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Abstract. The return current induced in a plasma by a relativisitc electron beam 
generates a new electron-ion two-stream instability (return current instability). 
Although the effect of these curreflts on the beam-plasma e-e instability is negli- 
gible, there exists a range of wave numbers which is unstable only to return current 
(RC) instability and not to e-e instability. The electromagnetic waves propagating 
along the direction of the external magnetic field, in which the plasma is immersed, 
are stabilized by these currents but the e.m. waves with frequencies, co ~ ~.Qo 2 ~ o~pB ~ 
(ge and OJpe being cyclotron and plasma frequency for the electrons of the plasma 
respectively) propagating transverse to the magnetic field get destabilized. 
Heuristic estimates of plasma heating, due to RC instability and due to decay of 
ion-acoustic turbulence generated by the return current, are made. The fastest 
time scale on which the return current delivers energy to the plasma due to the 
scattering of ion-sound waves by the electrons can be ~-~ oJpf -1 (o,pz being the plasma 
frequency for the ions). 

Keywords. Return current instability; beam-plasma interactions; plasma heating. 

1. Introduction 

I t  is well known that  under certain conditions the electrons and the ions of  a 
plasma can be heated to high temperatures by passing an energetic electron beam 
through the plasma. Such beam-plasma interactions have been studied extensively 
both theoretically and experimentally during the last two decades (Bunemann 1959, 
Briggs 1964, Nezlin 1971). Most of  the work in the field is confined to the case 
of  beams moving with nonrelativistic velocities. Lately the interest is being shifted 
towards the use of  relativistic beams because they offer a convenient mechanism 
for transporting high energy into a small area and also due to their possible appli- 
cation as a tool to initiate a thermonuclear reaction (Roberts and Bennett 1968, 
Andrews etal 1970, Watson etal 1960, Hammer  and Rostoker 1970, Cox and 
Bennett 1970, Lee and Sudan 1971, Finkelstein and Sturrock 1961, Buti 1972, 
Winterberg 1972). However, the passage of  a relativistic beam through a plasma 
inherently gives rise to the phenomenon o f '  return cur ren t '  which ultimately limits 
the beam current passing through the plasma. The presence of  return currents 
is expected to change the stability characteristics of  the waves in the beam-plasma 
system. Recently Nebenzhal (1972) has examined the influence of  these currents 
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on the transverse waves for the cold plasma in the absence of any external magnetic 
field. He finds that only in the extreme relativistic case when (7onb/np)> 1 (nb 
and np being the densities of electrons in the beam and in the plasma, respectively, 
and ~o -~ (1 -- U2/c~) -l/z, where U and c are the velocity of the beam and that of 
light, respectively), the return current effects are important. 

In this paper we have attempted to ascertain the role of return currents on the 
stability of longitudinal as well as transverse waves which are excited when a rela- 
tivistic beam of electrons impinges on the hot plasma immersed in a uniform magnetic 
field. 

We find that, besides the usual beam-plasma electron-electron (e-e) instability, 
the electrostatic waves can support an instability which arises because of the pre- 
sence of return currents. This return current instability can be excited by beam 
currents which are less than I~,, the critical currents required to excite the e-e 
instability. Moreover, for I > 1~, there exists a range of wave numbers (k~, < 
k < k~r R, where k,r and k~r R are the largest wave numbers which are unstable to e-e 
instability and to return current instability, respectively) which is unstable to return 
current instability and not to e-e instability. The electromagnetic waves propa- 
gating in the direction of the magnetic field are stabilized whereas the one propa- 
gating in the transverse direction are destabilized by the return currents. 

The possibility of heating a plasma to thermonuclear temperatures (Babykin 
etal  1971, Winterberg 1972) has recently drawn considerable attention of both 
theoretical and experimental physicists. Optimistic estimates of final heating due 
to return current instability (Guillory and Benford 1972), e-e two-stream instability 
(Thode and Sudan 1973) and due to decay of return currents because of ion- 
acoustic turbulence (Lovelace and Sudan 1971) have recently been made. A 
number of experiments (Altyntsev et al 1971, Miller and Kuswa 1972, Stallings 
et al 1972, Goldenbaum et al 1972, Kapetanakos et al 1972, Miller and Kuswa 
1973, Korn etal  1973) for heating plasma electrons, using intense pulsed 
relativistic electron beams, have also been reported recently. The important 
questions that have to be answered are the rate at which the beam delivers energy 
to the plasma and the partitioning of the energy between the plasma particles and 
the waves. In section 3.1 c we have considered the quasilinear development of the 
return current instability and have shown that the rate at which the electrons are 
heated is larger than the rate at which the ions are heated. Hence, the electrons 
will be preferentially heated by this instability and when the return current is 
such that it satisfies the condition Vr> (cs/2) 1/2 a~0 (where Vr is the velocity of the 
return current electrons, cs is the speed of sound and a~re is the thermal velocity of 
the plasma electrons), the ion-acoustic instability will set in. The rate at which 
the return current delivers energy to the plasma due to scattering of the ion- 
acoustic waves by the electrons is also reported in this section. 

2. Dispersion relation 

Let us consider a hot plasma imbedded in a uniform magnetic field B0 which we 
take along the Z-axis. A relativistic beam of electrons of radius a is streaming 
with velocity U through the plasma along the direction of B0. The beam density, 
nb, is taken to be much smaller than the background plasma density, np, through 
which the beam is moving. We further assume that the plasma is hot but 
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nonrelativistic; this restricts the analysis to temperatures such that kBT < mc2 (m 
being the electron rest mass). 

As the beam propagates through the plasma the changing self-magnetic field 
towards the head of the beam induces a back current in the plasma which eventually 
neutralizes the beam current. The effect of such a return current can be taken 
into account in an indirect way through the inclusion of a return velocity V,,  simi- 
lar to the usual drift velocity, in the equilibrium distribution function of the plasma 
electrons. This return velocity is related to the beam velocity U through the current 
neutralization relation, viz. J,O + JbO = 0, where J,O and J,O ar: the unperturbed 
plasma and beam current densities, respectively. On assuming that the return 
current is mainly due to the electrons, the return velocity is simply given by 

V,  = - (n,/n,) U (1) 
Consequently for the plasma particles we can take the following equilibrium 
distribution function : 

where ail,Lj = (2k,Tl, Llm)j112 are the parallel (perpendicular) thermal velocities 
for the jth species. The subscript labels the plasma species, i.e. j = e for elec- 
trons and i for ions. Moreover V,, = 0 and V,, r I;,, as given by eq. (1). For 
the beam, we choose a delta-type distribution function, namely 

The superscripts p and b are used to distinguish the plasma and the beam para- 
meters. 

For small perturbations the motion of the charged particles moving with relati- 
vistic speeds is governed by the linearized Vlasov equation. Following the proce- 
dure outlined by Buti (1963) and Montgomery and Tidman (1964), and on using 
the full set of Maxwell equations, we arrive a t  the following dispersion relation 

I R I  = 0 ,  (4) 
where 

R = (c2 k 2  - w2) I - c2 kk + o ( 5 )  
with 

a = :I: s dpp ( d+' G (4') 
a=p .  b j TOO 

ma, = (4~n,e,~/rn,)~!~ and SZj = (e,B,/mjcyj) are the plasma and cyclotron frequen- 
cies of the jth species. The label a appearing in eq. (6) implies that the summation 
is over the beam as well as the plasma parameters. Moreover, the upper sign in 
eq. (6) correponds to the ions and the lower one corresponds to the electrons. The 
rest of the symbols have their usual meaning and are defined in the above mentioned 
references (Buti 1963, Montgomery and Tidman 1964). 
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The various components of o for the plasma and the beam, characterized by the 
distributions given by eq. (2) and eq. (3), respectively, are given in Appendix A. 
From eqs (4), (5) and (A-I)  to (A-14) we observe that for a general k = (kx, 0, 
k,,), all the components of R are nonvanishing, and to analyse the dispersion rela- 
tion in this case is a formidable job. Instead we shall restrict ourselves to the 
special cases k .  -: 0, i.e., parallel propagation or k,~ = 0, i.e., perpendicular propa- 
gation only. 

3. Parallel propagation 

In this case, oll putting k~ -- 0 in eqs (5), (6) and (A-1)-(A-14), we find that the 
elements R,,, R,,, R~, and R, v vanish and the dispersion relation reduces to 

R,, (R,, ± iR,~) ---- 0 (8) 

The mode corresponding to R,, = 0 is a purely electrostatic mode, whereas 
(R,, ± iR,~)-~ 0 correspond to the right handed and left handed circularly 
polarized electromagnetic modes, respectively. We shall investigate first the 
electrostatic mode. 

3.1. Electrostatic mode and rcturn current instability 

For k .  = 0, the mode R,, ---- 0 leads to the following relation: 
2 

----W~-e - Wre2 WPI2 Z '  
~0"(o~ - k U )  2 + k '  . . . .  ~,,o~ Z ' ( ~ e )  + ~ k S  ~"l ~ (~,) = 1 (9) 

where t~e = (~o -- kV,)/kaj~, 1'~ -= ~o/kaj,j and ~o = (1 -- U2]cZ)½. In the absence 
of return currents, i.e. for V,----0 eq. (9) represents the usual dispersion relation 
for the electrostatic wave in a cold-beam-hot plasma system. On the other hand 
if we treat V, as some sort of relative velocity between the plasma electrons and 
the ions and neglect the beam term, then eq. (9) reduces to the dispersion relation 
for the current carrying plasmas (Stringer 1964). Hence eq. (9), as one would 
have expected, has the characteristics of the beam plasma system or the current 
carrying plasmas under appropriate conditions. Since for arbitrary values of  
t~o and/q  the above equation cannot be solved analytically, we shall now consider 
a few cases where it is possible to extract some information regarding the stability 
of the electrostatic waves. 

3.1.a. Cold plasma--Under this approximation, eq. (9) simplifies to 

F(oJ, k) =: w~z w~2 w"'2 ! (I0) 
~.~(~ - kU)" + ( ~ .  k l V~-I) ~ + ~,~ -- 

The instability occurs whenever minimum of function F becomes greater than one, 
i.e. for Fm~, ~> I. The case Fro,, = 1 defines the boundary between the stable and 
the unstable regions (see figure 1). 

From the schematic plot of eq. (10) shown in figure (1), we observe that in the 
absence of return current the instability can occur for w, > 0 which is the usual 
e-e type instability (Briggs 1964, Nezlin 1971). However, when 1I, @ 0 even the 
frequencies % < 0 can support instability. The latter instability arises because 
of return currents and is essentially an e-i type instability which can occur in current 
carrying plasmas (Nezlin 1971, Stringer 1964). We shall now discuss the condi- 
tions under which the return current instability is important. 
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Figure 1. Schematic plot of eq. (10). Curves 1-4 are for F(oJ, k) and curves 5 
and 5' are for F(oJ, k) = 1, In the absence of return currents the curves 1 and  2 
merge together and form the curve 1'. Curves 5 and 2 show instability. 

From eq. (I0), we observe that for o~ < 0 and for i co I ~< k 1 V, l, the beam term 
is approximately %o2/k2 U 2 ~,o 3 which for relativistic velocities is ~ 1 and hence 
can be neglected for the frequencies of interest. In such a case, Fret, occurs at 

~0 =- - -  k l V, I(1  + ,-1/3)-1 (11)  

where a -- (m/M) is the electron to ion mass ratio. On substituting eq. (11) in 
eq. (10), we find that the critical plasma density is given by 

( m ) k ~  (1 ,1/3)--3 npc, : 4 ~  V, 2 + (12 a) 

and hence for the critical return current and consequentlyf or critical beam current, 
we have 

]or b ~ ]cr ~ ~ ~-a 2 npc r I/'r 

~ (ma~ k~ U 3 ( ~ 3  (1 q_ ,1/a)-3 (12b) 
\ 4e } \np /  

The superscript R stands for return current. 

In writing eq. (12 a) we have made use of eq. (I). From eqs (10) and (11) we 
find that the instability exists only in the range of wave numbers 0 < k < kcr"; 
where 

= (n.'~ 3/z ~o,,o (1 -{-- .t13)a/2 (12 e) 

is the critical value of k. The maximum growth rate of this instability is given by 

~"m., "~ 2 - ' '3 Y/Z ,1/3 k I v ,  I (12 d) 

the wave number and the frequency corresponding to the maximally growing wave 
are given by kR~, ~ ~o~/ I V, I and ~o," (max) ~ 2 -a/a ~l/a oJ, c. 

For w, > 0 and o~ ~ k U  we can again start with eq. (10) and find out critical 
condition for instability (beam plasma e-e instability) from the relation F..~. = 1. 
The critical beam current necessary to excite this instability is given by 

Icr = \(ma2]4e } k2U'~ ~ °3  [1 -k (nbln~) -~I3/0] -3 (1 -V ] V, ] IU) 2 (13 a) 

The range of wave number unstable to this instability is 0 < k < kc,, where 
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oJ~,o [1 + (nwo3inb)~] a/2 (13b) 
k<, = U703,~ (1 + l V, l fU) 

The maximum growth rate of this instability is given by 

~, .... ~ 2 -a/a 31/3 (n0/n0 ~;a 7,71 k U  (l -t- I V, ] /U)  (13 c) 

which will occur for frequency and wave number corresponding to to, (max) 
2 -4/3 '~0 "-1 (nb/nr) 1/3 kU (1 4- ] V, ] /U) and km.~ ~ to~/U respectively. F rom eqs 

(13 a), (13 b) and (13 c), it is clear that the effect of return currents on L,, k ,  or 
vm,~ is of  the order of  t V, I / U  and hence negligible. 

In order to ascertain the condition under which the return current instability 
plays a dominant role, let us compare the critical currents, critical wave numbers 
and growth rates of this instability with the corresponding quantities for e-e 
instability. From eqs (12a)-(12 d) and eqs (13 a)-(13 c) we find that for U ~ c  

L?<II, .~  (ndn,)  2 (14 a) 

k , " l k ~  ,~  (n~tnb) (14 b) 

and 

~,"~../>'~.. '~ [,~,0 ~ (ndn0] ~'~. (14 c) 

From eqs (14 a)-(14 c), it is obvious that the return current instability will be impor- 
tant when the beam-plasma e-e instability is absent, i.e. either for I < / ~ ,  or for 
wave numbers lying in the range k ,  < k < k,". The effect of finite temperature 
on the RC instability is considered in the next section. 

3. l.b. Hot  electrons and cold ions--Under  this approximation, i.e. f o r # e ' ~  1 
and V ~  1 the dispersion relation (9) simplifies to 

2 % ~  °Jb°~ (15) ~ 2M k,-~,o (to + k I V, I ) = 1 + k~,,o~ ~o~k".V ~ 

Let us write to = to,-t-i), (7 ~ 0 for instability), and a priori  assume that 
j ~,21 ~ t co, ~ [ • Then on separating the real and the imaginary parts of  eq. (15) 
and on solving for to, and 7, we get 

to, = ~ (e/Z) 1/2 ka,,eX (16) 

and 

~, = 0r48) '/2 k ( I V, 1-V%/2 a,,ox (17) 

with 

X [1  + 2k2 a'''2 2nb ~ue2 ]-½ 
= ~ p ~ U  -- np Fo3U2J ~ 1. (18) 

From eq. (17), we notice that ~, will be positive only when the return velocity 
exceeds a critical value, i.e. if 

I V, I > [ V~ [ ~ tt,,. (~/2) ~/z (19) 

So the critical return current or the beam current is given by 

( '~-~]  (,/2) 1/2 to~, a~,o (20) L, h°t = ~a ~ eni, Vo = k 4e ) 

On comparing eq. (20) with eq. (13 a), we find that 
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Figure 2. Variation of growth rate y/w,, ) - and real frequency wr/wpe (- - -) 
in the presence (curve 1) and absence (curve 2) of return currents versus all,/aili for 
nb/n, = 0.05, U J c  = 0.95, wpe/kall, = 10, and for a1le/c = lo-'. The broken 
curve 2 (-. -. --.) denotes damping and follows the scale given on the right hand 
side of the figure. 

The general dispersion relation (9) has been solved numerically; the results are 
shown in figures 2 and 3. From these figures we observe that the presence of return 
current forces the damped waves to grow instead. The effects of increasing (n,,/n,) 
is to increase the growth rates. As alle/alli is increased, the growth rates first increase 
with all,/all, but then get saturated for larger values. 

3.l.c. Estimates of plasma heating-It is well known that growth of the 
beam instability is limited by the trapping of the beam electrons in the 
potential of the growing wave. Following the simple model given by Drummond 
et a1 (1970) we can calculate the final saturation level of the return current insta- 
bility which according to eq. (12 d )  is given by 

In order to have an order-of-magnitude estimate of how much heating can be 
achieved by the return current instability, we define an average kinetic energy per 
particle relative to the mean for the jth species as 

K, (t) = 3 m, S dv [v - Vj (t)I2 f j (v, t )  
where V,  (t) is the mean velocity defined by 

v, (t) = S dvvf j (v, t) 
and fj (v, t) is the distribution function for the jth species. The quasilinear 
evolution of the distribution function is governed by the equation (Drummond 
and Pines 1962, Vedenov et a1 1961) 
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Figure 3. Variation of growth rate y/oJ,~ versus U/c for a~r~/alli = 100, o~pe/kmi~ 
= 10, and arto/c = 0' l and for nb/nv -- O" 01 and 0.05 for the curves 1 and 2 respec- 
tively. The broken curve 3, which is for the case when return currents are neglected 
but the other parameters are same as above, denotes damping. The damping remains 
unaffected by the increase of nb/n v. The value of the real frequency is w/a,~e 
= -- 5' 17 × I0 -a for all th~ curves. 

b ~ f j ( v , t ) = ~  D ~ ( v , t ) ~ v  f j ( v ' t )  (23) 

where the diffusion coefficient is defined by 

D, (v, t) -- 8zre2 f dkgk (t) Y~ (24) 
m~ 2 , (o,k - -  k v ~ q -  7,g 2 

In  eq. (24)gk  (t) is the spectral  energy densi ty o f  the wave and Yk is the linear 
growth rate cor responding  to the k th  mode.  Tak ing  appropr ia t e  velocity 
m o m e n t  o f  eq. (23), it can be easily shown that  

y f n, ~ Kj (t) = Wj, t 2 dk2ykg~ (t) d v f j  (v, t) 

× [(~k - k  V')2 q- y 2  _ k 2 (v - V,) 21 (25) 
[(,o~ - k v )  = + v ~ ]  ~ 

In  obtaining eq. (25), eq. (24) has been used. F r o m  an order -of -magni tude  esti- 
mate  of  the integrand in eq. (25), it can be shown (Dav idson  1972) tha t  the electron 
and the ion heat ing rates are approx ima te ly  given by, 

d d 
n, ~ Ke (t) ~_ d-t gt (t) (26) 

and  

d K, (t) "~ E l'a d ni d t  - (1-t gt  ( t  ) (27) 

where gt (t) ----- .f dkg~ (t) is the total  field energy density in the unstable  modes.  
F r o m  eqs (26) and (27) it is clear that  it is the electrons tha t  get preferential ly heated.  
This fact  is impor t an t  in the sense tha t  after  the initial deve lopment  of  the return 

P--2 
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current instability, the electrons will be sufficiently heated so as to make ion- 
acoustic instability to take over. 

Another important conclusion that can be drawn from the order-of-magnitude 
estimate of the integrand of eq. (25) is that Kj will continue to increase until 
(Davidson 1972) 

K~ ~_ (wk/k -- V;) a + (y~/k 2) (28) 
mj 

Thus the maximum temperature of the electrons that can be achieved by the return 
current instability is given by 

To ~- ½ m [(~okm~Jkm,x -- V,) 2 + (~Rm~,/km~x)2 ] (29) 

For n~ ~ 101~ cm -3, nb/n~ ~-- O" 05 and U/c ~ O" 99, which corresponds to an intense 
beam with peak current density ~ 20 kA/cm 2, the maximum temperatures to which 
the electrons will be heated by the return current instability is ~ 5 keV. This is 
in good agreement with the estimate made by Guillory and Benford (1972). 

As was mentioned earlier, the electrons will be preferentially heated in the early 
stages of the development of the return current instability. When the electrons 
are sufficiently heated so that T, >~ Tl and the return current satisfies the condition 
given by eq. (19), the return current induced ion acoustic instability sets in. The 
turbulence generated by this instability will further heat the plasma. 

We shall make a rough estimate of the electron heating on the assumption that 
the level of turbulence (i.e. the energy in the growing wave) is limited solely due 
to scattering of the ion sound wave by the electrons. Following Sisonenko and 
Stepanov (1969) and Krall and Book (1969), we can immediately show that the 
result of the above mentioned process is to limit the final level of turbulent energy 
W, to a value given by 

W V_, (30)  
n~T, M c~ ' 

where c, : ~/T,/M is the ion sound speed. 

In order to make an estimate of the electron heating, we shall first calculate the 
effective collision frequency vat, for the electrons. In the resonant region of velo- 
city space, the space-averaged distribution function for the electrons, fo (v, t) evolves 
according to 

bfo (v, t) e 2 ~ g d 3 k 
bt --  m27r ~ -vJ  ~ kk 1 Ek 12 8 (`ok --  k . v)  . ~vf~ (v, t) (31) 

On taking the first moment of 

d (nVo) = -- npVova~ 
dt 

te2 ( 
= -"m d 

y d3k = - 

eq. (31) we obtain, 

f d3k 12 

I rk 12 `0pi 2 
k 4 ~ m  2yk .,0,2 

3 (`ok -- k .  v ) .  ~-v f~ (v, t) 

On substituting eqs (16) and (17) in eq. (32) we get, 

(32 )  
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= ,,,,i . I E,, I [ 1 - -  c. ( X ) ] (33) 
v.n 4rrmn.~ ( k ) aJl. 3 - I V, [ J 

On treating these 'effective collisions' as an isotropic joule-heating mechanism, we 
can obtain the rate of heating of the electron as 

~n~ dTo 
-dt- ~ ~TJ'~ (34) 

where .7 is the resistivity defined by .7---4rrvotd%oz. Equations (33) and (34) 
immediately give 

dT,  ~-. 25/~r 1/~ ( W ~  {1 m l V ,  "~[ c, ( X )] 

which can be rewritten as 

ld [3) (35) 

where 

25/~rr'/2 I V, ] 1 (36) 
A--3(k)a~ c, %° i g, I-J 

Equation (35) tells us that the rate at which the return current is delivering energy 
to the plasma electrons is given by the quantity A. Since X .~ 1 and for the unstable 
modes under consideration c, < V,, the time scale of delivery of energy can be 
,~ oJ,71 when V, ,-., (M/m) u~ c, and ( k ) ,~ ,~ 1. 

3.2. Electromagnetic modes 

As mentioned earlier, two electromagnetic modes of right handed and left handed 
circular polarization can propagate along the direction of the magnetic field. Here 
we shall discuss only the right handed mode which is given by R~, + iR,v = 0. 
A similar treatment can be applied to the left handed mode in a straight forward 
manner. On using the results of Appendix A in eq. (5), the dispersion relation 
for the right handed mode can be written as 

%,~ (oJ -- kU)  
- -  o ~  + c 2 k 2 + 

e,  (oa -- k U  + 0, ' )  

+ 2 % ~ ' [ 1 +  X2, Z( .7 , )+  a . , ' Z , ( . 7 , ) ] = 0  (37) 
! 

where 

and 
~. , "  = ,.o,,/:,, o, 7 .  = ( ~  - -Q~ - -  k r ' , ) / k ~  

For frequencies, oJ ~ 121 on solving eq. (37), we find that the return current effects 
are negligible. We shall therefore leave out this uninteresting case and discuss 
here the frequency range, t2i ~ o~ ~< t2e, where the return current effects are expec- 
ted to be important. Let us consider the following case: 

3.2.a..7, ~ 1 and .7i ~ o~/ka,l >~ 1 

Under these restrictions eq. (37) reduces to 
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where 

and 
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CDbe 2 
- -  ¢ 0 2  - t -  C ~ k  2 -[- - -  - -  

~o 
( / " -  1) o)~o 2 + 2%~ 2 X (oo - -  g?~ - -  kV,)/kaHo 

- -  irt 1/2 X w r e  2 ~ -  c%l 2 --" 0 

/~ : ~.Le2/alle 2 

X = [ /~(oJ  - -  k V r )  - -  ( 1  ~ - -  1) ~e]/kc~lle 

On separating eq. (38) into real and imaginary parts by writing, 
and assuming that I~' ] ~  [ oJ, 1, we obtain 

2~, 9~ 
~o, : [ ( P - - 1 )  ~rl/~a,~e] --~ --  k ` V, [ 

and 

e - + - -  - 

7rk* a.to 'z F ]  o,,~ 2 

c 2 k 2 ] 2 ( P - - 1 )  k l  V , , ~ ' ( I _ 2 ) _ _ _ _  
/'t2oO, p0 2 o,~ 2 1 

(38) 

(39) 

oJ = w, -4- iy, 

(4o) 

(41) 

We may note that the assumptions oJ ~ ~2~ and ~ = (oJ - -  12~ -t- k [ V, [)/ka,~ 
1 imply that [ V, [ ~ a ~ .  Therefore, eq. (41) simply shows the tendency 

of these modes towards stabilization due to the presence of  the return currents. 
In fact, the influence of these currents is expected to become appreciable when 
[ V,  I >~ a~e, i.e. for ~7~ "~ 1, a case which is difficult to handle analytically. How- 
ever, if we consider the case when 

~ = (co -- ~o + k l It', I)/ka,,0 ~ I V, I>~ 1 
if'He 

and ~l >~ 1 as before ; from eq. (38) we obtain the following dispersion relation: 

V o k l V, l + 1 + 

(42) 

which shows no instability. Hence we can conclude that the influence of  the 
return currents on this mode is to suppress the growth rates. 

4. Transverse propagation (k~ = 0) 

In this case we have k : k ~  and on putting kH = 0 in eqs (5), (6) and (A-1)-(A-14) 
we notice that all the elements of R are nonvanishing and involve infinite summation 
over Bessel functions I ,  (A). For any arbitrary value of  A it is impossible to obtain 
some analytical results. We shall, therefore, restrict ourselves to the case where 

: k 2 a t~2/$2e2~ cx~, i.e. no magnetic field case and when A ~ 1, i.e. a strong 
magnetic field case. 

4 .1 .  Zero  magnet ic  f i e ld  (Bo --- O) 

In the limit of t2 ~ 0 the various elements of R are given by 
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and 

with 

R~= = -- w 2 + wo~2 oJ 2 ~ 2°J'J2 [1 + ~:,Z (~:j)] (43) 
Yo k 2 aJ.j ~ 

t 

R~u = - - ( o  ~4-c 2k ~+  c%~2 S ~ o  - -  ~"J ~ ~j Z (~:a) (44) 
J 

R..  R~ kU~°be2 ~ 2%j ~ V, 
. . . . .  a, - -  - - -  [1 + ~:jZ (~:j)] (45) 

7ooJ ka~j  
J 

kzU2wbe2 ~ all J2 ( 2Vr2'~ 
.Rzz  = - -  w 2 4 -  c 2 k  2 -{- ~,o(O2 " + w,~ 2 {1 -- - -  1 + 

a/12 all] 2 ] 
J 

× [1 -f-~jZ (~j)]} (46) 

R n  = R , ,  = R~, = R ,  v = 0 

~j = w/ka.tj. 

The dispersion relation in this case is simply given by 

R,, (R.oR,, -- R°,  2) = 0 (47) 

The mode R .  = 0 is independent of  V, and hence we will not discuss it here. The 
other mode, R° ,R . ' - -  R .  2 = 0, is affected by the streaming velocity and we will 
study this in detail. The dispersion relation for this mode, on using eqs (43)-(46) 
and on neglecting ion contribution, can be written (after dropping the subscript 
e which is now not needed) as 

- - ( 1  a"2 [1 + ~Z(~)]}  G1 2% 2V'~ Glw 4 c 2 k z 4- w,, z ---  w~* ctZ2 ct.i. 2 

where 

x It + ~z (¢)1) ~o2 ~o.2o~p2 ~2?j2 y0 { a ~  [1 -t- ~:Z(~)] -- 1 } =  0, (48) 

w~2 [1 + ~Z (~:)] G I =  1 -4- 2 k~a~ ~ (49) 

0 2 = (U + I V, I )  2 + ~,~2/2 

For the case, ~:>~ 1 and o~2/oJ=>~ 1 eq. (48) reduces to 

(50) 

× ~2- + n,eo.i " 

As k 2 al2/oJ2~ 1, we can solve eq. (51) by an iterative procedure. To zeroth 
order eq. (51) reduces to a bi-quadratic equation which yeilds the solution 

o~02 ~ k z [aza2/2 + (nJn~o) U 2} (52) 
1 + (c 2 k2/ojp ~) [1 - -  (all I + 2V,2)/2c 2] 
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The other root of the bi-quadratic equation is not consistent with our assumption 
COp 2 ~ C02. 

On using eq. (52), the first order solution of eq. (51) is simply given by 

k z {[1 5- (3/2) (k ~ a.t~/COo~)] (a,,2/2) -F (ndnwo) ~]2} 
co ~ = -- (53) 

1 + (c 2 k~/% ~) [t - -  (at, ~ + 2V,2)[2c ~] 

The effect of return currents, as seen from eq. (53), is to increase the growth rate 
slightly. 

We have solved the dispersion relation (48) numerically and the results are given 
in table 1. From this table, we observe that the return currents do affect the growth 
rates but very slightly and that the effect of increasing aj./aH is to stabilize the system ; 
this is in agreement with eq. (53). From table 1 we also conclude that for low beam 
velocity the growth rate increases with U, attains a maximum value and then decrea- 
ses as U ~ c. This decrease of growth rate when U -+ c is due to the increase 
of relativistic mass, m = m0/(1 -- U~/c2) 1/2. This is in agreement with the results 
of Lakhina and Buti (1972). 

Table 1. Variation of growth rate of the transverse e.m. waves in the absence of 
magnetic field for c~k2/~2= 0.1 and o~n/np = 0.01. The parameter ~ decides 
whether values correspond to the case of ' n o  return current' ( 8 - -0 )  or 'with 
return currents' (8 -: 1) respectively. The waves are purely growing. 
Growth rates ~,/o~ro (in units of 10 -3) 

\ 
\ a,/~,, 

\ 
UIc \ 

\ 

0.1 1.0 

3=1 8=0 8=1 8=0 

0.1 21"20 21.19 5'04 4"99 

0.2 21.84 21.82 8.86 8.79 

0.3 22-83 22.79 12.16 12.06 

0.4 24.04 23-99 15.11 14"99 

0.5 25.36 25.29 17.73 17.57 

0"6 26.65 26.55 19.96 19.79 

0.7 27.71 27.59 21.66 21.48 

0.8 28-28 28.16 22.54 22.35 

0.9 27.78 27.66 21.80 21.62 

0.91 27'61 27.50 21.56 2•.37 

0.92 27.42 27-31 21.26 21.08 

0.93 27.18 27.07 20.89 20.72 

0'94 26"90 26.80 20.44 20'28 

0.95 26'56 26.46 19"89 19.73 

0-96 26-14 26.04 t9'19 19.04 

0.97 25.61 25.52 18.28 18.13 

0"98 24.91 24.84 17'00 16.86 

0.99 23.93 23.83 14'94 14-82 

0.995 23.10 23.06 13.08 12.98 
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4.2. Strong magnetic .field (A = k 2  a ~ ~ / / s ~  < 1) 

Under the approximation, h <<'I the elements of R get simplified but all are non- 
vanishing (see Appendix B) and we have to use the full dispersion relation 

where R,, are as given in Appendix B. However, if we assume ~ ~ / / s , ~  m << 1, 
the terms R,,R,,R,, and R,uR,,2 become much smaller than R,,2R,, and hence 
can be neglected. When we do this, the dispersion relation (54) reduces to (neglect- 
ing ion contribution and dropping the subscript once again) 

where 

.r2 = (1 + wp2/c2 k 2 )  and rP = - - - 2 c2 52% 

Since eq. (55) is a cubic equation in w2 with coefficient of constant term positive, 
it will always give one negative root for w2. However, for u P 2 / Q 2  1 we find that 
d term in eq. (55) is 0 ( u 2 / Q 2  or u2/up2) as compared to other terms. So neglect- 
ing this term (which amounts to suppressing the root w Q or w, which in any 
case is an invalid root) in eq. (55), the resulting quadratic equation in w2, for the 
growth rate, yields 

(57) 
From eq. (57), we can immediately conclude that the growth rates will increase 
with V,. 

Once again we have solved the general dispersion relation (54) numerically. Some 
of the results obtained are shown in table 2, which shows that the effect of return 
current is important when w - Qe. For w deviating too much from Q,, the effect 
of return current on the growth rate is very small. 

A brief comment on the heating produced by these transverse e.m. instabilities 
is in order here. Computer simulation experiments (Davidson et a1 1971, Davidson 
et a1 1972) have shown that the bulk response of the plasma, such as heating, is 
in very good agreement with the predictions of space averaged quasilinear theory 
in the initial stages of the instability. The computer simulation experiments also 
show that the magnetic field fluctuations get saturated via magnetic trapping 
governed by the equation 
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Table 2. Variation of growth rate and real frequency in the presence of a magnetic field 
for c2k2/co'~r~ = O" 1, rib~rip = 0'  1, and all/c = 10 -2. The parameter 3 distinguishes the 
' no return cur ren ts '  (8 = 0) case from the ' with return cur ren t '  (8 = 1) case. 

\ g2/cop 1' 2 1" 6 5" 0 
\ 

\ y/O~p (10-6) co, /¢% y/cop (10 -5) ¢o~/cop V/cop (10-') cop/COp 

U/~c \  8=1  8 = 0  8=1  8 = 0  8=1  8 = 0  8=1  8 = 0  8=1  8 = 0  8=1  8 = 0  
\ 

0.92 1 '19 0.87 1"08 1.07 4 '02  4"03 1.07 1 '07 3.27 3.27 1.03 1.03 

0.93 1"36 0 .99 1"08 1 '07 4-30 4 '31 1.07 1"07 3.28 3 '28 1-03 1"03 

0-94 1.52 1"12 1.07 1"07 4.55 4.56 1.07 1.06 3.28 3.28 1"03 1.03 

0.95 1 '69 1"26 1.07 1.06 4.78 4.79 1.06 1.06 3.27 3- 27 1.03 1.03 

0 .96 1"87 1"42 1.07 1.06 4.99 5.00 1.06 1.06 3' 24 3' 24 1.02 1.62 

0.97 2.07 1'58 1-07 1.06 5.19 5.19 1.06 1.06 2.99 2-99 1.02 1.02 

0,98 2-29 1.77 1"06 1.06 5.38 5.38 1.05 1.05 2.77 2.73 0.95 0 '95  

0 .99 2.55 2.00 1"06 1,06 5.57 5.57 1.05 1.05 2.90 2 '90  1"04 1,04 

0-995 2,72 2.15 1"06 1'05 5.68 5.68 1-05 1.05 3.08 3.08 1-04 1.04 

0.999 2.93 2.35 1"06 1.05 5 '80  5"80 1 '05 1.05 3.16 3"15 1 '03 1"03 

where ¢o, = 1 ek VaB~/mc It (B~ being the magnetic field amplitude and Va is the 
characteristic particle velocity perpendicular to the direction of propagation) is 
the bounce frequency of the electrons in the potential of the magnetic fluctuations. 
A rough estimate of the rate of heating due to such an instability when ¢o ~ 9,  ~ cope 
(the region, where the effect of return currents according to table 2 is most signi- 
ficant, was made by using quasilinear equations governing the rate of change of 
kinetic energy (Davidson et al 1972). It is found that the rate of heating achieved 
due to such an electromagnetic instability is extremely small compared to the 
rates obtained due to e.s instabilities (see section 3.1 c). 

5. Conclusion 

The return currents, arising because of the motion of a relativistic beam of electrons 
through a nonrelativistic plasma affect the stability of the waves excited by the beam- 
plasma interaction in a number of ways. These currents destabilize the electro- 
static waves by exciting a return current instability which requires smaller beam 
currents than the one required for exciting the usual beam plasma e-e instability. 
The electromagnetic waves propagating along the direction of the magnetic field 
are stabilized by these currents. The growth rates of e.m. waves propagating in 
the transverse direction are, however, slightly increased by the presence of these 
currents. The return current instability can heat the plasma to keV temperatures. 
Moreover, when the ion-sound turbulence generated by the return current decays 
via scattering of ion-sound waves by electrons, the return current delivers energy 
to the plasma at the rate of ~ (m/M)½ (V,/C~)~opt. 

In this study the return velocities were taken to be nonrelativistic as the analysis 
was restricted to beam densities much smaller than the plasma density. It would 
be of interest to extend the analysis for relativistic return velocities and also for 
the case where the plasma temperatures are high, i.e. kBT ~ mc ~. This work will 
be reported in a forthcoming paper. 
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Appendix A 

The elements of ~ defined by eq. (6) can be evaluated by doing the integrations 
as indicated by Montgomery and Tidman (1964) and Bernstein (1958). For the 
case of plasma characterized by the distribution function as given by eq. (2) the 
various % elements turn out to have the following form: 

ff']l n~/"(AJ) e-Xi[ 1 - -  

# n=--~o 

where 

,nO~ z (v.k ÷ -%~'-~ z' @.,)] 
kil c% 2Ctil ~ ~ 

(A-I) 
I I o  

o . ~ _ _  %:_ y. ~p.~ y. in...~.. ° 0 ,  ,~j [ 1 - -~  Z (#.i) 
- -  k l l  o.N J 

axJ~ Z' 0~,~)] (A-2) +2~,,? 
o o  

j , n = - - ~  

ng2j Z -l- a'tt2 Z' (#z.~)] (A-4) %/=Sco,>,<'~ q ~ l ( , ~ j ) [ 1 - - ~  (#.j) 2~,,j-~ 

~ l l j  2 

2nDj Vr Z (~.j)] (A-5) 
~llfj 

S S " ~ ' e ~ ' ( [  '~" ~'~' ] ' ~ J  = - ~ "  " /qa,,~ ,<, 2 (t~.j) - --,~,,~ 0 ' . 3  + ZO..,) 

+.~,/'_~o,,, ~ ,)~. ~.(1--,,,-'~ 
2 t=.~' + @"') - -~,,~ + ~ - N  z '  @.,) 

- -  2V'~I 1] Z (tl.j)}) (A-6) 4- rctllJz (1 -I- -f- 
La¢ a,/,# 

oJ + kti [ V, [ nOj 
~j ----- (k 2 axjz)/(21212), tL.j = , k l t a l l  j kllatq 
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h d t  n F~ (~) = ) {e -x [I. (A) -- l,,+x (1)l} q- ) e- [I. (~) -- I,,+~ (~)1 

- ½ I.+~ (~) e - x  

q~ (h) = ~ d {e_ x [I, '  (t) --  I .  (~)1} + e -x I , '  Q,) 

(A-7)  

Z ( t z ) = r r - ] / ~  f d x e - " / ( x - - # )  
- - 0 0  

is the plasma dispersion function (Fried and Conte 1961) and I ,  (;~) is the modified 
Bessel function of  nth order. 

The elements of  a for the beam characterized by the distribution function as 
given by eq. (3) have been evaluated by Montgomery and Tidman (1964). These 
are given below for the sake of completeness: 

~ b  = _ o~b0~ ( _  o, + k,  U)  ~ A 

where 

and 

b ~ = _ % b = __ iDor cob ~ (__ oJ + kI, U) A 

b %~ = a~. b = kn Uo)bo ~ ( - -  eo + kll U)  A 

b %. : - ~O,e 2 (-- o~ -r- k~ U)  ~ A 

%b = _ a ,b  = __ ika.Uco,beD, A 

± [ ] - us A 
a , ? = - -  g2, 5 P k v o ( - - d ~ - k , , U )  J 

A = 70 "-x [f2. " -- (--  w 4- kHU)~] -x 

(A-8) 

(A-9) 

(A-10) 

(A-11) 

(A-12) 

(A-13) 

(A-14) 

Appendix B 

Elements of R for transverse propagation in the limit ,~j 

R~ (D2 OJbeg('O2 Z O)PJ 2Oj2 
~o (0.o - ~02) ' ~02 - S2j2 

J 

i°JK2o~'~2 ~ iw~2j%~2 
~o ~ (Oo r ' -  oJ 2) + co~-- t2~ 

t 

~Oho2k Uo) 
R ~  ---- R ~  --  . . . .  

~'o ( O f  - ,02) 0.;2 __  ~ j 2  
J 

Ryy = - -  o~ ~ + c 2 k ~ 
(.Ob a2 ~.O 2 

ro( - + / "  0./2 __ ~ j 8  
J 

R y Z  : - -  R g y  : - -  ----  
ikU~°b'2Do Z ikV'°j~J2g-2J 

¢ 0 2  ( D r  - -  oJ 2 ~0 2 - -  t2j 2 
J 

= k 2 a.tj212X2j 2 ~ 1 : 

(B-a) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 
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R** = - -  oJ 2 + c 2 k 2 
OJb. 2 k 2 U 2 cob° 2 S 
V03 70 (12, r' -- ~o2) + %j2 

i 

2VZ~ k2 am q 2 
1 (1 5- 2 (B-6) 

y 
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