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Abstract. A phenomenological interpolation model for the transition ot;crator of a 
stationary Markov process is shown to be equivalent to the simplest difference appro- 
ximation in the master equation for the conditional density. Comparison with the 
formal solution of the Fokker-Planck equation yields a criterion for the choice of the 
correlation time in the approximale solution. The interpolation model is shown to 
be form-invariant under an iteration-cum-rescaling scheme. Next, we go beyond 
Markov processes to find the effective time-development operator (the counterpart 
of the conditional density) in the following very general situation: the stochastic 
interruption of the systematic evoltttion of a variable by an arbitrary stationary 
sequence of randomiziqg pulses. Continuous-time random walk theory with a distinct 
first-waiting-time distribution is used, along with the interpolation model for the 
transition operator, to obtain the solution. Convenient closed-form expressions for 
the 'averaged' time-development operator and the autocorrelation function are pre- 
sented in various special eases. These include (i) no systematic evolution, but cor- 
related pulses; (ii) systematic evolution interrupted by  an uncorrelated (Poisson) 
sequence of pulses. 

Keywords. Markov processes; transition operator; interpolation model; continuous- 
time random walk; pulse sequences; non-Markov processes. 

1, Introduction 

The  effects o f  r a n d o m  f luctuat ions  in a very large variety o f  phys ica l  p r o b l e m s  are  
studied by modelling the fluctuations in terms of Markov processes. A vast literature 
exists on the latter subject (see, e.g., Stratonovich 1963). In this paper we demon- 
strate certain interesting and useful properties of a very convenient approximate 
solution to the master equation for the conditional probability density of a Markov 
process. Subsequently, we construct also the conditional density for non-Markov 
processes (i.e., those with memory) corresponding to the same form of the transition 
operator as in the earlier instance. For notational simplicity, we consider a single- 
component, stationary random process ~:(t). 

If ¢(t) is a stationary Markov process, it is characterised by its two-point conditional 
probability density P(~, t l to). This quantity obeys the well-known Chapman- 
Kolmogorov equation 

t'(t, ,i ~0)=fdtl e(t, t-t,! t,) e(t,, q} to), (0 <q  <t), it) 

a summation instead of integration being understood in the case of a discrete random 
variable.  In  terms o f  w(6:l ~1), the  t rans i t ion  p robab i l i t y  per  uni t  t ime for  the  r a n d o m  
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variable to jump from the value ~t to the value ~, the Markov property is embodied 
in the master equation 

0 p(#, tl #o)=J'd#l[w(# 1 ~1) P(#I, t i ~:o)-W((1/~:) P(~:, t l ~:o)]. 
Ot 

(2) 

In many applications involving a continuous variable ~:, it is customary to convert (2) 
to a partial differential equation with the aid of a systematic Kramers-Moyal ex- 
pansion (Kramers 1940; Moyal 1949; Van Kampen 1961, 1977; Pawula 1967; Haken 
1975). With the identification of a proper expansion parameter, it is possible to 
justify the truncation of the Kramers-Moyal series at the second term, and a gene- 
ralised Fokker-Planck equation for P results. (~ is then called a continuous Markov 
process). Attention then shifts to the solution of this equation. 

Returning to the general equations (1) and (2), it is often convenient to use an ope- 
rator notation of the following sort: let I ~) denote a '  stochastic state ' corresponding 
to the fact that the random variable has a value ~, so that P(~, t 1 ~0) is simply the 
matrix element of a time-dependent operator ~(t):  

P(~:, t[ ~o) ~- (~:l~(t)[ ~:0). (3) 

Equation (2) is then transcribed as 

Ot~(t)/Ot = W~(t), 

with the formal solution 

(4) 

~(t) = exp(Wt) (5) 

corresponding to the initial P(~, 0 1 ~0)=3(~--~0). The operator W is sometimes 
called the 'relaxation matrix ', especially in the context of line-shape problems 
(Anderson 1954; Kubo 1954). Physical arguments enable one to model W directly 
in many instances, and hence obtain what is essentially a stochastic Liouville operator 
describing the evolution of the sub-system of interest when the latter is coupled to a 
' bath '  comprised of a very large number of degrees of freedom. Depending on the 
specific situation, a satisfactory approximation to the effective time-development 
operator ~(t)  may be found thus, without necessarily solving what may be a compli- 
cated Fokker-Planck equation. Such approximations are familiar, for instance, 
in the theory of the collision broadening of spectral lines (see Rautian and Sobel'man 
1967; Ben Reuven 1966, 1975 and references therein; Dattagupta 1977), extended 
rotational diffusion models for molecular motions in liquids (Gordon 1966), etc. 

First, the random process is regarded as a chain made up of primary events or 
' collisions ' (Le., a Poisson sequence of pulses) occurring at a mean rate ~, so that 

rv = a( r-1) (6) 

where 1 is the unit operator and ff is called the collision or transition operator that 
changes the stochastic state. Conservation of probability implies that 

fd~(~lff[~o) = 1. (7) 
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Further, detailed balance requires that 

p(eo) (el ~r I ~:o) = p(O (Co I ~" ] o, (8) 

where p (0  is the stationary probability density corresponding to the random variable 
~:. In the context of systems in equilibrium, we have also 

lira P(~, t[ ~0) : -P(O.  (9) 
t---> co  

(In many cases of physical interest, ~ is also a Gaussian process. In the familiar inst- 
ance of a free Brownian particle, for example, ~ is the velocity of the particle, P(O 
is the Maxwellian distribution with zero mean and variance kB T/m, and is the asymp- 
totic limit of the solution of the simplest Fokker-Planck equation--namely, the 
Ornstein-Uhlenbeck process--Ornstein and Uhlenbeck 1930; Wang and Uhlenbeck 
1945.) In the no-collision limit, ~ is simply the unit operator. Next comes the weak- 
collision approximation, in which each collision is assumed to alter the pre-collision 
value of ~: only infinitesimally. This leads to the Fokker-Planck equation for P(~:, t I ~:0), 
with the initial condition as already stated. At the other extreme is the 'strong- 
collision approximation ', in which it is assumed that the distribution ' equilibriates ' 
so rapidly that it loses all memory of the pre-collision value of the variable: in other 
words, 

(~:] ~r [ ~o) " p  (0,  (io) 

the right-hand side being the only ¢0-independent function that satisfies (8). 
Substituting in (6) and carrying out the exponentiation required by (5), the solution 
obtained is 

P(¢,t! ~o)=8(e--eo)exp(--;~t)+p(O [1--exp(--)~t)]. (11) 

It is evident (from the exponential form of (5) itself) that this expression satisfies 
the Chapman-Kolmogorov equation (1). It is also the simplest functional form 
expressing the decay of the initial 'state'  and the simultaneous approach to the 
equilibrium distribution. An improvement over the approximation (10) is afforded 
by the class of interpolation models (Fixman and Rider 1969; Dattagupta and 
Sood 1979), in which one assumes that 

( ~ l v i  ~:o) = r p  ( 0  + (l - r) 8 (~:-¢o) ,  (o < 7 < l). (12) 

Thus the primary transition operator itself is taken to be an interpolation between the 
initial and asymptotic distributions. The interesting point is that the corresponding 
conditional probability works out now to 

P(¢,t] eo)=8(~--¢o)exp(--yht)-l-p(O [1--exp (--7)~t)]. (13) 

This means that the interpolation (12) has merely rescaled the effective correlation 
time to a larger value, from ;~-t to (~ 7)-L Though simple, this device often turns out 
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to be effective when confronted with experimental data in various applications, such 
as those referred to in the foregoing. 

This paper is concerned with the following lbrmal aspects. First, we show how 
the interpolation model (equations (12) and (13)) amounts to nothing more than the 
simplest possible difference approximation in an appropriate version of the master 
equation. We comment on the nature of the solution vis-a-vis the solution of  the 
Fokker-Planck equation, and point out that the interpolation model can be under- 
stood also as a certain weighted averaging over all the ' relaxation modes ' of the 
system. Second, we demonstrate in two alternative pictures an invariance of the inter- 
polation model under iteration and rescaling. Next, we go beyond Markov processes 
and consider a general problem: if the variable ¢(t) evolves deterministically, but with 
stochastic interruptions by a (possibly correlated) sequence of pulses that randomise 
the value of  the variable, what is the effective time-development operator equal to ? 
An answer is obtained by means of a continuous-time random walk method. For 
correlated (non-Poisson) pulse sequences, a distinct first-waiting-time distribution 
must be used; this is taken care of. The case of  a purely random process (no deter- 
ministic evolution) is a special case of the general result. So is the case when the pulse 
sequence is an uncorrelated one. In this instance we present also expressions of  
practical utility for the ' averaged'  time-development operator and the autocorrela- 
tion function. Finally, we explain why the interpolation model does not correspond 
to a mere rescaling of the pulse rate in the strong collision model in most cases of 
physical interest. 

2. The interpolation model as a differenee approximation 

In general, the master equation (4) describes the evolution from a given initial distri- 
bution to an asymptotic stationary distribution. The ' relaxation' may occur with a 
whole set of  characteristic time scales. On the other hand, if we change variables 
from t to z=exp  (--/~t),  R e / x > 0 ,  the physical range of variation of  t is made 
compact (the end points are z-~0, 1). Denoting the operator ~ (t) by Q(z), it is 
then tempting to make the extremely simple difference approximation* 

~Q (z)/Dz ~, Q (1) - Q (0), (14) 

regardless of  what the right-hand side of  (4) is (it will of course decide the best value 
of  t~). The interpolation model is just this! Integration of (14) trivially yields 

Q (z) = ( l - z )  Q (0) -b z Q (1). (15) 

Reverting to the variable t, and taking appropriate matrix elements, this is equivalent 
to 

P(~:, ti  ¢0) = 8 (~:--¢0) exp (--/z t) -~-p(¢) [1--exp ( - -#  t)]. (16) 

*Since O/Ot-~ --#z O/Oz, note that the z-independence of the right-hand side in (14) will not 
immediately lead to an inconsistency, For any other mapping, of the range t ~ 0 to the interval [0, 1 ] 
---e.g., by a change of variables to tanh t~t--this will no longer be the case. This practically dictates 
the choice z=exp (-/a). 
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It is then not difficult to use (5) and (6) to show that the corresponding T-matrix 

element is 

(~ [ cy I ~:0) : (/z/A) p (~:) -:, (1--/z/A) 8 (~:--~:0), (17) 

which is essentially (12). In the form of the ansatz (14), there is no mystery left in this 
approximation. 

At this juncture it is pertinent to dispose of a question that arises. We have al- 
ready said that the expression (16) satisfies the Chapman-Kolmogorov equation (1). 
Further, if ( ~  = 0, it is trivially verified from (16) that 

(~  (t) s ¢ (t -k -r)) = (~2) exp (--/Z ~). (18) 

One might therefore wonder whether there is a conflict with Doob's theorem (Doob 
1942): a (one-dimensional) stationary, Gaussian-Markov process is necessarily expo- 
nentially correlated, as in (18), and the corresponding P(~, t I to) m u s t  be the Ornstein- 
Uhlenbeck distribution, which (16) clearly is not. The answer is that the approxima- 
tion of the interpolation model makes the random'process non-Gaussian. In addition, 
mere inspection shows that the inclusion of 3(~:-- ~:0) in the density itself (and not 
merely as a boundary value as t-+0) takes us out of the class of twice-differentiable 
density functions. 

How is/Z related to W ? For a continuous Markov process, the answer is easy to 
find. We may compare the simple functional form in (16) with the exact solution 
of the Fokker-Planck equation. The latter depends on the boundary conditions rele- 
vant to the problem concerned, but in many cases it can be expressed in the form 
(Stratonovich 1963) 

o0 

P(~:, t I ~o)=(l/P(~o)) ~ X.(OX.(~0) exp (--~,,t). (19) 
n--=-0 

Here ( a . }  are the eigenvalues and {X.(O} are the eigenfunctions, orthonormalised 
with weight 1/p(~), of the second-order differential operator representing IV. Further, 
the eigenfunction corresponding to the eigenvalue ~o=0 is Xo(O=p( O. Now the 
interpolation model (i.e., (16)) is nothing other than the replacement of 

c© GO 

X,,(~:) X.(~e,,) exp (--A,, t) by exp (--/zt) ~_~ X,,(OX,,(~o), 

t l : :  I n = l  

(20) 

as can be verified with the help of the completeness relation for . [X, ,} .  In a sense, (20) 
may be regarded as an averaging* over the non-zero eigenvalues o f  W, to obtain an 

+Ignoring some technicalities, one may note that, if ;~n o¢ n, the prescription 

~'1 cn exp (--nx) cn ~" exp (-- #,x) is equivalent to saying that 

cn n -a en -+ I~ -a (Re a> -- 1), 
1 

which gives an ' average ' value of the index n. 
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effective eigenvalue/x. Of course (20) is no more than an approximation; it is not an 
equation between two different functions of t, ~: and t0. However, it is possible to 
specify an appropriate value for/~ if we are primarily concerned with the random 
process upto the level of its autocorrelation function. The correlation time of the 
random process is/~-x in the interpolation model. Equating this to the exact correla- 
tion time for the Markov process described by (19), we get the following criterion 
for the choice of/~: 

O0 oO 

n = l  n = l  

(21) 

where ha ---- f d~ Xn(O~. (22) 

For the ordinary Fokker-Planck equation satisfied by the conditional density of the 
velocity of a Brownian particle in one dimension, An -- n/3, where/3 is the drift coeffi- 
cient or friction constant. Also hn=0 for n ~> 2 in this case, so that the choice/~---/3 
is the correct one. 

3. Form invariance of the interpolation model 

3.1. One form of the invariance 

We have already seen that a transition operator with matrix elements 

(~:1 ~ I ~:o) ---- ~'P(~)-~-(1---~,) ~(~:--~:o), (12) 

when ' pulsed '  at a rate A leads to a Markov process with conditional density 

(~:[ ~ (t) l ~:o) : 8(~-~:o) exp (--/zt)+p(~:)[l--exp (--/~t)], (16) 

where /x=yh .  The correlation time for this process is ~-c=/z -1 . Now let us effect 
a coarse graining as follows. We shall use the ~( t )  of (16) to construct a new Markov 
process with a scaled-up correlation time q~'c. The quantity (~ I ff~(t=qzc) I ~o)/qr~ is 
to be regarded as the matrix element of  a second transition operator ~Y' which, 
pulsed at the scaled-down rate A/q, will lead to the required process. That is, we 
make the identification 

(A/q)(~ l ff '[  ~0) = (~I ~(t=q~'c) 1 ~o)/q~c. (23) 

Using ,~% : l/y, we get 

(~: 1 ~'  I ~:0) = VP(~:) [1--exp (--q)] +78(~:--~0) exp (--q) (24) 

To absorb the factor y on the right-hand side, we must simultaneously rescale the 
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random variable ~¢ according to ¢' = ¢/~, or I ¢:')=V'~I ¢)" The form invariance 
of the interpolation model is then explicit, for we have 

(¢' I ,~' I ¢03 = ~/:'(¢') + ( l -~ , ' )  8 (~ '-¢ '0) ,  (25) 

where ~,' = l--exp (--q) (26) 

and further* 

p ' ( ¢ )  = p ' (¢/ . / )  ~ ~,p(~). (27) 

We may now construct the operator 

~ ' ( t )=exp  [~(~S'--l)/q], (28) 

describing a Markov process with correlation time ~-'~=qzc. This process can be 
repeated, and we find 

(¢(") l ~r("' l ¢0% = ~("' ?'") (¢("')÷(I-~,'.)) 8(¢(.)-¢0(.9, (29) 

where ~:(., = ¢,.-a)/~.-1,, p(.)(¢(,)) = ~(.-1, p(.-a) (¢(.-1)), 

but ~(.) = V ( , q ) = . . . = ~ , , , = ~ / = l _ e x p  (_q) .  (30) 

Thus, whatever the value of 7 one begins with, the interpolation model is invariant 
in the sense described above. Indeed, the starting point (12) is itself quite likely to be 
an intermediate stage in the coarse graining or iteration of some primitive transition 
operator, in which case , /ought  to be identified with [1--exp (--q)], where q is the 
scaling factor. 

3.2. An alternative form of the invariance 

The invariance exhibited in the foregoing shows that there is nothing fundamental 
about the particular value of ~, that we may happen to start with in writing down 
in the interpolation model. On the other hand, the pulsing rate ?, is evidently con- 
nected closely to the dynamical properties of the specific system under consideration. 
To name a few instances, it is directly related to the mean rate of molecular reorienta- 
tions, or velocity changes, or frequency modulation, or jumps in jump diffusion, and 
so on. Therefore one may argue that it is A -1 which ought to be regarded as the basic 
correlation time ~c, instead of (~./)-1. If  this point of view is adopted, the iteration 
scheme of § 3.1 gets modified. Equations (12), (16) and (23) remain unaltered; how- 
ever, (23) now leads to 

(31) 

*The prime in p' does not denote a deri_vative, of course. Note that if the range of E is (-co, oo) 
and p(~)=(2,~oa) -1/2 exp (--ses/2oz), then p (s e ) is again a Gaussian in ~, with a rescaled variance 
a2/-fl. For a general p({~), (27) follows from the normalisation of the distribution. 
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where, in contrast to (26), 

7' = 1 - - e x p  ( - - T q ) ,  (32) 

V being the initial interpolation parameter and q the scaling factor, as before. Hence 
(31) is already in the interpolation-model form, no further re-scaling of ~ being neces- 
sary. Repeating the procedure, we obtain 

' 0"" = ~)' (t:q%'~) I ~o)/q%c, (A/q"-) (~ i [ ~o) (~f (33) 

or (~: i ~ " l  ~0) = 7" P (~) q- (1 --  7") 8 (~ --  ~:0), (34) 

where 7" ---- 1 -- exp (--7 'q) .  (35) 

Repeated iteration of the construction therefore yields an effective interpolation para- 
meter that obeys the recursion relation 

7 ('>I) ---: I - exp (qT(")) ,  7 (o) -:  7. (36) 

The fixed-point solution of this transformation is given by 

7::: - 1 --  exp ( -- qT*). (37) 

Thisis an interesting result. If the scaling factor q-----l, we have 7*---0, i.e., we 
approach the no-collision limit. For 1 < q  < oz, there exists a definite limiting value 
~,* such that 0 < 7 " < 1 ,  and which is the optimal value to use in a phenomenological 
analysis involving macroscopic or coarse-grained variables, provided q is specified 
by other considerations. If  q-> oo, 7"-+1, i.e., the strong collision limit is attained. 

Starting from the other end, if we begin with 7 = 1 (i.e., the strong collision approxi- 
mation), the iteration or coarse graining causes a ' mellowing down ' of the approxi- 
mation, and we are led to an interpolation form with the parameter 7:' as in (37). 
In either instance, the precise value of the scaling factor q has to be selected, presum- 
ably, on physical grounds appropriate to the particular problem under considera- 
tion. 

4. Non-Markov processes 

4. I. Continuous-time random walk method 

In many applications, it is necessary to incorporate memory effects (also called pro- 
bability after-effects), thus going beyond Markov processes. Higher conditional 
densities are no longer expressible entirely in terms of P(~, t 1 ~:0), but the latter quan- 
tity continues to be of importance--manifestly so at the level of the autocorrelation. 
However, the master equation (4) and its solution (5) no longer hold good. The 
question therefore arises: given a primitive transition operator 9", how does one 
construct the time development operator ~(t) ,  i.e., the conditional density? 

A direct and powerful method of solving this problem is to use the continuous- 
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time random walk theory (Montroll and Weiss 1965; Montroll and Scher 1973; see 
also Stratonovich 1963). We shall use these ideas to set up the expression for l~(t), 
omit the algebra, and quote the final answers. The Markovian result will emerge as 
a special case. The basic idea is to break up the time interval (0, t) into sub-intervals 
specified by the points q, t2 ..... t,, at which the transition operator acts to change the 
stochastic state from one intermediate state to another, and to sum over all such chains 
possible. We shall also take into account the correct first-waiting-time distribution 
(Tunaley 1976). This is a crucial detail, as the pulse sequences (q . . . .  , t,) may not 
in all cases be uncorrelated. 

If the stochastic state ! ~) has just come into being at t=0 ,  let ~(t) be the probability 

that the same state persists at time t. Thus q~(0)-=-i and --~(t)dt is the probability 
that a transition to some other state occurs in the interval (t, t+dt). The first waiting 
time distribution is then given by (Feller 1966) 

oO 

= 4)(t) / f  dt'~ (t'), 9~1(t) 
0 

while the probability of 
randomly chosen origin 

(38) 

no transition occurring at all in the time interval from the 
of time up to the instant t is 

l 

(t) = l - f at' 41 (t'). 
0 

The conditional density 

(39) 

may be developed then as the series 

t t2 

(~:l~'(t)]~o) = ~ ( t )  8(~ .... ~-o)+ ~ f d t , . . ,  f dq(--1)"-14~(t--t.). 
n = l  0 0 

( t ,  - -  tn_l)  . • • ~b" (t,, - -  t l )  ~b 1 ( t l )  (~  I ~ ' " ]  (o)" (40)  

It is natural to consider the Laplace transform of (40), because of its convoluted form 
(a consequence of the stationarity of the process). The summation over n can then 
be carried out and a formal operator solution for ~ ( t )  obtained (see, for example, 
Kehr and Haus 1978). We are interested, however, in the special case when ff is given 
by the interpolation model, equation (12). It is convenient to note that the operator 
(7--1)  can also be written then in the form 

(7 - -  1) = ~, (gl  --  1), (41) 

where 9" 1 is the idempotent operator with matrix element 

(~10"11 ~o) = P (~) (v  ~o). (42) 

Carrying out the algebra, we find finally that the Laplace transform of the required 
conditional probability density reads 

(P  (~, t l ~:o))s = ( l / s )  [1 - -  F ( s )  l 8 (~ - -  ~:o) + ( l / s )  F(s)p (~), (43) 
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where F (s) = F ~ (s) / ~ (0) {~, + (1 -- ~,) s ~ (s)}. (44) 

Here s is the transform variable and ~(s) is the Laplace transform of ~(t). 
Equations (43) and (44) represent the solution to our problem. 

~ ( t )  describes a Markov process when the pulses occurring at fi, t~ .... , t, constitute 
an uncorrelated Poisson sequence--equivalently, when ~(t) itself satisfies the equation 
q~ (t) = ~ (t--t O ~ (t o for all 0 < t 1 < t. In other words, when 

~b (t) = exp (--  2, t). (45) 

The symbol ~ is used here advisedly, for it is exactly the same quantity as occurs in 
(6)ft. When (45) is used in (43) and (44), we find precisely the result quoted earlier 
for the Markovian case, namely, equation (13), 

P (~:, t I fo) ---- b (~: --  ~:o) exp (--  7,At) + p (s ¢) [1 - -  exp (--wXt)]. 

The solution (43) can be written also as a master equation involving a memory 
function. Again omitting the intermediate steps, we get 

1 ~ V(~, t I ~o) -- P (~) 

f at' ~ (t') 
o 

- - f ( t )  S (~ -- ~o) 

t 

- f at' K (t - c )  e (~, t ' l  ~o), 
0 

(46) 

w h e r e f ( t )  is the inverse Laplace transform of 

= [&s) - g(o) + g( , ) ,  (47) 

and the kernel K(t) is the inverse transform of 

k ( ~ )  = [1 - s ~ ( s ) l / ~ ( s ) .  (48) 

Again, for ¢ (t) as in (45), f ( t )  vanishes, while K(t) = Ab (t), and the process becomes 
Markovian. 

In the strong collision approximation, y--= 1, and the general solution (43) simplifies 
considerably. The result is expressed most compactly, and in an intuitively obvious 
form, in terms of the no-transition probability ~} (t) defined in (38) and (39). We find 

P(¢ ,  t l ~:o) = 8 ( ~ : -  ~:o) # ( t )  + p(~:) [1 --  ~ ( t )  l, (49) 
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where (for ready reference) 

oO oO 

®(,)= f 
t 0 

(50) 

The integration involved in going from the original waiting time distribution ~ (t) 
to the no-transition probability ~ (t) ' smooths ou t '  the switching from the initial 
density 3 (~:--~:0) to the final one, p (0 .  For the compact functions 

~b (t) = (1--A t)" 0 (1--A t) (n = O, 1 . . . .  ), (51) 

defined for t >~ 0, it is easy to show that 

(t) = (1--~. t) "+t 0 (1--A t). (52) 

Thus we have (in the strong collision approximation) 

I 
8(~:--~:0) (l--M) "+1 +P(~) [1--(I--M)"+1], (At<l) 

e (~ ,  t L ~o) = (53) 
1. p(~:), (a t>  1). 

For the Gaussian distribution 

~(t) = exp (--~,z t2), (54) 

one obtains similarly 

P(¢, t l ~:o) = 8(¢--~:o) erfc (At) + p(~) eft(At). (55) 

When ~, <Z 1, the corresponding expressions become considerably more complicated. 

4.2. Generalisation---Randomly interrupted systematic evolution 

The situation encountered most frequently in physical applications is a generalisation 
of the case considered in § 4.1. The variable ~:(t) evolves deterministically, but with 
interruptions that alter its value in a random manner. The problem is to find the 
effective time-development operator ~(t) .  Once again, the continuous-time random 
walk method provides the solution. We shall first give the formal solution in the 
general case, and then present some further results in the special case of uncorrelated 
interruptions. 

Let the systematic (or deterministic) evolution of the variable ~:(t) be governed 
by the Liouville operator L, so that a state at t = 0  evolves in time t to 

u(t) l 0 -~ exp (iLt) l ~). (56) 

Now suppose this evolution is stochastically interrupted by a pulse sequence with 
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waiting time distribution q~(t) and transition operator 9". The effective time-develop- 
ment operator is then a generalisation of (40) that reads 

~( t )  = ¢(t) u(t) + 
cO t t~ 

7_ Y 
n = l  0 0 

dq (--1) "-a ~(t--t,) U(t--t,) y 

× ~(t.--t,_a) ~U(t . - - t , -1)  ... ~(t,--tt) 9.U(t~--tx) ~l(tt) ~ U(fi). (57) 

The formal solution for .~(t) is compactly expressible in terms of its Laplace transform, 

~(s) = (o u), + (4 u), [ ,+($ ~ U),l -~ (4~ 9.u),, (58) 

oO 

where ($U), = f dt $(t) U(t) exp (--st), etc. (59) 
0 

Equation (58) is the desired result. Of course [7, U] ~ 0 in general. It is not 
difficult to verify that the earlier result (43) is a special case of (58) that is obtained 
on setting U (t) = 1 and using the interpolation model for ~'. 

It is most interesting to see what happens in the case 4' (t) = exp ( -  ;~ t), i.e., when 
the deterministic evolution is interrupted by an uncorrelated randomising pulse 
sequence. One expects, intuitively, that the effective time-development operator will 

take the form exp (iL + W) t. This is indeed borne out. Writing (U(t))s = ~](s), 
we find that (58) reduces to 

(s) = u (s + A) [1-,~ .~f u (s -~- ~')1-1, 

= [1 - ~ 7 ~ (s + ;91-1 0 (s + a), (60) 

where U ( s +  1) --= (s + A--i L) -1. (61) 

Therefore # (s) = ( s -  W--iL) -a, and ~ (t) = exp (iL + W) t, (62) 

as conjectured, with W=A(9"- -1) as in (6). This result reproduces that of Clauser 
and Blume (1971). 

Let us now insert the interpolation model for 9. in (60) or (62). In order to evaluate 
correlation functions, etc., in a form that is of  practical utility, it is helpful to re-express 
(60) as follows. Now it is the 9" 1 part of 9. that decouples the final and initial states 

in its matrix elements. One therefore aims at writing a Dyson equation for ~ in 
which 9.1 is the final factor on the right in the kernel. This is easily done, because 

.~(s) = [ u - l ( s + a ) - ~ 9 . ] - l ,  

----. [ U - l ( , ~ + ~ ) - - ) l ( 1 - - ~ ) l  - -  ~,~9.1] -1,  

-_ [~-~(s+; t~)-~Y d-~ (63) 
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It follows immediately that 

(64) 

the required operator equation. Note that if matrix elements are taken in (64), the 

operator ~Y~ on the right decouples the matrix element of ~(s) from the other factors. 
This is the property of relevance in explicit calculations. As illustrations, let us pre- 
sent expressions for two objects that are required most often. 

In certain applications, one asks for the ' averaged time-development operator ', 
or the quantity fd~fd~o(¢lg~(t) l¢o)p(¢o). A common way ill which this circumstance 
arises is as follows. Suppose the auto-correlation of a random variable ~(t) is re- 
quired, and that the stochastic properties of ~(t) are specified by those of another, 
related process ¢(t) as well as a (random) initial value ~(0) that is independent of ¢(t). 
For example, ~(t) may be an angle (or a function of this angle), and ~:(t) the corres- 
ponding angular velocity whose stochastic properties are given. This situation occurs 
in rotational diffusion (see, e.g., Dattagupta and Sood 1979). Another instance is 
the stochastic Liouville equation k(t)=io~(t)x(t) (Kubo 1963; Mori 1965) where the 
statistical properties of o~(t) are specified. (Example: Brownian motion of an oscil- 
lator treated as a problem in random frequency modulation.) Here ~ and ~ are to be 
identified with x and co respectively. In all such instances, one may write 

G(o) = G(o)  = (65) 

where the angular brackets on the right-hand side refer to a stochastic averge pertain- 
ing to the independent or underlying variable ¢(t), whose randomness drives that in 
~(t). We can get a convenient formula for </9(t)), or rather, its Laplace transform, 

from (64). Let U¢¢, denote (~:1Ui ¢'). Then 

<~(s)> = f d~fd~o (El ~(s)l ~o) P ((o), 

= fd~d~off.~G(s+~'A) P(~o)/[1---Ayfd~fd~o[l#~o(s+hy)p(~o) ]. (66) 

Next, let us give a formula for another frequently-sought quantity, the auto-cor- 
relation function 

(~¢(0)~:(t)) ~ ~d~fd~o~o(~] 9~(t)[ ~:0)p(~¢o). (67) 

We find for the corresponding Laplace transform the answer ((~(0)~(t))), = A+B, 

where A = fd~Sd~o~o~J~# o (sq--A~,)P(~:o), 

1-a  : a#a¢oSeeo( +av)p(¢o) 
(68) 

It is straightforward to generate similar formulas for other quantities of interest 
from (64). To name just one example, diffusion in a periodic potential is a problem 
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where such expressions are very helpful. A detailed theory of this phenomenon 
using random walk techniques will be presented separately. 

An important remark is in order before we conclude this section. Since W----)t(~-- 1) 
=A~(9"1--I ) (see (41)), one might get the impression that the interpolation model 
( y <  1) is nothing more than a trivial re-scaling (A~,~y) of the strong collision model 

(y = 1). This impression is bolstered by the appearance of U(sq-Ay) in (63) and all that 
follows subsequently. This conclusion is correct, provided both of the following suffi- 
ciency conditions are met: (1) The properties of the sub-system of interest are speci- 
fied entirely by the single variable ~(t). (ii) The randomising pulse sequence is 
uncorrelated, i.e., 9~(t)=exp (--At). The latter condition is readily comprehended, in 
view of the complex possibilities buried in the general result (58). The former bears 
some explanation. In most physical problems, more than a single variable is in- 
volved. These may be directly or indirectly coupled, a fact which is reflected in the 
structure of the Liouville operator. Operations with respect to one variable may 

engender a change in the structure of the operator U pertaining to another variable, 
such that it is no longer of the form (61), even though the corresponding randomising 
pulses may yet be uncorrelated. The final line in (63) does not then follow from the 
preceding one, i.e., 

U-1 (s-by) -- A(1--y) 1 --/: /.~-1 (s-}-Ay) (69) 

in such cases. A concrete example is essential. In the rotational diffusion problem 
referred to earlier (Dattagupta and Sood 1979), ~ corresponds to an angular velocity 
co. However, the Liouville operator L has the structure ~Jy,  where ~2 is the part that 
acts in the ~o-space, while Jy is a certain angular momentum operator acting in a vector 
space spanned by the set { [ m ) }  of eigenstates of J~. It turns out that only the 
diagonal, m =0, matrix elements of the various operators are of concern. Therefore 
the operator LT(s-SA) of relevance to the random variable ~o is not (sq-A--i~ZJy) -x, 
but rather (01 (sq-;~--i ~ jy)-i I 0 ).  It is immediately evident that (69) applies in 
this case. How, then, does one proceed? The resolution is formally simple. It 

suffices to define an operator 17(s; 2,, y) according to 

~'-1 (s; ~,, y) = ~r-1 (sq-A) -- ),(l--y) 1. (70) 

All formulas from (63) to (68) then remain valid, with the replacement of t~(sq-)~y) 

by V(s; ~, 7). It is evident that the interpolation model in this situation is no longer 
the mere replacement of A by A7, even though the form ~(t) = exp (--At) has been 
assumed. 

5. Concluding remarks 

We have identified the interpolation model as a simple difference approximation 
in the master equation, compared it with the exact solution of the generalised Fokker- 
Planek equation, and suggested a formal criterion for the choice of the effective 
relaxation time characterizing the model. We have also demonstrated the form 
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invariance of the solution under a certain scale transformation. Subsequently, a 
continuous-time random walk technique has been used to find the effective time- 
development operator (the counterpart of the conditional density) in the following 
general situation: the deterministic evolution of a variable interrupted by a stationary 
but otherwise arbitrary sequence of randomising pulses. Special cases such as no 
deterministic evolution, uncorrelated pulse sequences, etc. have been extracted from 
the general result. The formalism developed here suggests several avenues for further 
exploration, such as: improvements on the original difference approximation; 
integration of the difference approximation along complex paths in the z-plane instead 
of the real axis to obtain other types of effective time-development operators 9~(t); 
possible application of the scaling properties exhibited in § 3 to specific problems 
involving the successive enlargement of the degrees of freedom included in the 
'sub-system' of interest; and a systematic extension of the theory in § 4 to 
multivariate case, incorporating also the interrupted evolution of the components via 
coupled deterministic equations. Finally, it is tempting to speculate on the utility of 
the interpolation model in the context of problems involving non-standard Fokker- 
Planck equations, such as optical bistability and chemical desorption. Progress in 
these instances has been restricted largely to the determination and study of the 
asymptotic distribution p(~). Even a single parameter characterisation of the time- 
dependent solution, with an appropriately chosen value of the parameter t~, should 
bring out interesting properties of the systems concerned. 
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