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Wave functions from an off-energy-shell generalisation of the 
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Abstract. An ansatz is introduced in the Gordon's method for nonlocal separable 
potentials to construct expressions for off-shell wave functions associated with the 
physical, regular and standing wave boundary conditions. This method has certain 
calculational advantages and is particularly suitable for dealing with potentials of 
higher rank. Results obtained for the Mongan case 1V potential agree with those 
derived by the complicated techniques. 
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1. Introduction 

In a recent paper (Talukdar et al 1979a) (referred to as paper I hereafter) we derived 
an off-shell generalisation of  the Gordon 's  method (Gordon  1970) and constructed 
analytical expressions for off-shell Jost solutions and Jost functions for non-local 
potentials of  the separable class. Admittedly, in possession of  appropriate  Jost solu- 
tions one could solve off-shell wave functions for the radial part of  the physical (~P), 
regular (4) and principal value (~s) by using relations given by Fuda  and Whiting 
(1973), Warke and Srivastava (1977) and Talukdar et al (1977). Before such an at- 
tempt is made it will be judicious to look into the physics of  the problem more closely. 

The studies made by the above workers relate to scattering by local potentials and 
are based on inward extrapolation of appropriate asymptotic waves. One could ask: 
Are these results useful even when the potential is nonlocal ? However,  the following 
shotald be noted. A nonlocal potential couples the wave function at a point with its 
values at other positions; this in turn could obscure the intuitive meaning of  the 
extrapolation procedure. It will be desirable to construct expressions for ~bP, ~ and 
~S for non-local potentials in terms of  a more transparent formulat ion and clarify 
the conceptual problem. Gordon 's  method provides a convenient f ramework to deal 
with the situation. 

2. Ansatz for wave functions 

Using Gordon ' s  method we obtained without much difficulty the generalised Jost 
solutions (Paper I) presumably because the Jost boundary condit ion is part  of  the 
associated differential equation through the inhomogeneity term (k2--q 2) exp (iqr). But 
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the situation is a little complicated with other boundary conditions when we need an 
additional ansatz. We elucidate this point by dealing with the more simple 
Yamaguchi (1954) potential and generalise our method to obtain ~bP, 4' and ~bS for 
a rank n separable potential. For simplicity, all our results relate to the s-wave case 
with the subscript l--0 omitted; the generalisation to higher partial waves is trivial. 
We work in units in which ~2]2m is unity. 

For a rank n separable potential, the off-shell Jost solution f(k, q, r) satisfies the 
inhomogeneous differential equation 

n oo 

+ fo<')(s)f(k,q, s)ds =(k2--q~)exp(iqr), (1) (ff~2rZ k ~ ) f ( k , q , r ) - - ~  A,o(')(r) 
i ~ l  0 

where k, q, ,~ and v (~) have the same meaning as used in paper I. In contrast, ~b P, 
and sS satisfy 

n 00 

( ff~2r~ + k' ) R(k,q, r,-- ~ h:'°(r) f va'(s,R(k, q, s)ds----" kZ--qZ, sin qr (2, q~ 
i ~ l  0 

with/z-----0 for 4, e and ~S and /z= l  for 4'. 
The Yamaguchi potential represents a rank one potential with the form factor 

v(r)=exp (--ar). For this potential equations (1) and (2) read 

oO 

+ k 2 f (k ,  q, r) -- A exp (--ar)  f exp (--as) f (k ,  q, s) ds 
o 

-~ (k*--q e) exp (iqr), (la) 

and 
0(3 

( I -[-k 2 R (k, q, r) -- A exp (-- ar) f exp( - -  as) R(k,q ,s)  ds 
o 

k 2 _ q 2  
- -  - -  sin qr. (2a) qt, 

In Gordon's method one solves these equations by assuming that the integrals 

oo oo 

f exp(--as)f(k,  q, s) d~ and f exp(--as) R(k, q, ,) ds 
o o 

are simply constants. The unknown constants which appear are determined by sub- 
stituting the solutions back into respective differential equations and matching desire.d 
boundary conditions, 
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Let us first solve for the Jost solutionsf(k,  q, r). From equation ( la) f (k ,  q, r) is 
obtained in the form 

f (k ,  q, r) ----- exp (iqr) -q- C(k, q) exp (-- ~r), (3) 
~2 + k S 

oO 

where C (k, q) = ,~ f exp ( - -~s) f (k ,  q, s)ds. (4) 
o 

As stated above the constants C(k, q) will be determined by combining (la), (3) and 
(4). Meanwhile, the Jost boundary condition has already been incorporated in (3) 
since as r--->oo, f(k,  q, r) goes to exp (iqr). Thus we should no longer worry about 
the boundary condition. The constant C(k, q) is obtained as 

1 1 
C(k, q ) =  D(k~) a~q-k S ~-- iq '  (5) 

with the Fredholm determinant 

D(k) = 1 - - 2 a % S _ k  2 " ' t  -t- ) (6) 

In a similar manner, the solution of (2a) is obtained in the form 

R (k, q, r) -- sin qr -k d(k, q) exp -- (ar), (7) 
q~ ~s_~_k e 

oo  

where d(k, q) = h f exp (--as) R(k, q, s) ds. (8) 
o 

It is important to note that  equation (7) does not involve any of  the boundary condi- 
tions like the physical, regular or standing wave. We attempt to include the boundary 
condition by the following ansatz. We write 

R(k,  q, r) -- sin qr d(k, q) [A cos kr -k B sin kr-kexp (--ar)],  (9) 
q t~ ~a~Jr_k  ~ 

where A and B are constants to be determined by the actual boundary condition. 
Combining (7), (8) and (9), we get 

d (k, q) : Aql-z 
(a  S ~_q, )  D ~ ( k  ) , (lO) 

where D, ' (k)  = 1 A _ ; ~ ( , , / a + B ~ )  ( 1 0  
2 a ( a  2 - b k  2) (a S + k S )  2 
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The superscript 7r on D relate to the boundary condition to be imposed. More speci- 
fically, ~- will be substituted by P, R and S for physical, regular and standing wave 
boundary conditions respectively. 

2.1. Physical solution (outgoing wave boundary condition) 

In this case/~, = 0. The wave function 

R(k,  q, o) = ~bP (k, q, o) ----- 0, (12) 

sin qr -- d(k, q) exp (ikr). (13) and ~b/'(k, q, r) r-+oo a~+k""-~ 

In view of  (12) and (13) the coefficients A and B become 

A = - -  1, B = - - i .  (14) 

Thus the physical wave function is obtained as 

,~q 
~be(k, q, r) = sin qr -+- 

De(k) (~,.. + k ~-) (~,~ + q , )  
[exp (--~r) --  exp (ikr)], 

(15) 

A A (a d- ik) 
where D P (k) = 1 -- 2a ( ~  -Jr- k S) -f- (~2 + k2)2 " 

2.2. Regular solution 

For the regular s o l u t i o n / ~ :  1 and the boundary conditions are 

R(k, q, o) = ~(k, q, o) = 0, 

and d~ (k, q, r) l = 1. 
dr r=0 

Using the boundary conditions (17), the coefficients A and B in (9) are found as 

A ~ - - 1 ,  B = a / k .  

Thus the regular wave function ~(k, q, r) is obtained in the form 

(16) 

(17a) 

(17b) 

(18) 

¢(k,q,r)= s, nqr  + 
q DR(k)((t~J-k2)(a2-~q2) 

(19) 

Where DR(k) equals the Fredham determinant D(k) associated with the Jost solution 
since Yamaguchi potential is symmetric in r and s 
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2.3. Standing wave sohttion (principal value wave fimction) 

The boundary conditions for this solution are 

R(k, q, o) = Cs (k, q, o) = 0, 

-+ sin qr d(k, q) cos kr, and ~b S (k, q, r) r co - -  a~. {_k2 

with /z=0.  In this ease 

A : - - 1  a n d B : 0 .  

Therefore 
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(20a) 

(20b) 

(21) 

- ~q - [exp (--  ar)--cos kr], (22) •S(k, q, r) = sin qr + DS(k  ) (a~+ k2) (a2 q_q2) 

3, Aa 
where D S (k) = l - -  2a(a~+ k~) + ( -[ k2-------~'" (23) 

3. Rank n separable potential 

Results to be presented for a rank n separable potential are now in order. In 
paper I we discussed in some detail the method for obtaining the Jost solution. We 
therefore concentrate our attention to other solutions. Denoting the integral 

co 

A l f v "1 (s) R (k, q, s) dr by di (k, q) the general solution of  equation (2) is written as 
0 

n 

R(k, q, r) = sin qr q_ Z [GI (k, r)-[-A ~ cos kr-~- Bi sin kr] di (k, q), 
q~ 

i=l 

(24) 

where Gi (k, r) is the particular solution of 

+ k 2 G~ (k ,  r) = v li~ (r). (25) 

Clearly, the constants A i and Bi in (24) will be determined by matching R(k, q, r) to 
the desired boundary condition. The treatment will be similar to that  used for the 
Yamaguchi potential. Substituting (24) in (2) we see that dis  are determined from the 
matrix equation 

II c o  

Z [ 3 u -  A, f ds v'" (s)(Gj (k, s)+Aj cos ks ~-Bj sin ks)-] dj (k, q) 
j = l  0 

g_~f  sin qs vU)(s)ds (26) 
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4. Mongan case IV potential 

Specialising equations (24) to (26) to the rank two case, the results for ~P, ,~ and ~S 
can be obtained rather straightforwardly for the Mongan potential (Mongan 1968, 
1969) 

V(r, r') = )t 1 exp [--al(r÷r')] 4- )t,. exp [--a~(r÷r')]. (27) 

We now obtain the following physical, regular and standing wave solutions in 
(28) to (30) respectively. 

1 
¢/'(k, q, r) = sin qr ÷ DP(k ) [Q1 (k, q) exp ( - - a  I r) ÷ Q2 (k, q) 

exp (-- a~ r) -- Qs (k, q) exp (ikr)]. (28) 

~b(k, q, r) -- sin qr ÷ ~ [Rl(k, q) sin kr--R~(k, q) cos kr 
q kDR(k) 

÷ R,(k, q) exp (--air) ÷ R,(k, q) exp ( - - a  s r)]. (29) 

1 
q,S (k, q, r) = sin qr -- -D--~) [Wa(k, q) cos kr-- W a (k, q) exp ( - - a  1 r) 

-w,(k,  q) exp ( - ~ , r ) ] .  (30) 

In equations (28) to (30) Q,, R~ and fir are given by 

and 

= )tlq [1 4- )t*(a~S--k*) q- iA~k ] 
Q~(/~' q) ( ~ ? + / c q  (,,~*+q~) - 2 ~ , ( ~ , ' + k * )  ~ - (~,*÷k~)*J 

--  ~l)t'q [ala'--k~" ÷ ik], (31a) 

-- ;tsq [ 1 )tl(al2--kS) ÷ iihk 4] 

-- Al~q [ ctla~-k~ ÷ ik] (31b) 
(a12÷k") (al~÷q~)(a~*4-k s) L a1÷% 

Qs(k, q) = Ql(k, q) ÷ Q~(k, q), (31c) 

~1 k Rl(k, q) = -~ R 3 (k, q ÷ R~(k, q), (32a) 

R,(k, q) = Ra(k, q) ÷ R4(k , q), (32b) 
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with 2 h k 1" 1 )~ 
Ra(k, q) - -  al2@kO " [a~-+q ~ 2a~(~*+q ~) (%~'+k 2) 

1 + 
(a~ +a~) (a12 4-k 2) (a~2+q2)j ' 

(32c) 

~ k  [ 1 o A x _]_ 
R 4 (k, q) - -  a29+ k2 a2.,_-]_q. - -  2al(alg.q_k2 ) (a22~_q2) 

h~ ] (32d) 
"q- (Ctl_i_a2) (a12 q_q2) (%2+k~) " 

Alq I1 + A~(%2--k2)1 Wl(k, q) = (alUq_k2) (a12+q2) 2 ~ 2 J  

~lA~q (ala~--k 2) 
( a l +  as ) (%2+k2)2 (a22+k2) (%.~ ~ q2)'  

(33a) 

W2(k , q) = , A2 q ~1 -~ Al(ax2--k2) ] 
(a2~'@k ~) (a2~@q e) ~ 2 ~ ~  ] - 

Ai ~q( al az-- k u) 
( a l + a s )  (al~+k 2) (a12+q~) (%°"+k2)2' 

(33b) 

and Wa(k , q) = W~(k, q) + W2(k, q). (33e) 

The Fredholm determinant DR(k) associated with the regular solution is equal to the 
Fredholm determinant D(k) for the Jost solution given in paper  I. Expressions for 
De(k) and DS(k) are given by 

DP(k) ~-- D(k) + R(k) + iI(k), (34a) 

_ A1 al )tz as A1 A2 kS (al - -  %)2 , (34b) 
with R (k) (alS -{-kS) 2 -~- (a22-{- k2) ~ --  2ala2(aI 2 -t- k2) 2 (%2 + k 2 )  ~ 

~1 k ~t z k 
and 1 (k) -- (al2 q- k") 2 -+- (a2~ q- k~)2 -~ 

al as k (~1 -- %)0 (~1% -- k2) 
2el a2(al @- =2) (at2 + k2) 2 (a22 -+- k2) ~ " 

(34c) 

D S (k) --- D(k) q- R (k). (35) 

Based on Gordon 's  method we have presented in this paper a straightforward 
approach to calculate wave functions which occur in the theory of  T and K matrices. 
These wave functions could also be obtained by using standard Green's function 
techniques (Talukdar et a11979b). In this ease there would appear  Volterra integrals 
which tend to complicate the calculation by at least an order of  matgnitude, Because 
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of its simplicity, the method presented here will be particularly suitable to deal with 
separable potential of rank higher than two, which are often used to describe the 
nucleon-nucleon potential more realistically. 

In the theory of local potentials ~bP, ¢ and ~bS are expressed in terms of lost 
solutions as 

1 
~bP(k, q, r) ---- [f(k,  q, r) - -  f ( k ,  - -  q, r)] 

_ 1 f ( k ,  q) - - . f (k ,  - - q ) f ( k ,  r), (36) 
2i f ( k )  

¢ ( k , q , r ) = ~ - ~ q [ ~ f ( k , q , r ) - - f ( k , - - q , r ) }  @ i f ( - - k ) - -  1 

+ s ( k , - q )  - 1 s(k, r) -- i S(k) 
f ( k )  

f ( k ,  q) --  f ( k )  ~ f ( _ k  ] + (37) 

and 
1 

¢S(k ,  q, r) = If(k,  q, r) - - f ( k ,  - -q ,  r)] 

_ I f ( k ,  q)  - -  f ( k ,  . - -q )  I f ( k ,  r) -4- f ( - - k ,  r)]. (38) 
2i f ( k )  + f ( - - k )  

In these equations, functions appearing in the right hand side have been obtained 
in paper 1 for the Mongan Case IV potential. Using the appropriate Jost solutions 
and Jost functions in equations (36) to (38) we find that the results agree with those 
in (28) to (30). Thus we venture to suggest that, despite nonlocal effects tend to 
obscure the intuitive meaning of the extrapolation procedure, the results of Fuda 
and Whiting (1973), Warke and Srivastava (1977) and of Talukdar et al (1977) are 
valid in general. 

5. Conclusion 

Based on the original conjecture of Gordon (1970) and its subsequent generalisation 
by Talukdar et al(1979a), we have derived a straightforward method for constructing 
off-shell solutions useful in three-particle scattering. For example, relations for the 
wave functions can be used to derive expressions for off-shell T and K matrices 
(Talukdar et al 1977) in terms of appropriate Jost functions, Fredholm determinants 
and transforms of the form factors of the potential. The results for most of the 
separable nonlocal potential cited in the literature will be characterised by elementary 
transcendental functions. 
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There has been a resurgence of  interest in the studies of  scattering by nonlocal  
potentials because of  the following. An awkward analytical constraint  associated 
with the short-range local potential  is that  the phase shift ~ (k) is a cont inuous func-  
t ion of  m o m e n t u m  k. There exist situations where relaxation of  the constraint  is 
necessary in order  to accommodate  experimental results. For  example,  in the vicinity 
of  an isolated compound  resonance, the phase shift for the resonant  part ial  wave 
develops a j u m p  of  magni tude ~r. The change in phase becomes discontinuous as 
the width of  the resonance approaches zero. Recently, it has been emphasized by 
Mulligan et al (1976) that  this constraint can be relaxed in going f rom a local to a 
nonlocal potential .  The nonlocal potential is thus effective in treat ing a much  wider  
variety of  phenomena  than  that  encompassed with a short-range local potential .  
One of  the tasks in developing the description of  physical processes characteristic 
of  a nonlocal potential  must  be the analysis of  off-shell effects due to such a potential .  
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