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Radial correlation in atoms 
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Abstract. A ,method is described to calculate correlation energy in atoms. The 
total wavefunction of an n-electron system is expressed as a linear combination of 
products of n one-electron basis orbitals. This function gives a correlated descrip- 
tion of the system. Under suitable restrictions it reduces to DODS and to split- 
shell description of closed-shell atoms or molecules. Energies of He atom, He-like 
ions and also of H- ion have been calculated including radial correlation only. The 
calculated electron affinity of H is better than earlier split-shell calculations. The 
result for He shows that the energy limit for radial correlation has been attained. 
For the other 2-electron ions radial correlation alone explains about one-third of 
the total correlation. 

Keywords. Electron correlation ; correlation energy ; electron affinity; He atom ; 
He-like ions. 

1. Introduction 

The purpose of this paper is to demonstra.te a simple and straightforward way of 
calculating the energy correction due to radial correlations in an atom. 

The practice of describing the state of a system of interacting fermions by anti- 
symmetrised product of one-particle functions has proved reasonably suecessfull 
for many investigations. Consequently the Hartree-Fock (HF) method has attained 
immense p~palanty for calculations in the field of atomic and nuclear structures 
(see for example, I-Iartree 1957, Kelson and Levinson 1964). However, such a 
description of many-particle systems has its limitation. It is manifested in the 
small but significant difference between calculated and observed energies. This 
is the correlation energy and is defined to be 

E~o,r----E~-- E~ (I) 

where EN~ is the total energy of the system in the non-relativistic approximation 
and E~ is that calculated in the HF model (Lbwdin 1959). 

Various approaches, like configuration interaction (CI) (Slater 1960), Hylleraas- 
type expansion (using the inter-particle coordinates explicitly, see for example, 
Hylleraas 1929), and many body perturbation theory (MBPT) (Kelley 1969), have 
been developed to account for this difference in the energy value. A common 
feature of all these procedures is an order of magnitude increase in labour and 
complications in numerical computation over the conventional I-1F calculation. 
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Tho present method attempts to incorporate the dominant character of an inter- 
acting system, while retaining the mathematical simplicity of working on a single- 
particle basis set. 

Our attitude may be described in simple terms by the following consideration. 
In principle, the state of a particle in a potential may be described by a line~.r com- 
bination of a complete set of functions. In practice, for bound states, a finite 
set of  basis may be used to provide a reasonably adequate representation by making 
judicious choice of such basis functions. The Slater-type orbitals have proved 
successful in atomic calculations, while for molecules the LCAO's are extensively 
used. For nuclei different functions including the harmonic oscillator eigenfunc- 
tions are taken as is convenient for various investigations (see for example, Talmi 
1952, Elliott 1958). In CI and MBPT calculations the starting requirement is 
the complete set of eigenstates of a suitable model Hamiltonian. 

Now, if the set of basis orbitals X, (i) span the one-particle space for the particle 
i, then the product space of n particles will be spanned by n-electron products of 
the form 

go (1, 2, . . .  n) = x~ (1) x, ( 2 ) . . .  x, (n) (2) 

An arbitrary n-particle function may then be expressed as 

~c0r, (1, 2, . . .  n) ---- Z' cog s. (3) 
Ii  

Suitable constraints amongst the coefficients c need be imposed to ensure indis- 
tinguishability of similar particles, as also to make the function an elgenstate of 
L z, L,, S 2 and S, in case of atoms or of S 2 and S, for molecules. Further con- 
straints are required if one wishes to factorise the composite function ~bcor~ into 
products of single particle orbitals with real coefficients. If these additional con- 
straints are not imposed, Complex amplitudes are sometimes obtained implying 
different phase relations between the X's. Otherwise, the function ~corr may be 
looked upon as a linear combination of determinants as appears in a CI description. 
Further, the function ~o,~ is more general and flexible than a DODS (different 
'orbital' for different 'spin') (L6wdin 1964) or a split-shell representation (Harris 
and Pohl 1965) for closed shell systems. 

Thus ~boo~r can give a correlated description of the n-particle system. It has the 
advantage that all basic integrals will be over single-particle functions. The con- 
ventional integrals appearing in an HF calculation will be all that are required. 
The energy eigenvalue equation reduces to a set of simultaneous linear equations 
in the parameters and they may be obtained in a single diagonalisation process. 
No recycling procedure is required in order to obtain self-consistency. Further, 
prior knowledge of excited states of the true or of a modal Hamiltonian is not 
required, as in CI or MBPT methods. 

In ultimate analysis the present approach will be equivalent to a full CI calcula- 
tion with a given basis set. 

It is pertinent to mention here a calculation on a similar framework done by 
Harris and Pohl (1965). Their interest was on properly reproducing the Morse 
potential for diatomic molecules at large internuclear distances. ~hey used split- 
sholl orbitals and obtained the single particle MO's from a correlated two-particle 
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wave function. This was possible since in their case the number of independent 
parameters in the two descriptions were equal. For internuclear separations close 
to equilibrium value they obtained complex MO coefficients. This implied relative 
phase differences between the AO's. 

Another similar calculation illustrating the inter-particle correlation aspect was 
performed by Sengupta and Mukherji (1968). Starting from the HF framework 
and following a procedure similar to what has been described here it was possible 
to calculate the van der Waals force constant between inert gas atoms. Under 
strict HF approximation it should have been zero, since the origin of the van 
der Waals force between two non-overlapping atoms lie in the instantaneous 
correlation of the electrons in the two charge clouds. 

2. Theory 

We shall demonstrate our approach by a simple model. Consider a He atom in 
the singlet ground state, for which the HF eigenstate may be represented as 

~b.F (1 , 2) = 4' (1)4, (2) (4) 

Here 4' is the one-particle ls orbital of He. The antisymmetric combination of 
the two spin functions has been omitted for simplicity. Let the orbital 4 be built 
out of two normalized Slater-type basis functions X 1 and X2 with real coefficient~ 
b. Thus 

q~ = blX 1 + b~X~ (5) 
Then 

~b~ (1, 2) = b~*Xa (1)X~ (2) + 

+ blb2 {X~ (I) x~ (2) + X2 (1) X 1 (2)} + b22X2 (1)X 2 (2) (6) 

For this system the correlated function following eq (3) will be 

~b,o,, (1,2) = elX 1 (1) X x (2) + e2 Xl (1) Xa (2) + 

+ e2'X2 (1) X~ (2) + csX, (1) X~ (2) (7) 

It looks similar to the Weinbaum (1933) wavefunction of the form (VB + Ionic), 
if the X's are the AO's. Pauli exclusion principle requires c(  ----- cz for the singlet 
configuration. Comparing equations (6) and (7) we note that if the number of  
in6ependent parameters in the two equations are same, then it is possible to obtain 
the b's from the c's and vice versa. Such a situation arises in a DODS (L~Swdin 
1964) or a split-sheU represemation (Harris and Pohl 1965) of molecular orbitals 
built out of two AO's only. In general the number of c parameters will exceed 
the txumber of b parameters and additional restraints on the former will be required 
in order to make the two functions eqmvalent. Between the above two functions 
(6) and (7) this relation is 

clc~ = c~ ~ (8) 

Relaxation of such relations constitutes the essential spirit of the present approach. 

If we try to expand (7) in terms of functions of type (6), i.e., products of s-type 
orbitals taken two at a time, it would look like a linear combination of such func- 
tions. If the s-type orbitals are chosen to be the IIe ns functions, the function (7) 
will be a radial-configuration-mixed representation f~r the ground state of He. 
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We propose to calculate the energy levels of  the He a tom with a set of  m-type 
basis orbitals. With only two bases the radially correlated wavefunetion is 

~eorr (1, 2) = clg 1 (1, 2) + C292 (1,2) + C898 (1, 2) (9) 

where the normahsed two-electron functions are 

gl (1,2) = X~ (1) X 1 (2) 

g2 (I,  2) ~ (2 + 2S*)-~{Xz (1)X, (2) -t- X2 (1) Xl (2)} 

g~ (1, 2) = X 2 (l) X, (2) 

with S ---- ( X~ (l) ] X 2 ( l ) )  (10) 

The normalisation censtraint  is 

,F, c~cjS, = 1 (11) 

where So is the (bth element of  the overlap matrix $, and the energy may be 
expressed as 

E : ( ¢¢orr ( l ,  2) [ c~t~[ •eorr (1, 2) ) = Z c,c~ ,Yt" w (12) 
U 

We obtain  the energy values by solving the equation 

Idc = SeE (13) 

3. Results 

3.1.  Hel ium atom 

The results o f  our  calculation are given in table 1. The salient features are 
enumerated below. 

Table 1. Energy of He atom in ground state (E0) and in first two excited s-states (Ez and Ez) 
including radial correlation. All energies are in a.u. 

Basis orbitals* Number of 
2-electron Enr 

Serial No functions 

Correlated energy values 

Eo Ex E2 

1,2 3 --2"8034 --2"8732 --0.1562 2.1407 

1-3 6 --2"8776 --0.9577 0.6216 

1-4 10 --2.8785 --2.0517 --0'7036 

Clementi ~ 10 --2.86168 --2.8786 --2.1016 --0.7260 

1-5 15 --2"8787 --2.1360 --1.7267 

C~menti ° 15 --2.86168 --2.87890 --2.0796 --0.8573 

Weiss a --2.86168 -2.87896 

1-6 21 --2.87899 --2.1441 --2"0243 

Theoretical limit for radial 
correlation* --2. 87900 

Experimentalt - 2 .  9038 --2.1461 --2"0614 

a vide table 2 ; b 4 basis orbitals. Exponents optimised to represent HF ls orbital. Taken from 
Clementi (1965), Table 03-01 ; c 5 basis orbitals. Clen,,enti (1965), Table 01-01 ; ~ Weiss (1961), 
Table II;  ' Estimated by Shull and LOwdin (1959); t Moore (1949). 
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The calculation with two bases with exponents chosen arbitrarily (i.e., reasonable 
guess, without an attempt to optimise them) yields poor HF ground state energy 
(--2-8034a.u.) as expected. But inclusion of radial correlation yields a value 
(-- 2.8732 a.u.) even better than the HF energy (-- 2. 8617 a.u.) with 5 optimised 
exponents (Clementi 1965). We may infer that inclusion of correlation with an 
approximate basis ~et gives better representation of the system than a HE descrip- 
tion with improved bases. However, it is not intended to triply that improvement 
of basis is unimportant. It only goes to show that from the physical point of 
view more attention should be given to the Hamiltonian itself. One should first 
try to include as much of the Hamiltonian as possible under a particular frame- 
work of calculation. Finer improvement on the basis set should come next. It 
has also been mentioned by other workers that choice of the basis set is not 
always very critical (see for example, Nesbet and Watson 1958). 

Next, we observe that explicit inclusion of 2s-type crbitals do not significantly 
improve the ground state energy E0. This is because the two-electron functions g 
allow independent freedom to the electron pair to exist simultaneously at different 
regions of space. Thus the correlated charge density witl~ ls-type bases can simulate 
to a large extent that corresponding to a HF (2s) 2 configuration. Hence, if our 
interest is confined only to the ground state we may safely wclk with a reasonably 
good set of Is-type bases. 

However, the behaviour of the higher energy states E1 or E2 is critically dependent 
upon the basis set used. Addition of 2s-type orbitals to the set improve these 
energy values remarkably. Further improvements, particularly on E~, is expected 
when we add a few 3s-type orbitals. Hence, to study excited states with a finite 
basis set, one has to be careful to include such basis functions as will be able to 
span the higher order configuration space. 

Finally, we note that the experimental ground state energy of He is -- 2.9038 a.u. 
(Moore 1949). Taking EN~ to be roughly equal to it, we find that nearly half of 
the correlation energy is explained by the radial correlation alone as described here. 
The angular correlation is likely to account for a substantial portion of the remain- 
ing half. 

We obtain for the radially correlated ground state energy the value of --2.87899 
a.u., which is about the limiting value of -- 2.87900 a.u. set by Shull and Lfwdin 
(1959). Weiss (1961) also obtained a similar value of --2.87896a.u. for the 
s-fune.tion contribution for He. 

We would like to make a few comments on inclusion of angtdar correlation in 
the calculation of this tYpe. Following the standard configuration mixing pro- 
cedure we may add configurations involving orbitals with different angular depen- 
dence to the HF ground state. Then we may build radially correlated functions 
on each such mixed configuration. The totality will represent a fully correlated 
description of the system. Such a description will maintain all the advantages 
of the present approach including ultimate mathematical simplicity. A pilot 
calculation based on this line of approach is on way and results will be reported 
in due course. 
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3.2 .  H - i o n  

The hydride ion is o f  par t icular  interest. The second d e c t r o n  is very loosely b o u n d  
to H a tom.  The H F  theory fails to  reproduce this b o u n d  state. Interelectronic 
correlat ion plays an  essential role in keeping the electron b o u n d  to the hos t  a.tom. 
The g round  state energy o f / 4 -  ion has been calculated with 4 basis orbitals ~ , ,  
i.e., with 10 two-electron p roduc t  functions g. The value obta ined  is E0 = - -  0 .5143 
a.u. Compared  to  E~F = - -0"4881  a.u. this gives the radial correlat ion correc- 

t ion to g round  state energy E~orr----- - - 0 . 0 2 6 2 a . u .  Weiss (1961) in his calculation 
for  H - w i t h  s-functions ortly ob ta ined  E0 - - - - -  0 .51439a .u .  in close agreerr.ent 
with ours.  Further ,  the electron affinity o f  H as o b t a i n e d  by  us is - -0 .0143  a.u. ,  
which is bet ter  than  the value o f  - -  0 .0138 a.u. ob ta ined  by G c d d a r d  (1968) and  
o f  - -  0 .0133 a. u. calculated by  Shull and  L6wdin (1956). Inclusion o f  angular  
correlat ion is likely to fur ther  improve our  value o f  electron affinity. 

Table 2. Ground state radially correlated energy (E0) for 2-electron ions, 
non-relativistic energy (ENs) and percentage of total correlation 
energy (Eeorr) explained by radial correlation alone 

E o Percentage 
Ion E ~  a Present EN~ d explained* 

calculationn Weiss c 

Li + -- 7.2364 -- 7"2521 --7"25242 -- 7"27991 36 

Be 6+ --13.6113 --13.6262 --13.65557 34 

B 6+ --21.9862 --22.0008 --22.03097 33 

C A+ --32.3612 --32-3767 --32.40625 34 

N ~+ --44.7361 --44.7499 --44.78145 30 

06+ --59'1111 --59"1259 --59.12595 --59.15660 33 

Table 3. 

a Taken from Clementi (1965), Table 03-01 ; ~ Orbital parameters taken from 
Clementi(1965), 4 basis orbitals, i.e., 10 two-electron functions each; c Weiss 
(1961), Table 2 ; a Calculated by Pekeris (1958). Values quoted from Weiss 
(1961), Table 1 ; * Percentage = 100 x (Eo - Er~)/(Em, - EnF). 

Orbital exponents for calculations reported in tables 1 and 2 

SI Orbital exponents a 
No Type , 

H- H e  Li + Be 6+ B 6+ C '+~ N ~+ 06+ 

1 ls 1.3554 2.5 2.45161 3.42034 

2 ls 1.0967 1.5 4.38942 4.82750 

3 Is 0.4448 4.5 6.03853 8.32668 

4 ls 0.2000 0.8 1.26508 1.83148 

2s 0.8 

6 2s 0.5 

4.40720 5" 39609 6.38688 7" 37946 

5. 99281 7. 23874 8" 56040 9" 95289 

10'42220 12"47670 14"49340 16"47540 

2" 45924 3' 09290 3. 73216 4' 37672 

" Values for Li + to 06+ taken from Clementi (1965), Table 03-01. 
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The correlation energy of H- has also been calculated by Durra et al (1970) by 
the MBPT method. They obtain --0-0204 a.u. as the contribution from the l ~- 0 
terms only. The numerical magnitude appears to be rather low since it does not 
yield the electron affinity in agreement with other calculations quoted above. 
However, for the total correlation energy their value is in agreement with those 
of other workers. 

3.3. 2-electron positive ions 

The results of our calculation for 2-electron ions of Li to O in aS state are presented 
in table 2. In view ef earlier discussion this calculation for the correlation in the 
ground state was performed with unaugmented Is-type basis orbitals. The values 
of the parameters were taken from the HF ground state calculation of Clementi 
(1965). 4 basis functions with optimised exponents were used for each ion. Thus 
we obtained 10 two-electron functions for our calculation. A comparison of 
E0 values in table 1 for the two Clementi functions with 4 and 5 parameters shows 
that discrepancy appears in the fourth place after decimals. Our results of table 2 
are, therefore, correct upto the third place after decimal. They show a uniform 
tendency of accounting for one-third of the total correlation energy. "]?he rest 
comes from angular correlation. 

The values of the orbital exponents used in our calculation are listed in 
table 3. The combining coefficients c~ for the two electron functions g~ built c~ut 
of various pairs of basis orbitals are given in table 4. 

Acknowledgement 

I thank D Mukherji, K K Moitra, Mrs A Gupta and A Muldaopadhyay for illu- 
minating discussions and assistance in numerical computation. 

References 

Clementi E 1965 Tables of  atomic ]'unctions (San Jose, California, USA : International Business 
Machines Corporation) 

Dutta N C, Dutta C M and Das T P 1970 Phys. Rev. 2A 2289 
Elliott J P 1958 Proc. Roy. Soc. London Ser. A 245 128 
Goddard W A 1968 Phys. Rev. 172 172 
Harris F E and Pohl H A 1965 J. Chem. Phys. 42 3648 
Hartree D R 1957 The calculation of  atomic structures (New York: John Wiley & Sons) 
Hylleraas E A 1929 Z. Physik 54 347 
Kelley H P 1969 Adv. Chem. Phys. 14 129 and references therein 
Kelson I and Levinson C A 1964 Phys. Rev. 134B 269 
LSwdin P O 1959 Adv. Chem. Phys. 2 207 
L0wdin P O 1964 Molecular orbitals in chemistry, physics and biology (New York : Academic Press) 
Moore 12 E 1949 Atomic energy levels Vol. 1 (Washington : National Bureau of Standards) Circular 

No. 467 
Nesbet R K and Watson R E 1958 Phys. Rev. 110 1073 
Pekeris (2 L 1958 Phys. Rev. 112 1649 
Sengupta S and Mukherji A 1968 Phys. Rev. 166 36 
Shull H and L0wdin P O 1956 J. Chem. Phys. 25 1039; 1959 J. Chem. Phys. 30 617 
Slater J C 1960 Quantum theory of  atomic structure Vo]. 2 (New York : McGraw-Hill) p 48 
Talmi I 1952 Helv. Phys. Acta 25 185 
Weinbaum S 1933 J. Chem. Phys. 1 593 
Weiss A W 1961 Phys. Rev. 122 1826 


