Intensity ratios of mesonic x-ray lines K_{α_1}, K_{α_2} and L_{α_1}, L_{β_1}

T V KRISHNAN* and N A NARASIMHAM
Spectroscopy Division, Bhabha Atomic Research Centre, Bombay 400085

MS received 20 January 1976

Abstract. Intensity ratios of μ-mesonic x-rays in some heavy elements are discussed. Intensity ratios of the $K_{\alpha_1}/K_{\alpha_2}$ and L_{α_1}/L_{β_1} lines have been calculated for 209Pb, 209Bi and 238U with relativistic wavefunctions and retardation effect. Though for a refined calculation, it is necessary to take into consideration several features that are peculiar to mesonic atoms, the present calculations have shown that the observed intensity ratios of mesonic x-rays are not anomalous.

Keywords. Mesonic x-rays ; K and L lines ; anomalous intensity ratios.

1. Introduction

The study of mesonic x-rays, together with scattering experiments, has made significant contribution to nuclear structure studies (Electromagnetic Conf., Ottawa, 1967, Kim 1972). The intensity ratios of the mesonic x-ray K_{α_1} doublets of heavy elements are considered to be anomalous because they are far below the expected theoretical value of 1.92 as suggested by considerations of the statistical weight alone (Anderson and Telegdi 1967, Coté et al 1967, Wu 1967, 1969). Especially, intensity ratio of bismuth is of considerable significance.

An explanation has been put forward by Hüfner (1967) that this anomaly might have its origin in nuclear excitations. According to Hüfner, a part of the anomaly is due to some "atomic effect" which is independent of the property of the host nucleus. The intensity ratios of Bi lines and of all the other heavy elements show the anomaly, and to account for them effects other than nuclear excitation cannot be ruled out.

Coté et al (1969) have conducted exhaustive studies on the energies of the prominent K, L, M and N lines of 238U and 232Th. Their intensities have been calculated with relativistic Dirac wavefunctions. Other corrections, such as skin thickness, vacuum polarization effects, etc., have been studied. Hyperfine structure of the K, L, M lines of 238U and 232Th has been studied by McKee (1969) to determine nuclear parameters such as skin thickness and nuclear quadrupole parameters. Chen (1970) finds that nuclear polarization makes a contribution of the order of 10% in the intensities of both K and L x-rays. Hitlin et al (1970) in their studies of dynamic hyperfine structure and isotope effects find that the results are sensitive to isomer shift, Lamb shift and nuclear polarization factor. According to the

* Present address: Research and Development Centre, Indian Oil Corporation Ltd. Sector 13, Faridabad 121002, Haryana.
present authors, all the above effects are not enough to give a reasonable interpretation of the relative intensities of the \(K \) and \(L \) lines.

An anomaly in the intensity ratios of \(K \) and \(L \) lines has been known to be present in the case of electronic spectra of heavy elements also, in the sense that these ratios are quite different from those given by statistical weight considerations alone. For uranium, for instance, the intensity ratio of \(K_a \) to \(K_a \) is about 1.67 instead of 2. The intensities of electronic x-rays have been calculated by various authors to different degrees of sophistication and agreements with experimental values have been obtained (Babushkin 1964, 1965 a,b, 1967, 1969, Scofield 1969, 1974 a, b, Rosner and Bhalla 1970, Krishnan 1971, Krishnan and Nigam 1973).

2. Calculations

In the present work, we have calculated the relative intensities of the \(K_a \) and \(K_a \) lines, i.e., \(2p_{3/2} \rightarrow 1s_{1/2} \) and \(2p_{1/2} \rightarrow 1s_{1/2} \) transitions and \(L_a \) and \(L_b \) lines, i.e., \(3d_{5/2} \rightarrow 2p_{3/2} \) and \(3d_{3/2} \rightarrow 2p_{1/2} \) transitions for lead, bismuth and uranium. In our earlier studies on electronic x-ray spectra, we found that the application of field theoretical corrections to energy levels, together with a relativistic determination of intensities with retardation effect (Krishnan 1971, Krishnan and Nigam 1973) give good agreement with the experimental results. In our present studies, we have made use of retardation effect with relativistic calculation of intensities. However, instead of using the calculated energy values, the experimentally observed energies which are readily available from literature are made use of. In his study on the effects of nuclear motion on the energy eigenvalues of muonic atoms, among other interactions, Fricke (1973) has studied the effect of retardation. However, we are studying the effect of retardation on the intensities of lines. Screening by outer electrons is expected to be small for the inner shells of the mesonic atoms and hence is neglected.

The expressions used in the calculation of the intensities of the \(K \) and \(L \) lines are given below. Babushkin (1965 b) has given the oscillator strength of the \(K \) lines as follows:

\[
n_{1s-\mu p_{3/2}} = \frac{1}{2} \frac{mc^2}{\hbar \omega} | R_1 + R_2 - R_3 - 3R_4 |^2
\]

\[
n_{1s-\mu p_{1/2}} = \frac{mc^2}{\hbar \omega} | R_1 + R_2 + 2R_3 |^2
\]

where

\(R_1 \), \(R_2 \), \(R_3 \), \(R_4 \) are given by

\[
R_1 = \int_0^\infty g_2 J_L (\omega r) g_1 r^2 \, dr
\]

\[
R_2 = \int_0^\infty f_2 J_L (\omega r) f_1 r^2 \, dr
\]

\[
R_3 = \int_0^\infty g_2 j_{L-1} (\omega r)f_1 r^2 \, dr
\]
\[R_4 = \int_0^\infty f_3 f_{L-1} (\omega r) g_1 r^2 \, dr \]

where \(f_3, f_2, g_1, g_2 \) are the corresponding small and large components of the Dirac wavefunctions.

These wavefunctions are given by Mizushima (1970) as follows. When the nuclear charge is \(Ze \), \(a \) should be replaced by \(Za \) and \(\gamma \) by \(Z\gamma \).

\[
g = \left[\frac{\Gamma (2\lambda + n' + 1)}{\Gamma (2\lambda + 1)} \right]^{1/2} \left[\frac{1 + \left(en_j / \mu c^2 \right)}{4N (N - k)} \right]^{1/2} \left\{ \frac{-n' F (\lambda - n' + 1, 2\lambda + 1; \frac{2r\gamma}{N}) + (N - k)}{N(N - k)} \right\} \times \left\{ \frac{-n' F (\lambda - n' + 1, 2\lambda + 1; \frac{2r\gamma}{N}) + (N - k)}{N(N - k)} \right\} \times \exp \left(-\frac{r\gamma}{N} \right)
\]

\[
f = \left[\frac{\Gamma (2\lambda + n' + 1)}{\Gamma (2\lambda + 1)} \right]^{1/2} \left[\frac{1 + \left(en_j / \mu c^2 \right)}{4N (N - k)} \right]^{1/2} \left\{ \frac{-n' F (\lambda - n' + 1, 2\lambda + 1; \frac{2r\gamma}{N}) + (N - k)}{N(N - k)} \right\} \times \left\{ \frac{-n' F (\lambda - n' + 1, 2\lambda + 1; \frac{2r\gamma}{N}) + (N - k)}{N(N - k)} \right\} \times \exp \left(-\frac{r\gamma}{N} \right)
\]

where

\[
k = \begin{cases} -(j + \frac{1}{2}) & \text{when } j = l + \frac{1}{2} \\ -(j - \frac{1}{2}) & \text{when } j = l - \frac{1}{2} \end{cases}
\]

\[
\lambda = \left(\frac{(j + \frac{1}{2})^2 - a^2}{} \right)^{1/2}
\]

\[
n = n' + (j + \frac{1}{2})
\]

\[
N = [n^2 - 2n' (j + \frac{1}{2} - \lambda)]^{1/2}
\]

\[
E_{nj} = \left[\frac{\mu c^2}{1 + a^2 / (\lambda + n')^2} \right]^{1/2}
\]

and \(\gamma = 1/r_B \) where \(r_B \) is the first Bohr radius.

\(F_{nj}(r) \) and \(G_{nj}(r) \) of Mizushima have been replaced by \(g \) and \(f \) respectively according to the notation given by Bethe and Salpeter (1957).
The explicit expressions for the oscillator strengths of the L lines are given by Babushkin (1969) as follows:

\[
\begin{align*}
 f_{2p_{1/2} - n_{d_{5/2}}} &= \frac{2}{5} \frac{mc^2}{\hbar \omega} \left(2R_3 + \frac{1}{2} R_5' - \frac{3}{2} R_6' \right) \\
 f_{2p_{3/2} - n_{d_{5/2}}} &= \frac{4}{9} \frac{mc^2}{\hbar \omega} \left(2R_4' - \frac{3}{2} R_5' + \frac{1}{2} R_6' \right) \\
 f_{2p_{3/2} - n_{s_{1/2}}} &= \frac{2}{45} \frac{mc^2}{\hbar \omega} \left(2R_8' + 5R_4' - 3R_5' - R_6' \right)
\end{align*}
\]

where

\[
\begin{align*}
 R_3' &= \int_0^\infty g_2 j_{\ell=1}^{(\omega)} f_1 r^2 \, dr \\
 R_4' &= \int_0^\infty f_2 j_{\ell=1}^{(\omega)} g_1 r^2 \, dr \\
 R_5' &= \int_0^\infty g_2 j_{\ell=1}^{(\omega)} f_1 r^2 \, d\ell \\
 R_6' &= \int_0^\infty f_2 j_{\ell=1}^{(\omega)} g_1 r^2 \, dr
\end{align*}
\]

(We are using the symbols \(R_3', R_4', \) etc. to distinguish them from \(R_3, R_4, \) etc., issued for the K lines).

While comparing transitions from the levels of common \(j\) values, such as \(K_{a_1}\) and \(K_{a_2}\) or \(L_{a_1}\) and \(L_{a_2}\), the statistical weight is obtained as usual by \((2j + 1)\). But when comparing transitions such as \(L_{a_1}\) and \(L_{a_2}\), where both the initial and final levels are different, the statistical weights for both the levels are used. This also brings the constants in conformity with those obtained by Compton and Allison (1960) by the application of the Burger-Dorgelo rules.

The frequency factor used in our calculations are according to Bethe and Salpeter (1957). The frequency of a transition plays a very important part in its intensity as the intensity is proportional to the fourth power of the frequency. For example, when comparing the intensities of \(K_{a_1}\) and \(K_{a_2}\) lines, the frequency of \(K_{a_1}\) is greater than that of \(K_{a_2}\) line and the ratio of the fourth power of frequency of \(K_{a_1}\) line to that of \(K_{a_2}\) varies from 1·00 to 1·16 for elements of atomic number 20 to 92, in the case of the electronic x-ray spectra. The same ratio for \(L_{a_1}\) to \(L_{a_2}\) varies from 0·96 to 0·41 for the same range of elements. Because the frequency of \(L_{a_1}\) is less than that of \(L_{a_2}\). This means that the contribution of the \(\nu^4\) factor makes the \(L_{a_2}\) line much more intense in the case of the heavy elements. One should not be surprised to find an unusually low value for \(L_{a_1}/L_{a_2}\) intensity ratios for the electronic x-ray spectra of the very heavy elements. For \(\mu\)-mesonic x-rays, however, the variation of the ratio for the same \(L\) lines is not so large and even for \(^{238}\text{U}\), the ratio is only 0·81 for \(L_{a_1}, L_{a_2}\) lines. This is almost twice that of the electronic spectra. Hence the intensity ratio of \(L_{a_1}/L_{a_2}\) will not be affected by the frequency factor to the same degree in the case of the \(\mu\)-mesonic x-rays.
3. Results

The results are given in table 1.

Table 1. Intensity ratios of \(\mu \)-mesonic x-rays.

<table>
<thead>
<tr>
<th>Element</th>
<th>(K_{a_1}) to (K_{a_2})</th>
<th>(L_{a_1}) to (L_{a_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculated</td>
<td>Observed</td>
</tr>
<tr>
<td>(^{208})Pb</td>
<td>1.69</td>
<td>1.65 ± 0.20(^a)</td>
</tr>
<tr>
<td>(^{238})Bi</td>
<td>1.69</td>
<td>1.39 ± 0.10(^a)</td>
</tr>
<tr>
<td>(^{238})U</td>
<td>1.53</td>
<td></td>
</tr>
</tbody>
</table>

The \(\mu \)-atomic hyperfine structure of \(K, L, M \) lines of \(^{238}\)U and \(^{232}\)Th has been studied by McKee (1969) to determine nuclear parameters such as skin-thickness and nuclear quadrupole parameters. We are not comparing our results with those of McKee as the intensities of \(K_{a_1}, K_{a_2}, L_{a_1}, L_{a_2} \) lines are not given by him explicitly and the purpose of his study is hyperfine structure and nuclear parameters whereas we are concerned with the relative intensities of the fine structure components.

We have also not compared our results with those of Coté et al (1969) as they have not given assignments to the prominent lines observed, in an explicit manner. Either extrapolation from the unperturbed energies for the different levels or comparison of the intensities of lines corresponding to the energies given by different authors will not be proper. The energy values given by the different authors vary and thus there is the possibility of the wrong lines being taken up for comparison.

The observed value of the intensity ratio, 1.65, for the \(K_{a_1} \) to \(K_{a_2} \) quoted for \(^{208}\)Pb is the mean of three values 1.45, 1.72 and 1.79 given by Anderson (1967). Anderson’s earlier value of 2 has not been taken but only his more accurate later value because the error in the earlier experiment was 0.3 whereas it was only 0.04 in his later experiment. The values quoted by Kim (1971) are lower than those of Anderson. The value for the intensity ratio of \(L_{a_1} \) to \(L_{a_2} \) of \(^{238}\)Bi is also the mean of 1.52 and 1.54 given by Wu (1971) and 1.56 given by Hüfner (1967). The results show that the difference between the calculated and observed values are in very good agreement with those given by Anderson (1967). The CERN value of 1.45, quoted in the same paper) appears to be rather low in comparison. Even for the \(L \) lines, though the calculated values are less than the observed values, the calculations are not very much off the mark. However, in order to obtain a true picture of the intensity ratios, not only more experimental data with greater degree of accuracy than is available at present, are necessary, but also calculations based on more realistic models with further refinements due to mixing of states, nuclear polarization and field theoretical corrections to energies calculated ab initio taking the various parameters concerning the host nucleus will be necessary. As in the case of the electronic x-rays, a relativistic calculation taking the retardation effect into account is sufficient to show that the intensity ratios of the mesonic x-rays are not as anomalous as they appear to be at first sight.

References

Anderson H L 1967 Proc. Int. Conf. on Electromagnetic Sizes of Nuclei p 53–71 Ottawa
Babushkin F A 1965 a Opt. Spek. 19 3
Babushkin F A 1965 b Soviet Physics JETP 21 372
Bethe H A and Salpeter E E 1957 Handbuch der Physik 35 Springer-Verlag Berlin
Krishnan T V 1971 Effect of field theoretical corrections on x-ray spectra and some new experimental observations Ph.D Thesis, University of Bombay
Krishnan T V and Nigam A N 1973 Proc. Indian Acad. Sci. 77 A 26
McKee R J 1969 Phys. Rev. 180 1139
Rosner H R and Bhalla C P 1970 Z. Physika 231 347
Scofield J H 1974 a Phys. Rev. 179 9
Wu C S 1971 IV Int. Conf. on High Energy Physics and Nuclear Structure p 370 Dubna
Wu C S 1969 Physics of the One and Two-Electron Atoms eds. F Bopp and H Kleinpoppen p 474 North Holland