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Abstract. Starting from a physical RKKY interaction model for magnetic alloys and 
a valid probabilistic description of a random substitutional alloy, the possible phases 
have been studied in a mean field, effective medium theory. Most of the detailed 
objections raised against former treatments of these systems have been removed. 
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1. Introduction 

Ever since Edwards and Anderson (1975) introduced the replica formalism to study 
the models for the so called ' spin glass' random alloys, numerous papers on ' exactly'  
solvable models have appeared in the literature. These models may be classified in 
three categories: (i) The Sherrington-Kirkpatrick (1975) replica model, (ii) the mean 
field type of  approaches (Kaneyoshi 1976; Plefka 1976; Thouless et al 1977) and (iii) 
the virial expansion (Morita and Horiguchi 1976). The final phase diagrams are 
identical in all the three cases; the procedures for obtaining them, however, were quite 
different. The Sherrington-Kirkpatrick work has had serious objections raised 
against it: the zero replica limit is not justifiable mathematically, the free energy is not 
a minimum in terms of the two defined order parameters and finally in the low temper- 
ature limit the entropy and internal energies behave in an unphysical way. The mean 
field and virial expansion approaches are formally correct, but t h e '  solvable'  models 
assume that the exchange interaction J(] r~--rj ]) is a random variable, distributed as a 
Gaussian about a mean Jo independent of  the separation R = [ rl --  r~ ]. As a necessary 
consequence, the interaction is infinitely weak and long ranged: J(l r~--rj ]) ,-~ O(N -I12) 
and Jo '~  O(N-1), where N is the total number of  spins in the system. Such a model is 
instructive no doubt, but not very suitable if we want to examine the phases of 
realistic alloys (CuMn, A__uFe, A__u.uCr, A__ggMn, etc). For these, the predominant energy 
is due to the R K K Y  indirect exchange between the magnetic atoms. Even if R is 
random, this interaction has a mean that is strongly dependent on the separation R. 
The statistical description is also different: here the N magnetic atoms can sit on any 
of  the M lattice sites with equal probability. We are neglecting any site occupation 
correlation, either due to statistical fluctuations or chemical segrigation. In the 
thermodynamic limit N, M--> oo such that N / M ~  c, the concentration of  the 
magnetic constituent in the alloy. 

Pr (a magnetic atom labelled k occupies the site rk) = I/M. 

223 



224 Abhijit Mookerjee 

Pr (a site r~ is occupied by any one magnetic atom)-----N/M-+ c. 
There can be ~ M N possible random configurations all equally probable. Such a 

statistical description is far cry from the Gaussian distribution for the J,. 
The virial expansion is valid either at low concentrations or very high tempe- 

ratures (Larkin and Khmelmitskii 11970) or when J , ~  0 (N-a/s). We are here 
interested in low temperatures, all concentration ranges and a realistic RKKY 
interaction. The virial expansion is no longer valid in the entire region of  the 
phase space we are interested in. 

Thepurpose of this paper is to examine this more realistic model using physical 
RKKY interactions and a physical statistical description. The results may look 
similar to the earlier works, but the procedure has certain distinctive features of 
its own. The ideas behind these new features are non-trivial and essential if we 
are to go beyond the simple assumptions of  the exactly solvable models and apply 
our theory to more realistic situations. 

2. The effective medium and local magnetisation 

Let us begin by studying the spin ½, classical Ising model. Generalisations to general 
spins and the Heisenberg models are straightforward and will be reported in a sub- 
sequent communication. The Hamiltonian is given by 

H = - - ½  ~ y J( I ,, -- ,, I ) S, S, 
r.i ~ rl 

J(R) = [A cos (2kp R)]/(2k F R) a (1) 

rk denotes the position of the kth magnetic atom, {S~} are the classical spin 
operators with eigenvalues ± 1. The partition function is 

Z({r~}) = Tr<sk} exp (½ ~ ~ ~ S(I r,--r, I) S, S,) (2) 

The trace is taken over all possible spin configurations. The partition function remains 
a function of  the random configurations of  the magnetic ions. At this stage no 
random averaging is taken. 

As it stands, the trace cannot be exactly taken. We shall introduce here a single- 
site 'mean field' approximation, by replacing all operator products AB by 
A <B) + ~A) B -- (A)  ( B ) ,  where (A)  denotes Tr A exp {-- /3 H } / Z ,  or the 
thermal average of A. Within this approximation 

Z((rk)) = exp --2 ~ J(I r, -- r,I) ~, ~j + 
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where 

Thus the free energy is 

F(-[rk}) = (1/2) ~'--i ~ j  J(I r , -  rj l) ~, % 

- -  ( l i f t )  ~i ln  cosh {8 ~ ]  J(I r , -  rj I) o,}. (4) 

We have shifted the zero of the free energy to eliminate the last constant term. 
The interpretation of  a~ is important. In an ordered system we can define a 

homogeneous magnetisation per spin o=~k= ( I /N)Z '% In our system large scale 
inhomogeneities prevent us from introducing such a concept prior to averaging. We 
rather visualise the situation as follows: the net result of the random RKKY coupling 
is that each magnetic ion experiences a local random magnetic field, and then aligns 
itself to it. We shall call ok the local magnetisation. A study of local magnetisation 
necessarily involves the study of the probability densities of the local magnetic field. 
This interpretation links our work to that of Kaneyoshi (1976), Plefka (1976) and 
Thouless et al (1977). To find the stable phases we differentiate the free energy with 
respect to the local magnetisations: 8F/So~-O. The consistent solution of these set 
of equations is: 

o, : tanh [ a L  J(, r , - , , J )  o, ] (5) 

for all k. If we differentiate this expression for OF/O~k again, it is straightforward to 
show that if knT> J2( I r,--rj ]) then only the solution { o k : 0 }  of the set of equations 
(5) provide the local minimum of the free energy. For lower temperatures and low 
concentrations, any set of  solutions which are not all zero provides the local minimum. 
Note however, that the sign of the various local magnetisations can be either + or --. 
There may be as many local magnetisations which are + as there are --. Thus, 
the total magnetisation may still be zero. Moreover, there may be several different 
configurations of non-zero solutions, which, at the same temperature may provide 
local minima for the free energy, and for each configuration the free energy may have 
the same value. This implies, that rather having a unique stable phase, there are a 
large number of metastable phases differing in local magnetisation configuration, 
each separated by an energy barrier. Edwards (1975) has already hinted at such a 
possibility. The spin glass phase may then consist of domains with differing local 
magnetisation configurations. 

These local minima contrast with the saddle points of the averaged free energy in 
the Sherrington-Kirkpatrick approach. 

Since the local magnetisations are still random, we need to find their probability 
densities. Let us call Z' K ( I r~--rj [ ) o j=x,  where K(R)=J(R)/A, A being the 
constant of (1). The probability density is given by the radon transform 

P(x) = ~ ,  . . .  ~rN Pr(r~..r~v) S[x--~'K(I  rr-r~ I )oj]. 
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In the thermodynamic limit: 

We cannot proceed without further approximations, because of the inextricable 
statistical interdependence of oj and the J ( I r~--r~ [ ). In the earlier works, since the 
interactions J ~were infinitely weak, in the thermodynamic limit ~j was replaced by 
ffa which is independent of J ( [ r,--rj [ ). Here, however, we cannot do this; rather 
we shall follow an argument similar to Klein (1968). 

P(x) (2 r) -1 f dk exp (ikx) "'"  r,v (1/M)N 

S'" f .f × 

exp [--ik ,V, K ( I r,--rj I ) tanh (ffxj)]. 

where ff = flA. 
The approximation now entails the replacement of the 8-functions by their configura- 
tion averages. 

( II, 8 [x,--Z K ( I r,--r~l ) ~] ) ~-~ Pr(~x~].). 

Let us assume first that there are no statistical correlations between the fields at 
different sites. The effect of  such correlations lead to mictomagnetie dusters, and 
will be studied later. Pr ({x~}) ---: II Pr (xk), and statistical homogeneity demands 
that Pr (x~) = Pr (x) for all k. This yields an integral equation for P(x). 

P(x) -~- (2'/1") -1 f dk exp (ikx) [ 1 - - F  (k)/M] N 

where 

F(k) = E ~  f dz P(z) [l--exp .(--ikK (R) tanh /~' z]-]. (7) 

In the thermodynamic limit 

P(x) --(2~r) -1 f dk exp [ikx--cF(k)]. (8) 

The calculation ofF(k) as in (7) is tough as it stands. However, one of the properties 
of the RKKY interaction is that the moments 27 K (R)" decrease very rapidly with n. 
A specific estimate is discussed in the appendix. The n----3 and 4, for example, are 
five and seven orders of magnitude smaller than the n----1 term. Thus in (7) we shall 
expand the exponential and neglect all moments of K(R) from order three onwards. 
Such an approximation is certainly physically valid, depending as it is on the nature 
of the decaying RKKY interaction. It is quite distinct from assuming the .Is to be 
Gaussian right from the start. The statistics arises from the random occupation of 
the sites. Our approximation does not tamper with that picture. 
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~ t u s d e ~ e  

( ~ ) :-- m = f dz P (z) tanh (ffz), (9) 

and 
( g2 ) = q :  f dz P (z) tanh ~ (yz) Ko = ZK(R) 

K19" ---- ZK ~ (R), 

(lO) 

further assume that K o > 0 (ferromagnetic case), so that 

P (x) -:  (2*tcqKj) -1/2 exp [--(x--cKom)S/(2cKlq)]. (11) 

The Gaussian distribution contrasts with the Lorenzians predicted by Klein (1968) 
and Klein and Held (1975) and anticipated by Plefka (1976). A Lorenzian would 
have implied that the second moment of the RKKY is divergent, which is physically 
untrue. Substituting into (9) we get 

m ----- (I/V'~-~) f dz exp (--Z'12) tanh [fl (cJom+V'~q Aoz)] 

q = 1--(1/%/~) f dz exp ( - Z ' ] 2 )  sech' [~ (cJom+VUqqA0z)], (12) 

where J0 ---- AKo and A0 : AK1. 
These equations are similar to those of the earlier workers, with cJ o and cAo s replacing 
J0 and j2. The scaling of both the mean and the variance linearly with the concent- 
ration arises naturally within the formalism, and does not require supplementary 
argument as in the earlier work. It must be emphasised again, that although the 
results look similar to earlier works, the procedure is throughout physical in its 
approximations, in its description of the statistics of the randomly placed magnetic 
ions. 

3. The phases 

Solutions of (12) describe the possible' phases' of  the system. We note that m =q----0 
is a possible solution. We shall describe such a phase a s '  paramagnetic '. Near the 
boundary of this phase in the c - - T  plane, assuming the phase transition to be of the 
second order, q and m are both small. Expanding (12) for small m, q 

m [(1--CJo/ksT)q-C~JoAoZq/(ksT)S+CSJoSm2/3(kBTp ] -~0 

q [l--cAog/(kBT)2+2c2Ao~q/(kBT)4q-4CSJo~Ao~m2/(kBT)S] 

There are two possible solutions other than m f q = O  

(i) m ---- O; q ---- [eAoa--k~T2]l(2cSAoZ]k~TS). (13) 
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Since q >  0, this solution is possible only if kBT < V/eAo . 

We shall call this phase the ' spin glass' phase, characterised as it is by a short 
range magnetic ordering without any long range ordering. The paramagnetic- 
spin glass phase boundary is the parabola /cat  -= f f c  A o and the critical temperature 
T ~ -  ~ e  Ao/k B. This agrees well with an experimental behaviour which went as 
¢o.6. (Mydosh 1974). 

(ii) q = (do--/cnr)/[do(l--cAo2/knSTS)(1-C-eAo*/{KB2T*--cAo*})] 

m = (C2o--knT)l[c%8(t+cAo'/{/c.'rLC~o~})lk~r']. (14) 

Again, since both q and me> 0, this solution is only possible provided cJo > knT. The 
ferromagnetic paramagnetic phase boundary is the straight line k n T - c J  o. Again, 
this linear behaviour is in accord with experimental observations (Mydosh 1974). 

The bi-eritical point (where all the phases meet) is given by cb=(Ao/Jo) 2 and 
T~=c~Jo/k n. In comparison with experimental situation, knowledge of cb, Tb will 
determine A 0 and d0. 

Let us now examine the low temperature phases 

q : I--(1/V'2"~)(knT[cAo) exp (--CJo'm~[2Ao2). 

Thus near T : 0 ,  as we approach the spin glass phase from the ferromagnetic side 

m 4 0 ,  but q ~  1--kBT/[V'2-~eA d which is not small. 
Let us expand (12) around small m and q ,-, 1, T__. 0°K. 

m : x/O-~) E~JomlAo-t(cJoml.4o)a].  

One possible solution is m=0,  which corresponds to the spin glass side. The 
other is 

m 2 - -  [x /7  J o / A o -  V'(~r/2)]/[~(VeJolAo)SJ 

This solution corresponds to the ferromagnetic phase and is only possible if 

X/~J0/d0 > X / ~ =  1"25 or c > 1-25 e~ =Co. If c < e 0, there are just not enough spins to 
induce a long-range order to set in. However, a word of  caution here. Although 
we may assert the existence of e 0, we cannot be certain of its exact value. It 
interesting to note that a percolation theory prediction of  the critical concentration 
is indeed higher. 

4. The antlferromagnetic alloys 

In the above analysis we have assumed that/Co > 0. If/Co < 0 then it is easy to see 
from (14) that m s <0 ,  so that it is not possible to have a solution m # 0  at any temper- 
ature. Such a situation might arise if  the nearest neighbour distance in the alloys is 
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Figure 1. Phase diagram in the temperature-concentration plane. 

such that the R K K Y  interaction tends to align the nearest neighbour spins in opposite 
directions. The low temperature, high concentration phase we expect is therefore 
antiferromagnetic rather than a ferromagnet. To examine such a phase we have to 
use a different order parameter. Taking our cue from the work on pure magnetic 
metals, let us choose this order parameter to be the staggered magnetisation. 

Let us divide the underlying lattice into two sublattices A and B interpenetrating 
each other. They are such that if a site rt belongs to one sublattice, its nearest 
neighbours belong to the other. Therefore, 

J ( 1 r , - -r j  [ ) = Jtj ~1) if rt, rj lie in different sublattices, 

= Jtj ~=) if they lie in the same sublattice. 

In the antiferromagnetic ease Ju (x) < 0, but Jtj (=) > 0. It is now easy to check that J0 
is indeed negative. An illustrative example is shown in the appendix. 

We now define the local staggered spin operator 

Mt ---- St, if rt belongs to sublattiee A 

-~ --St, if r~ belongs to the sublattice B 

and a staggered interaction 
J" ( I r , - r j I ) =  e i t h e r - J u  (x) or Jij (~) depending on whether the two sites lie in 
different or the same sublattices. We can now satisfy ourselves that E J~ (R) > 0. 
The Hamiltonian may be written as 

H =: - -  (I/2) ~ r ,  ~z j  Js (I r•--rj [) M~ Mj. (15) 

I f  we compare this with the Hamiltonian of  the ferromagnetic system (2), we note that 
they are identical with Mr, J S o  taking the plane of  St Ju, The  entire analysis will 
then go over unchanged with the two new order parameters: staggered magnetisation 
m' ---- [~Ml~] and short-ranged magnetisation q' = [ (Mr)  =] and Y0' > 0 replacing Yo 
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(however A0 ~ is the same for both the cases). The phase diagram is again 
identical. The three phases are: (i) the paramagnetic phase m ' - q ' -  0 the 
(ii) antiferromagnetic phase m s ~0, q S# 0 and the (iii) antiferromagnetie spin glass 
phase m ' - 0 ,  qS-~0. Since in our present analysis we have taken the short range 
ordering to be really single site, we cannot distinguish between a ferromagnetic 
spin glass and an antiferromagnetic spin glass in this phase. In reality, we expect 
randomly oriented mictomagnetie clusters and these clusters will have an anti-ferro- 
magnetic ordering. Note also, that it is not really necessary to have an underlying 
crystalline lattice. A randomly distorted network with its sites labelled by ri can also 
be treated exactly similarly. The specific values of J0, A0, etc will of  course be different, 
depending on the amount of  distortion. The ferromagnetic case presents no difficulty. 
In the antiferromagnetic case, there might be an ambiguity in assigning the network 
sites to the two subnetworks A and B. For example, if an odd member ring occurs 
(figure 2), then the site 5 for example can be assigned either to A or to B, if the site 1 
is assigned to A. However, if the distortion is not much, such mismatches are rare 
and we can still visualise an antiferromagnetic phase, albeit with a few mismatches. 
Recently Agarwal and Mookerjee (1977) have used this idea of an antiferromagnetic 
spin glass phase to explain the experimentally observed (Hudgens 1975) magnetic 
behaviour of amorphous Ge films. The structure of amorphous Ge films is a four- 
fold coordinated random network and the spins arising out of  the dangling bonds 
at the microvoids interact with one another via a short ranged antiferromagnetic 
super-exchange interaction mediated by the localised electronic overlaps. 

5. Conclusion 

Starting from the physical RKKY interaction and a physical description of the 
disorder in the alloy, we have shown that under appropriate approximations which are 
valid in the temperature range of interest, it is possible to set up a mean-field, effective 
medium theory exhibiting the three possible phases. These phases are stable, since 
the local magnetisations which characterise them properly minimise the free energy 
for all random configurations. 

It is not certain whether a fluctuating exchange is necessary for the existence of a 
spin glass phase. In our theory only parameters Which enter the equations are the 

B 

A B 

B ~ A 
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Figure 2. Odd membered rings in a distorted network, showing ambiguity ia sub- 
network assignation. 
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mean, variation and in better approximations only the higher moments of the inter- 
action. Certain amorphous alloys tend to show behaviour like spin glasses (Korn 
1965). The interaction in these are heavily damped. In the amorphous Ge too, the 
superexchange is not fluctuating. Although the existing unexplained magnetic 
behaviour of these films could be explained based on a spin glass model, enough 
experimental data are not available to confirm the model. 

Our analysis is that for a random Ising model. A similar analysis will be reported 
in a subsequent communication, for Heisenberg models. Although the ideas and 
approximation schemes will be identical, the problem has specific features of its own. 
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Appendix 

We want to estimate the spatial moments of the RKKY interaction for a particular 
model. If  the underlying lattice is a simple cubic one, the nth neighbour shells are 
octahedra with six vertices, twelve edges with (n--l) sites and eight sides with ½ n a -  
(3/2) n + l  sites. Thus i fR is the nearest neighbour distance and 

~, - -2krR 

~, = 2: J,(R) = 2: ( c o s , ~ , ) / p ,  

E~= [ ~ ff-I cOSp -JI-- (n--r)2) 1/II ) 
= 6 (cos yn/yn) p+12 (Y (r~ 

1 r = 1 {y (r z _}_ (n_r)Z)l/a~}sv 

V n - l  ~ n - - 2  cos ~ {y (r~+s ~ q_ (n_r_s)2)l/z}] 
+ 8  ~..~r=l s=l  { F (rZ-~-sZ -~- (n--r--s)2 )x/2 } aF J" 

Table 1. The ratios lp/lt for the two cases ferromagnetic and antiferromagnetic 
alloys with simple cubic lattice. 

Case I Case II 

P Numerical Approximation Numer i ca l  Approximation 

1 1.0 1-0 --1-0 --1"0 
2 0"5×10°* 0"62×10 -~ 0"18×10-* 0"21×10-* 
3 2.2×10 -6 2"34×1~ 6 - 1 " ~ × 1 ~  6 --2"0 x l ~ "  
4 0.9×I0 -7 0.9×1~ ~ 3×1~'  3 x l ~ '  



232 Abhijit Mookerjee 

This sum can be numerically estimated and the results are shown in table 1. We 
may also estimate such sums by replacing the complicated oetahedral shells by 
spherical ones. Each cell has for large n ,~ 4~rn ~ sites. 

/p := 4'n" ~n°°=l COS' (yn )y  -3" rt 2-3p. 

Let us choose two cases y-=--2~r and y=3~r. Two real alloys Au Fe and C.__u Mn have 
almost near these values (respectively 6-3 and 9.2). The former exhibits a ferro- 
magnetic phase, while the latter an antiferromagnetic phase at low temperature, high 
concentration regions. 

In case 1, Ip .... 2(2~r) s'=l ~ (3p--2) 

[(r) being the Riemann zeta function. 

Similarly, for case II, Ip .... (--I)P 2(2~r) 8p-1 Z(3p--2) 

Z(r) being either the zeta or the eta functions according as p is even or odd. The 
table shows that for a simple cubic such an approximation overestimates the number 
and distance of  the sites in the nearer shells. But for the higher moments the approxi- 
mations are good. 

Further the ratios Ip/l 1 very rapidly decrease, so that our approximation of  ignoring 
lp for p > 3 is not bad. 
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