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Abstract. Some of the cluster extensions of the coherent potential approximation 
(CPA) based on the effective medium theory have been critically studied with res- 
pect to the decoupling schemes involved in them. Their computational tractability has 
been examined and it has been found that the self-consistent calculations in three-di- 
mensional systems are immensely difficult to perform. A self-consistent calculation 
has been reported for simple cubic lattices with diagonal and off-diagonal disorder 
using a pair-CPA method. A significant finding of the paper is that it has been 
shown that non-analyticities are a general feature of extensions of CPA within mul- 
tiple scattering framework. The non-analyticities were reported several times but a 
general proof of their existence was not noticed. It was also believed that the so- 
called molecular--CPA is analytic, this has been shown to be wrong here. The den- 
sity of states results with off-diagonal randomness have been qualitatively understood 
to yield some information about the influence of off-diagonal randomness on Ander- 
son localisation of an electron. 

Keywords. Density of states; off-diagonal randomness; analyticity; Anderson- 
localisation. 

1. Introduction 

It is now known that the generalisation of  the coherent potential approximation 
(CPA) (Seven 1967) to include the cluster effects in disordered alloys is non-unique, 
and presents a difficult problem when one tries to calculate the distribution of  
eigenvalues. 

In this paper we present a self-consistent calculation of  electronic density of  states 
in a simple-cubic binary alloy using a pair--CPA. We discuss the numerous difficulties 
that one encounters with to perform a self-consistent calculation, and show how a 
series of  approximations has to be made in order to make the numerical computation 
feasible. A comprehensive review of the attempts made to generalise CPA has been 
given by Elliott et al (1974a), more recent approaches have been discussed by 
Ehrenreich and Schwartz (1976) and Kumar and Joshi (1977), and most recent at- 
tempt, not included in these references, is by Bloom and Mattis (1977). The numerical 
results reported so far are mainly for one-dimensional systems. Except the self- 
consistent results of  Moorjani et al (1974a), the rest are obtained either through 
non-self-consistent methods, employing iterative methods like average t-matrix 
approximation, or through the methods that deal with scattering from a single site 
and include in some approximate way the local environmental effects. 

The development of  eluster-CPA ha~ taken two directions. One of  them, to be 
termed as 'single-site framework', imbeds a pair of sites or triplet o f  sites, etc., in an 
effective medium and treats the scattering-from it exactly. The other one, to be termed 
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as ' cluster framework ', instead treats exactly the scattering from a cluster of  nearest 
neighbours, and next nearest neighbours, etc. The two frameworks incorporate two 
different decoupling schemes, and yield different effective mediums after calculation. 
The latter can be reduced to the former after some approximations, but the former 
cannot be generalised to yield the self-consistent conditions of  the cluster framework. 
We have discussed the subtleties involved in the two kinds of  decoupling schemes. 

A big problem with the cluster generalisations of  CPA, which has been reported 
often but never investigated deeply, is that the Green's function becomes non- 
analytic for certain energies for certain sets of  parameters. We have analysed this 
problem here and have found that the generalisations of  CPA that involve an 
effective medium denoted by a self-energy matrix should inevitably suffer from this 
problem. 

In §2 we categorise some of the effective medium approaches in two classes termed 
as single-site and cluster frameworks. We discuss the kinds of  decouplings involved in 
them and assess the difficulties if computation is attempted, and keeping these diffi- 
culties in mind we develop a pair-CPA after a series of  simplifications. Section 3 
deals with the non-analyticity problem. Section 4 discusses the numerical results 
o f  density of  states in presence of  diagonal and off-diagonal randomness in the 
pair-CPA developed in §2. 

2. Cluster generalisation of CPA 

Following are the problems encountered in duster generalisation of  CPA. 

(a) Too many simultaneous equations have to be solved, making the numerical 
computation unmanageable. 

(b) In some cases the periodicity of  the lattice for the configurationally averaged 
system breaks down. 

(c) The problem of non-analyticity in the solution of  self-consistent equations 
appears to be inevitable. 

(d) The off-diagonal disorder should be taken into account and the perturbing 
atomic potentials should be chosen self-consistently to satisfy the Friedel 
sum rule. Todate, only the model proposed by Stern and Zin (1974) is able 
to account for it correctly. 

Taking these into consideration we briefly discuss in the following the self-consistent 
cluster generalisations of  CPA with the purpose of  understanding the subtleties in- 
volved in the decoupling schemes and see how they can be simplified to make the 
computation manageable. We restrict ourselves to the effective medium theories 
only. 

The properties of  the disordered system represented by a Hamiltonian / /  are 
determined by replacing it by a self-consistently chosen ordered reference system of 
Hami l ton ian / t  and then doing a perturbation theory. The reference medium has a 
self-energy matrix 27 (k, z) whose elements are the site energies and tlae hopping 
integrals of  the averaged system. The scattering in the system is governed by a scat- 
tering matrix, 

T =  V/[I--VG]; G = ( z I - - . n ) - a ;  V = H--~I. (t) 
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Solution o f  the Dyson equation, 

(e> = ~ + ~  z ( c ) ,  (2) 

yields 27. Here G = ( z I - - H )  -1, and the angular brackets denote  configurational aver- 
aging. I t  is well known that  (2) is solved self-consistently by putt ing ( T )  = 0 (Velicky 
et al 1968). In an infinite system it is impossible to  solve ( T >  = 0 .  So one needs to 
break it into components .  We can do it in two ways. In ' single-site f ramework ' 
T is written in terms o f  contr ibutions front single sites, 

T = Z T., (3) 
H 

and in ' cluster f r amework '  contr ibutions from clusters o f  a definite size are con- 
sidered, 

T = 27 T~. (4) 
C 

Equations (3) and (4) clearly need V to be written like, 

V = Z V, and V = 2 : V ~  (5) 
l l  C 

respectively. V, and V~ are not  necessarily site diagonal and cluster diagonal res- 
pectively, i.e. inter-site and inter-cluster elements exist. 

We first consider the single-site framework and write 27 in momentum representa- 
t ion as (Nickel and Krumhansl  1971), 

= z,1, (.) ~ s '  z ~ '  ( . n ) +  z z '  ~'~'., ( . . )  + 

--  Z '  exp (ik.R,,,) L2'I= ~ (nm) -~ Z" .Z~ ) (nm) + .... ], (6) 
i n  p 

Here Z~e)(nn) is the contr ibut ion from multiple scatterings between n and m sites 
such that the electron enters at n and leaves at n, whereas in X(=)(nm) electron enters at 
n and leaves at m. The primes on the lattice sums indicate that  no two indices are the 
same. In CPA X is taken to be cell localised so that in (6) all the contr ibut ions except 
Z(Z~(n) are taken to be zero. To go beyond CPA other terms in (6) are to be included. 
Let us consider the simplest case o f  pairs. We will see in the following that  generali- 
sations to pair-CPA can be obtained in two different ways depending on how the pair 
under  consideration can be decoupled from the rest o f  the system. 

Expanding 2", in terms o f  single-site t-matrices (Velicky et al 1968) as, 

, . .  (7) 
m # tz m ~,~ n p -/ :  m , n  

Cyrot -Lackmann &lad Ducastelle (1971) proposed the following self-consistency 
condi t ion for determining 2', 
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i.e. the scattering from n and multiple scattering corrections due to all other sites in 
the system should go to zero on average. The nature of  (8) clearly shows that it is 
capable of  calculating N elements in (6), namely, E,(nn) ---- 27a~(n) + ,~ Z~)(nn), 

m ~ n  

and the (N--I)  27~(nm)'s (if the system has (N-- l )  pairs of  different separations). 
On the other hand, following different arguments, Aiyer et al (1969), Nickel and 

Krumhansl (1970, Ducastelle (1972a, b), Cyrot-Lackmann and Cyrot (1972) and 
Srivastava and Joshi (1973) obtained the following self-consistency condition, 

( t,-i-t, Gt,n+t,GtmGtn@... ) -~0, (9) 

i.e. average scattering from n and multiple scatterings between n and m become zero. 
It is clear that if different pairs of n and m are considered separately, then (9) can 
evaluate (2N-- l )  elements in (6), namely, 27~X~(n), the (N-- l )  27m ~ (nn)'s and the 
(N- - l )  Z ~ (nm)'s. Note that both (8) and (9) are incapable of including off- 
diagonal disorder because they are written in terms of  single-site t-matrix which is 
site-diagonal. 

Let us now try to extend the procedure to include the coherent scattering from a 
cluster of  nearest neighbours (say). Suppose the central site is n and those on the 
nearest neighbour shell are denoted by (m). Then, 

T = T.-1-- ~ T,. q- ~ Tl,, (I0) 
(m) p ~ n, (m) 

(m) p # n, (m) 

Since the sites p lie in the effective medium, (Tp)  ----0, and the serf-consistency 
requirement becomes, 

<rn + r.>n,° =0 (12) 

Now further we have, 

Z r.. 
(m) ~ n p ~= n, (m) 

(13) 

and 
q ~= m~ m k ~ n ,  tn~ 

m k =i ~ n s m  I 

m k : ~  rn l , n  p 9 e n , ( m )  

04) 
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'It 

Here m 1 and mk E (m). Substituting for Tn from (13) we have, 

(1 -  t,., [7 t. G) TIn, = (tin, + tin, G t.) × 

m, =/: n, mx p ~ n, (m) 

o r T m l = t , ' " ( m O [ l  + G (  ~ T, q- ~ Tp)], 
m k ~ n ,  ma p ~ n , ( m )  

where tnCa~(ma) = tra, + t= x G t . +  tin1 G t. G t., + . . . .  

(15) 

(16) 

Averaging over the configurations of  the cluster and deeoupling the cluster from rest 
of  the medium we get, 

I1"1 k :7/= Ill  DII. 

(17) 

Similarly we have from other sites on the first shell 

mlt :~ n, In 2 

(18)  

It is clear from the nature of  (17) and (18) that it is not possible to eliminate Trek from 
the right hand side, unless pairs of  sites n--m 1 and n-rna,  etc. are individually de- 
coupled from mk's. Thus in the single-site framework a cluster cannot be success- 
fully deeoupled from the rest of  the medium. 

We now turn to the cluster framework and see if we can overcome the constraint 
in the single-site framework that off-diagonal randomness cannot be included. We 
represent Tc of  eq. (4) by T~ ° for a cluster of  nearest neighbour sites (0 is the 
central site and a is the shell of  nearest neighbours). Then, 

Too 
T~O = ~ T~o ( T°a)Taa ----- ~'nx0 

"rnn0 

~Onl "/'On2 " ' "  7"On~ 

) ~rn ln l  "gNln 2 -* .  "fnlnz 

7"Rgnl ~rnzRl , . .  7"nzn~ 

(19) 

where nt, n~...n, are the sites on the first shell, and the partitioning identifies Too , To,, , 
etc. If  ( T ° ) be made zero after averaging over the configurations of  0 and a, 
it will be equivalent to putting ( T ) = 0  (see (4)). Hwang and Sher (1975) attempted 
to do this for a simple cubic lattice but found the computation unmanageable. They 
then resorted to first order perturbation theory (in the impurity concentration) for 
dilute alloys, and non-self-consistent ATA (Beeby 1964, Soven 1966) and iteration 
ATA (Chela 1973) for concentrated alloys with weak disorder (~ = e A -- *B = 0.8). 
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The computation was enormously time taking even for 2 iterations of  ATA, The 
features in their numerical results should be treated with caution because large 
number of  iterations of  ATA have to be done before it becomes equivalent to CPA 
(Chen 1973). It is not clear how the alloy bandwidths obtained by Hwang and 
Sher (1975) are greater than those of  a virtual crystal.* 

It seems advisable to simplify (19) further but try to solve it self-consistently. 
Assume that ~-,~,~, "%,3, etc. due to second and higher neighbours are small enough 
to be ignored. So that (19) reduces to, 

TO = 

7nzO 

rOnx *'Onz "" l"Onz , o). ~'nlnl 

Tnzn Z 

(20) 

Foe et  al  (1973) attempted to solve (Ta °) = 0 but computat ion was too cumbersome 
to be manageable. An alternative way of  writing (20) is, 

T~°--< ~ l Z l ~ >  = 
vL 

1 - , ~  v~,, ~c,,  
C" 

(21) 

where c stands for thecluster that contains 0 and ,z, and Vcc ( ~  Vc)=(c  I V[ c) ,  etc. 
It is needed to discuss the nat.ure o f  V= now. Figure 1 shows a nearest neighbour 
cluster in a square lattice. V~ may be written as (Vcc-  L'~,) where v,c and Z'~, 
are 2 × 2 matrices, 

=("  h" l ; , ,  (22) oct hi,l  el, I 

(2:1 ~'2) (23) 
s c c =  z2 ~ 1 , 

where e~ is site energy at site i and hil' is the hopping integral between nearest neigh- 

bour Sites i and i'. F rom figure 1 (a) it is clear that  V**, will be zero, however Go, 
in (21) will contain the information of  full 27 matrix which makes the solution of  
(T~°) : 0  unmanageable. The problem can be resolved only if the duster  c is de- 
coupled from the rest o f  the medium so that all the matrices in (21) become cluster 
diagonal. The picture is now as shown in figure 1 (b). The system is partitioned into 
disjoint clusters of  equal size, forming a super lattice. The translational invariance 
is broken. This method is called molecular CPA (MCPA), first given by Tsukada 
(1969, 1972) and later on developed by Ducastelle (1974) and Leath (1973). 

*It is well known that the virtual crystal bandwidth is~equal to the union of 2a~, 1 2to a (Kirkpatrick 
et al 1970), where a~ A and a~ a are the half bandwidths of the constituents A and B. Eigenstates of 
H cannot lie outside this range. 
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Figure 1. Nearest neighbour cluster in a square lattice, (a) without, and (b) with 
cluster diagonality. 
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Zittartz (1974) has presented a cluster extension of  CPA using a projection operator 
method. This is analogous to MCPA but does not suffer from the breakdown of 
translational invariance and follows the picture of  figure 1 (a). 

We come back to MCPA and write the self-consistency condition, 

V¢= ) = O. (24) 

We tried computation with these ( Z + I )  simultaneous equations (Z=co-ordination 
number) but  it was extremely time taking. So we had to reduce the problem to a pair 
of  nearest neighbour states neglecting the effects o f  n~ ... n~ sites on the contribution 
from the pair 0--nt. The pictures in this ease, corresponding to figures l(a) and (b), 
are shown in figures 2(a) and (b). Using the picture of  figure 2(b) and denoting the 
sites of  the pair as 1 and 2, we have two simultaneous equations to be solved, 

(ru) = ( v~*+'4 ~ =0, 
B 

(25) 

(26) 

where A = V,~I( V'llGR-Jf - V12Go)/D , (27) 

• - - . ~ i  - ~1 

(28) 

(29) 

(a) 

I~ I 1~ ~1 ~:1 ~1 ~ o-wo 
~.~-o~, g-_. 2 

Ib)  

Figure 2. A pair of nearest neighbour sites imbedded in an effective medium, (a) with- 
out, and (b) with cluster diagonality. 
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D = I  --( V otGR-+- V.~o), (3o) 

V,.x = ex- -L' , ,  ( 3 1 )  

V~ ---- ~e-- X x, (32) 

E2 = V2~ =h--'h(l--L'2), (33) 

• x and e2 take values ~A and *B and h can be hAA, h BB, hAB or hBA = (hAA n t- hBB)/2 
depending on the occupancy of  the sites of  the pair. Go----Gu =G2~ and GR----G12 = 

Cr21. The particular form of  hAB is a simplification, not a requirement. Equations 
(25) and (26) yield two coupled equations in Z a and Z 2. 

27, :(<,,/B> + <A/B>)~< 1/B>, 

S,.,= 1-(<h/D) +<CID))/£<I/D>. 

(34) 

(35) 

The averaging is done over the occupancy of  the pair 1-2. Pairs A-A, A-B, B-A and 
B-B occur respectively with probabilities c s, c(1-c), (1-e)c and (l-c) ~, where c is the 
concentration of  A atoms. The Green's function is obtained as follows. The 
diagonal part is, 

l 

k E--~l(E)--hZs(k) [1 --27a(E)] 

_ ~ ~ '  z 
(36) 

!--22(E) ~, E--S~(E) 
k ~s (k) 

! - -  Z ' 2 ( E )  

where G = Z/~; s(k) is the structure factor. For convenience if we take "h=hAA , then 
(36) may be written as, 

1 ~ pA(E') dE' 
G o -  l--Xo-- E--XI(E ) E,~, A 

( 3 7 )  

pA(E') is the unperturbed density of  states of  pure A system. For deriving the off- 
diagonal part o f  Green's function, we proceed in the locator formulation (Leath 
1973), 

611 : gll -]- { g11W12621, (]8) 

where Wxg-----h(1--27a), and gu----(E--2~l) -x is the unperturbed locator and the Green's 
function of  the system with no hopping. Here 2 denotes the nearest neighbours of  1. 
So we get, 

GR= {(E Y,1)Go- I}/ZhAAfl--,F,,). (39) 
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Having obtained ~'1 and Z'~ from (34) and (35) the alloy density of  states is given by, 

p(E)=--~r -1 Im Go(E+io). (40) 

A brief account of partial (component) density of states PA(B)(E) is given as follows. 
Conditionally averaged Green's functions are defined as (Velicky et al 1968, Brouers 
and Van der Rest 1972), 

Go(A) (E)=( I I [ E--I~--( ,A--SI) I1) < I ] --{h--hAA(1--Z,2)) 

~ 12) (21 ]-111), (41) 
2~I 

and a similar expression for Go(B)(E); E~E-bio. After some transformations this 
can be written as, 

Go (a) (E)=Go(E)/[(E--(A)Cro(E)--{ (E--XIIGo(E)--I }/(l--Z'=)], (42) 

6o(8>(Zl=Oo(Z)/[(z- B o(el-hs.( }/hAA(I--&)I. 
(43) 

The partial densities of  states are then given as, 

pa(B)(E) = -- 7r -1 Im G~ (A)(B) (E+io). (44) 

These quantities satisfy the natural identity, 

p(E) = CPA(E) + ( I -  c) ps(E). (45) 

3. The non-analyticity problem 

The effective medium approaches for the cluster generalisations of  CPA suffer from 
the problem of non-analyticity in the Green's function off the real energy axis. When 
this occurs, the local properties such as the density of  states can no longer be uniquely 
defined and sum rules, such as the expressions for integrated density of  states are rtot 
satisfied. The CPA has been proved to be analytic by Muller-Hartmann (1973). 
One should not a priori expect that an arbitrary extension of  CPA will be analytic. 
Ducastelle (1974) has claimed to have proved the analyticity of  MCPA. While per- 
forming the numerical computation using the MCPA in the form of a pair-CPA as 
developed in the preceding section, we came across the non-analyticity problem which 
led us to examine the proof given by Ducastelle, and we found it to be incomplete. 
The non-analytieity problem in MCPA in one dimension was earlier faced by Sen and 
Yndurain (1976) for large values of  8(=16) contrary to the belief of  Butler (1973). 
Other authors, like Moorjani et al (1974 b) and Nickel and Butler (1973) also came 
across the same problem in the course of  their calculations. A detailed examination 
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has been used here to show the cluster-CPAs that involve an effective medium cal- 
culation in the sense of  calculating a self-energy matrix shall inevitably suffer f rom the 
accidental oecurrences o f  non-analyticity. Nickel and Butler (1973) had earlier made 
an intuitive conjecture to this effect. 

The definitions of  the medium propagator G(z) = ( z - - / t )  -1 and the self energy 

Z'(z) [/~r = 27 271 In> <n I -4- 27' Zz ]n> <m 1] show that G and S are analytic in the 
/'/ m 

half planes Im z ~ 0. Ttfey satisfy the reality condition, 

6*(z)  = if(z*):  27"(z) = 27(z*). (46) 

Further, since I m H  is positive definite (i.e. eigenvalues o f  Im H are real and positive), 
it is simple to deduce that ImO is negative definite when Im z > 0. Now, 

so that, 

Im G = - -  GG* Im z. 

Im (G> = Im G = -- <GG*> Im z. 

(47) 

(48) 

This shows that  Im G is also negative definite. From the definition of  27 it follows 
that (48) can be writ ten as 

lm G = - -  GG* Im (z--S) ,  (49) 

which implies that  Im (z --  Z) is positive definite or Im 27 iS negative definite for 
Im z > 0. Using these facts Ducastelle (1974) has argued that the MCPA Ta°-matrix 
given by (24) is analytic. Taking the denominator matrix as 

-1 Vcc~ D - =  G ~  - -  

he writes Im D = Im G~ -4- Im o I c) (c  I [writing Z'cc --  o I e)  (e l  ], 

Im Crc~ 
+ Im a l e )  <el,  

1 
- -  <c I GG* ! c> Im (z--a) l e> <e l,-f- Im a I c> <c I 

[using (49)], 

---1 <C GG* Gcc = hn  z Gee ] I t> --*-1 

i m a l c >  <c I ~ - - 1 -  G~*'c ~.-1 - -  G~c G d  Gc~ > O. 
Ct ~C 

(50) 
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because Im a is negative definite, Im z > 0, and (c  [ GG* [ c> = 27~, I G~*' l s > 0. 
From this he concludes that, 

det D = det [Go, --  l, cc ~- ~r I t )  ( c l ]  # 0, (51) 

i.e. T ° # oo. But the conclusion (51) is not qorrect, Im D > 0 implies det [Im D] # 0 
and not det D # 0 .  We take a simple example. Suppose D is a complex 2 x 2 matrix, 

D = / a l l  + ibla a12 + ib12] 
\ a2x + ib21 a,~ + ibo.2 ] 

= ( a x l  alz / + i(ob, l O) (52) 
\a21 a~z] B22 

Here Im D has been diagonalised. Since Im D is positive definite bxl > 0 and 
B~ > 0 and det Jim D] = bll B2a > 0. Determinant of  D is, 

I D l : (axz a22 -- a19- a~a) + i (all b~2 -- b12 aza ) 

+ i (bll azz- -a l2  b~l)--(bal b22--blz bzl) 

= (all  a22 --al~ a~l) + i {(all b ~ - -  ba~ a21 ) --1- (bll a22 - - a l  2 b21) } 

- -  bax B22. (53) 

That [D[ = 0, is not out of  the limit of  the possibilities since nothing has been said 
about Re D. So the proof given by DueasteUe (1974) is not complete and under 
certain circumstances det D may vanish giving rise to non-analyticity, It follows from 
the above that whenever 27 will be a matrix, one is bound to encounter with det D 
in some form or the other in the formulations involving a scattering matrix, and as it 
has been just seen, vanishing of  det D cannot be ruled out, so non-analyticity may 
always occur accidently at some sets of  parameters. Whenever 27 will be scalar, 
proof  by Muller-Hartmann (1973) will hold for analyticity. Krey (1976) has shown 
that his coherent exchange duster approach for ferromagnetic Heisenberg spin alloys 
is analytic. His is a single parameter problem. 

We now explicitly deal with the method used here for calculations. We derive the 
circumstances in which non-analyticity should occur and see how it is inevitable. 
For verification o f  the computer program we checked the reality condition (46) 
numerically. Also, lm 27 was found to be negative definite numerically. Here, 
Im 27 x is always negative but Im 27,. changes sign within the allowed energy range. 
From (25) and (26) it follows that the necessary and sufficient conditions for the 
non-analyticity of  the pair-t-matrix are, 

v.,1 ~R + v ~  ~o = I. (54) 

and V2~ Go + V2~ G/~ = 0. (55) 
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Using the relations (31)-(33), (37) and (39), (54) is written as, 

~h z~)}  + ( , , -  Ix)=- ~ ( 1  + h --?(l_~la)l, (56) ( z - ~ x )  

1 --- 10- \ 1 - -  Z' 2 ] 

where ~ = (z - l x ) / ( l  - /2), 

oo oo 

_ 1 f d , p ( , )  . F ( u ) = f  9 ( 0 d ~  >t 1 (57) 
and ~ I F ( 0  t - - - - - ~  I ( (  - -~ ) i "  ' t-~ -~-~ ' 

- -OO - - 0 0  

is Schwartz's inequality. After laborious algebra, (56) can be written as 

lmA[C.D+( l - -h ) ( lm22")0- - ]  . . . .  I m l z R e A ( C - - D +  Dh ) C h l m B - - h  

(1 - -  h) Im I z Re B 

Re A[C.D + (1 - - h ) ( [ m  10-) 2] + I m l z l m A ( C - -  D + D'h) -- Ch Re B - -  h 
(l - -  h) Im L'~, Im B 

- - a, (58) 
Re 

where A = h (z  - I x )  - -  ( , ,  - -  ! , ) ;  B = z - -  l , ;  C = h + (1 - -  7,) (1 - -  R e  1~);  
D =  1 -- Re 12. 

From (58) we have one of  the conditions for non-analyti¢ity in terms o f  ~: 

o r  

lm ~ _ ( l - - R e  270-) Im (z--X i) t I m / 2  Re (z - - / 1 )  
Re ~ (1--Re S 2) Re (z--Ix)  -- [m 20 r m  (z --  2:0) >~ 1, 

(59) 

1 --  Re 270 >~ _ Re ( z - -S  0 + Im (z--2x). (60) 
lm 2:2 Im ( z - - l l )  --  Re ( z -  271) 

Now we explore the condition (55). I f  (55) is satisfied, it would imply that  the real and 
imaginary parts vanish individually, i.e. 

and 

h - h ( I - - R e l . 0 ) + ( l - -  a) [( e, - -  Re l 0 R e ~ + l m l  x l m ~ l = 0 ,  (61) 

h'Im l~ + (l --  ~) [({, --  Re XOIm ~ --  Re/~ I.m Ix] =0 .  (62) 

Thus, for non-analyticity, 

h - -  ~(1 - -  Re 2:8) _ ~'Im 2:~ 

( , , - -  Re  I~)  Re  ~ + I m  l t Im -~ - -  (~, - -  R e / l )  Im ~ - -  R e  ~ I m  l t 

= ~ - ~. 0 3 )  
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This can be rewritten as, 

[m2-; ,[2h(l-ReZ~)-hi .  

(1 Re2J~j[h(l .. ReZ~)--h l-g(rm-r.O~ 

ImZjRe(z-  Za)v: (~i--ReZOlm(z--Z1) 

ImZllm(z--Z1)+(~-- ReZ1)Re(z--Zj) 

- - -  f J , - -  1 .  (64) 

We can split it into two conditions. 

and 

hn2,'_, [2ff(I - ReZ z j--h] 
. . . . . . .  _ . . . . . . . . . . . . . . . .  ~ 0 ,  
( 1 -- ReZ 2) [h(1 -- ReZ2)-  h] --h(lmZ._,)" 

[because a ~ 1], (65) 

e ~ ' R e S  1 
R (  ~-~--~l z Y.~_.e,z---~,__m,z--_,j if ~ > 1 
Im (z--Z1)--Re(z---Z1) 

lmZ i _ hn(z- -Z  1 ) if a--  1. (66) 
Et--ReZ t Re( - - -Z  0 

If  the conditions (60), (65) and (66) are satisfied for a set o f  parameters, non-analyticity 
will occur. The only definite restriction is that Im(z--Z1)>0.  Therefore, that the 
above conditions may be satisfied in the allowed energy regions, is not  at all im- 
probable. Hence the non-analyticity is inevitable in the present case. 

4. Numerical results 

There are several results of self-consistent cluster-CPA calculations in the relatively 
simple case of  one-dimensional systems (Butler 1973; Horiguchi et al 1973a, b; Foo 
et al 1971). As mentioned i n § l ,  there is only one self-consistent calculation for 
three-dimensional b.c.c, lattices, by Moorjani et al (1974). In this section we report 
the calculations using the self-consistent method developed in §2. 

The coupled equations (25) and (26) have been solved iteratively. Having obtained 
Z' 1 and Zz from (34) and (35), component  densities of  states are obtained from (44) 
and total  density of  states from (45). For  weak disorder (small 3) we employed 
simple iteration method, whereas, for larger 3 we had to use Newton-Raphson's 
method. The amount  of  computation per iteration is very large in the latter as com- 
pared to the former, but the latter method yields convergence at places where the 
former fails. In the impurity band region the convergence becomes very tough, 45 
to 50 iteration are required even at very close intervals of  energy. The calculation is 
thus very time taking even on the IBM 360/44 computer. We did the calculations for 
the following parameters: 8=0.4, C A (concentration o f  A atoms)=0.6 ,  and 3=1.0, 

C A = 0-1 and 0-2~ taking hAA = hBB For studying the effects o f  off-diagonal 

randomness we cl~ose h,.~=-2hBB/3 and hA. a = 3hoB/2, with the earlier sets of  
8 and C a. 
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4.1. Diagonal randomness 

Figure 3 shows the density of  states for 8=0-4, C A =0.6.  Comparison has been 

made with the result o f  Blackmann et al (1971) (hereafter referred as BEB). Very 
little and trivial difference has been observed between the pair  calculation and  the 
CPA result (BEB method reduces to CPA for no off-diagonal disorder case). Figure 4 
quantified the difference in terms o f  2? 2. ~'z which is zero for CPA is only abou t  7~o 
of  Z' 1 (if  the maximum values are compared).  Figures 5 and 6 show two examples 
in the strong scattering regime: 8 = 1-0 and C A = 0.1 and 0.2. Plots o f  self- 

energy for  8 = 1-0 and C A = 0.1 are shown in figure 7, CPA self energy has been 

plotted for  comparison.  In this regime 27z becomes very significant. Z' 1 and Z'~ 
have comparable  magnitudes, also 271 reduces by a large magnitude as compared  
to its CPA value. The effect of  large magnitude o f  Z'~ is seen in the densi ty 
of  s ta tes - -CPA gives an isolated impurity band, whereas in the present calculations 
gap between the host and the impuri ty band is eroded. Also, the impuri ty  band  
shows some structure and some tailing at the edges, as compared to CPA, where 
sharp cut is found.  

The non-analyt ici ty appears in the strong scattering regime. In bo th  the examples, 
namely, 8----1, C A =0.1 and 0.2, the problem is encountered in the region where the 

impurity band starts to build up. Density o f  states shows a steady fall up to E = 0 . 3 8  
when a sudden jump to a higher value occurs at E=0.39 ,  from there onwards,  a 
continuous variat ion is obtained. Convergence in the region o f  E=0 .3 8  to 0.39 
could not  be obtained even though the energy step length was reduced up to 0-0005. 
We tried the calculation from the top o f  the impurity band coming down on  the 
energy axis. In this case the impuri ty band was retraced and f rom E = 0 . 3 9  down- 
ward s different values for  density o f  states were obtained which finally joined the main 
band at E=0 .32 .  The region between E=0 .32  and 0.39 is corrtroversial, the two sets 
of  values obtained by taking E in ascending order and in descending order  are shown 
by broken lines. Z' 1 and Z' 2 are not  holomorphic functions (analyt ic+single  valued) 
in this region. Between E=0 .32  and 0.38 they are analytic but  many valued, whereas, 
between E = 0 . 3 8  and 0.39 they are non-analytic. 

1.O 
8 : 0 . 4  

~, 0.8 ....,:....-,,% CA : 0.6 

~ 0 . 6 - -  
0 

-= 0 . 4 - -  
C 

o 0.2- 

o I ~ I I I I I ~I 
-1.6 -0.8 0 0.8 1.6 

EneT'gy 

Plot of density of states verbs energy for ~ 0 ' 4 ,  C~-~0"6 and hAA = 
The results of BEB calculations are shown by broken line, 

Figure 8. 
hs B. 
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Figure $. Plot of density of states versus energy for 8=1, CA=0.1 and hAa =hB~. 
The big dash-line shows the CPA result, and the small dashes show the controversial 
region discussed in the text. 
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text. 
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It is interesting that the shape of the impurity band as found by us looks almost 
like that obtained in continued fraction methods (Cyrot-Lackmann 1974; Gaspard 
and Cyrot-Lackmann 1977). It is important to mention that the feature of Im Zz, 
that it changes sign in the impurity band region as seen in figure 7, was also seen by 
Moorjani et al (1974) and was discussed to be compatible with the dispersion rela- 
tions and with the interpretation of  associating the side bands as originating from 
bonding and antibonding states of  a molecule. 

4.2. Off-diagonal randomness 

Figures 8 and 9 show the total and component densities of  states when, 8=0.4, C A 

---- 0-6, and hAA = 3hm~/2 and hail = 2hBB/3 respectively, i.e. the bandwidth of  A 
component is 3/2 and 2/3 times the bandwidth of  B component in the two cases. 
The figures also show the corresponding results obtained by BEB. The 2: x and Z'~ 
for these cases are plotted in figures 10 and 11. 

Q- 0.8 ,.. 

"6 >, 0.4 

-~0 .2  

t - -  

~ 0.6 
W 

0.4 

'~  0-2 
| 

o 

A 

d 

~ 5 = 0 4  
CA=06  

_ hAA  = 3/2hBB 

- 

0'6 I 
\ 

0.2 

0 - 
-0 .8  o 0.8 16 

Energy 

Figure 8. Plots of total and component densities of states versus energy for 8=0.4, 
C A =0.6 ~nd hAA =3hBn/2. Broken lines show the results of BEB calculation. 
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Figure 9. Plots of total and component densities of states versus energy for 8=0.4, 
C A =0.6 and hAA=2hBB/3. Broken line shows the results of BEB calculation, and 
the dash-dot line is the total density of states calculated from eq. (40). 

The effect of  narrower solute (B) band (figure 8) shows up in the negative energy 
portion of total and partial densities of states (p, PA and PB)" P and PB have distinct 
peaks at almost the same energy and PA has a shoulder in the same region. The results 
of  BEB are almost like ours except that in our case the bandwidth is larger than the 
BEB results which indicates that the BEB-theory underestimates the larger band- 
width of  host (A) band. 

The case of  narrower host (A) band is shown in figure 9 with the corresponding 
self energies shown in figure 11. 27,. is now much larger than 271, and Im 271 and 
Im 27, are peaked over a narrower energy range compared with the earlier case. 
The imaginary parts of  self energies indicate the width caused by disorder in the 
dispersion curves, hence they are expected to be larger in the region where the 
contributions to p from A and B are comparable. This region is narrower in 
the case of figure 9 than that shown in figure 8. 

Figures 12 and ! 3 show the effects of  off-diagonal randomness for stronger disorder 
(8=1) with C a =0.I  and 0"2 and ban =3hnn/2. The features o f  the impurity bands 
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Figure 10. Plots of self energies versus energy for 8 =0.4, C a =0.6 and ha, ~ =3hBn/2. 

as found in figuros 5 and 6 are retained except that the impurity bands are stretched 
considerably to the high energy side forming tails. We guess that this stretching 
could be qualitatively related with the Anderson localisation (Anderson 1958), in 
that the situations in figures 12 and 13 are more favourable for localisation of electron 
than the situations in figures 5 and 6. Here hnA being larger than hBa would cause the 
electron to preferably hop to a neighbouring A site, if there is any, than to a B site, 
i.e. the electron will have relatively stronger tendency to stick to the A atom clusters. 
The CA is much less than the percolation threshold (Shante and Kirkpatriok 1971, 
and Srivastava and Weaire (1978)) which means that the A atoms will be distributed 
throughout the system in the form of small dusters. However, disorder (8=1) is 
not strong enough to stop the quantum mechanical tunnelling of the electron and also 
the method used hero uses an averaged effective medium, both of  these tend to destroy 
the loealisation which is the local property of  the .4 atom dusters. Yet it appears 
that the off-diagonal randomness under consideration cancels the above two effects 
to some extent and tends to restore the localisation. This tendency to restore the 
cluster property in the effective medium theory should pull som¢ states out of  the 
band edges to  form tails. 
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Figure 11. Plots of self energies versus energy for 8=0.4, C A : 0 . 6  and h4 A =2hBB/3. 
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Figure 13. Plot of density of states versus energy for 8 = 1, C A =0.2 and hAA =3hBJ2. 

Non-analy t ic i ty  does not occur in the part icular  examples shown in figures 12 and 
13. I t  should not  be concluded that  inclusion o f  off-diagonal randomness  removes 
the non-analyt ic i ty  problem. I t  simply means that  the par t icular  choice of  para-  
meters  in these cases was not  the unfor tunate  one. The possibility remains open 
that  there will be  other  sets o f  parameters  where the non-analyt ici ty condit ions of  
§3 will be  satisfied. 

5. Conclusions 

The two-site MCPA calculation presented here gives a fair idea abou t  the effects o f  
disorder in diagonal  and off-diagonal parts  o f  the Hami l ton ian  o f  a disordered binary 
alloy on the distribution of  the electronic eigen-values. Our  p r o o f  of  the general 
result, that  the effective medium theories that  involve a self energy matrix should 
be non-analyt ic  for certain sets o f  parameters,  might  help in the fur ther  development 
o f  the subject. 
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