ( V W L ) L P  : Q (WL O UL)P. (30) 

Writing U o as 

(24) 

(25) 

CO 

with U = Z Z (--1)", 1 _._1 .{T. ' V T.,)eon n (23) 
n = 0 n l ,  n2 r/1 ! n 2  ! 

nz+n2=n 
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Hence equation (20) reduces to 

Q W L Q U o P - t - Q W L Q U L P = O ,  (31) 

whence Q lJo P -[- Q UL P : O. (32) 

Now, from (23) and (25), we have 

co 1 
(33) 

where in U L only the linked part of (25) is retained. Calling U o + UL as H, we have 

Q H P : 0, (34) 

v v 

which is the non-perturbative coupled-cluster equation of Ci zek in algebraic form.* 
Recently Kvasnicka and Laurinc (1977) and Bartlett and Silver (1976) gave recur- 

sive formulae which, in spirit, are related to the system of equations (11) derived by 
us. It appears that their recursive relations emphasise the structure of (11) in a 
limited sense in that disconnected diagrams are not considered at all, so that the 
problem of avoiding vacuum fluctuations has not been discussed. Kvasnicka and 
Laurinc (1977) however, observed that in general their procedure may lead to a pro- 
blem of overcounting. We have shown in the present section how the problem of 
disconnected diagrams can be handled through the exp (T) representation. Thus we 
are on safer grounds--we know where we have to be careful while generalising the 
present scheme beyond ladder insertion and how to do it. 

Let us also mention that very recently Lindgren (1978a, b) has developed a coupled- 
cluster formalism for open-shells starting from the open-shell perturbative theory of 
Bloch (1958) and Brandow (1967) from which the corresponding closed-shell version 
may be derived as a special case. This also leads to (34). The connection of Lind- 
gren's approach with the Goldstone-like expansion scheme--as used in the present 
paper--has been discussed in detail in a recent paper (Mukherjee 1979) for open- 
shells. For closed shell, we merely observe that Lindgren's starting equation reduces 
to 

Q [W L, H0] P = a V W  L P - O W L P V W  L P, (35) 

(see equation (33) of Lindgren's paper (1978b)). 
Noting that P V W  L P consists of all closed diagrams of V and W L connected 

together, we may identify P V W  L P with the closed part Uc of U in (23). Using 

(22), (23), (25) and (29), we have 

Q W L U o P - F - Q W L U L P q - Q W L U c P - - Q W L U c P = O ,  (36) 

from which (34) follows after cancellation of Q W  L from the left. 

, F o r  a m o r e  ex tens ive  d i s c u s s i o n  o n  th is  po in t ,  see e.g. I Ia  a n d  IIb. 
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4. Concluding remarks 

The development outlined in this paper may be generalised to incorporate many 
other classes o f  diagrams to all orders. Furthermore,  in the whole development, 
nowhere it is necessary to use explicitly the actual point group involved in the process. 
Thus, formal degeneracies, which are consequence of  the special artifacts used in the 
calculations, may also be treated in the present formalism with equal facility. For  
example, in a PPP model benzeneground state calculation using localised H F  orbitals, 
one may formally ascribe the three-fold degeneracy in the localised HF  orbital energy 
of  the bond orbitals as due to an abstract internal ' bond-space group ', and treat 
them as belonging to a convenient T-type o f  I R  of  any point group homomorphic  
with this ' bond-space group '. We are currently utilising this interesting observa- 
tion in reducing the dimension of  the coupled-cluster equations for systems showing 
alternancy symmetry. Systems for which the present formalism may be immedia- 
tely useful are atoms, homonuclear diatomics, linear polyatomics and molecules 
belonging to the highly symmetric point groups like Td, Oh, etc. 
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