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The cholesteric liquid crystal as a spatially dispersive medium 
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Ab~'aet. A medium with periodic variation of the dielectric tensor is considered. 
It is assumed to have helical symmetry. The response to external fields is described 
by the most general linear law--that is, by the methods of spatial dispersion theotS. 
The propagation of a wave is described by a mutually consistent electric field and 
polarisation. It is shown that the presence of the medium produces changes in the 
polarisation and wave vector of the electric field, and the selection rules governing 
these changes are derived from symmetry. The results generalise previous work 
on the Oseen model for a cholesteric liquid crystal to the case when the molecules 
are not perpendicular to the helical axis. This can arise in an external magnetic 
field applied along this axis. 
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Introduction 

This paper comiders the optical properties of  a medium with helical symmetry. 
An important practical example of such a medium is the cholesteric liquid crystal, 
which has received much theoretical and experimental attention. Discrete and 
continuum models have been proposed and discussed in the literature, which is 
cited in section 1. They have been shown to explain experimental results. Here, 
the problem is investigated using spatial dispersion theory, which is outlined in 
section 2. Only the helical symmetry of the medium and a linear response to the 
external field are assumed. 

The main results of  the paper are that  the helical symmetry severely restricts 
the transformations of  wave vector and polarisation which can take place. This 
enables the propagation of waves along the axis to be described in a general form 
--viz., as a suporposition of  left and right circular waves whose wave vectors are 
related by the Bragg condition, along with a wave polarised along the axis. 
Burlier work, which solved the problem with two circular waves, is thus generalised. 
The additional longitudinal wave will appear in a cholesteric liquid crystal placed 
in a strong axial magnetic field. 

Section 1 briefly introduces a continuum model with which the final results can 
be compared--tlae generalised Osoen model. Section 3 presents the derivation 
of  selection rules governing the changes in wave-vector and polarisation which the 
fields undergo on interacting with the medium, i t  also explains how these rules 
determine the nature of the normal waves in the medium, and shows how they 
are related to the Os~en model of section 1. 
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1. The generalised Oseen model (Oseen 1933) 

The molecules in arty small region of  the oholesteric liquid crystal arc oriented 
preferentially around a direction which is usually described by a vector called the 
director. The director is constant on planes perpendicular to the helical axis 
(say z) and rotates around this axis as we move along it. In the absence of  external 
fields it is normal to the z-axis, while a sufficiently strong magnetic field along z 
is predicted to bring it into art inclined corttiguration (Leslie 1970). 

We take the dielectric tensor at the plane z -- 0 to have general principal axes 
so that  it has the fo rm 

Eli EI~ El3 1 

/ L E18 E~a E38 
(1) 

Because of the helical symmetry, we obtain ~ (z) for a general value of z by using 
the matrix describing a rotation by the a n g l e -  qz in the xy plane (figure 1) 
to transform eq. 1. Here q is the angle of  rotat ion per unit distance along the 
z-axis. Defining the pitch P as the distance needed for a rotation of  2~r to take 
place, we get qP -~ 2~r or q -- 2~r/P. The result of  the transformation is given below. 
All tensor components are functions of z. 

~ ,  = ~ + b cos 2qz -- E~ sin 2qz 

%w ---- %, = 3 sin2qz -t- el2 cos 2qz 

e .  = ~,. = elz cos qz -- e~3 sin qz 

%, = ~, -- 8 cos 2qz -1- e~ sin 2qz 

~y, = E., = ~13 sin qz + E23 cos qz (2) 

We have defined 

2 ' 2 

X t 

" ~ z  

Figure 1. Helical symmetry. The properties of  the 
medium are identical whether viewed from the origin in 
the x y z system of axes, or from a point d~splaced by z 
along the z-axis, using x'y 'z  as axes of reference, x'y" 
are tilted with respect to xy by an angle qz. To trans- 
form back to xy we must  rotate by -- qz. 
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The Oseen model (OM) in its usual form omits the E~ and ~a terms by choosing 
one of the principal axes along z in eq. I. This describes molecules oriented per- 
pendicular to z. The ¢~2 term can be eliminated in any case by a suitable choice 
of the origin for z. 

Equation 2 enables us to anticipate a property of the general solution which 
is obtained in section 4. The terms in sin 2qz and cos 2qz modulate the electric 
field, introducing wave vectors differing from the original by 4-2q. Similarly 
cos qz and sin qz cause changes by 4- q. These latter terms link the x and y 
polarisation to the z polarisation. 

The OM in the restricted form was exactly solved for waves propagating along 
the axis by Kats (1970), Marathay (1971) and the author (Nityananda 1972; see 
also Nityananda and Ramaseshan 197t). The last paper also shows that the 
discrete model (pile of birefringent plates) treated by Chandrasekhar and Srinivasa 
Rao (1968)* is equivalent to the OM. 

In this paper, the assumption of a local dielectric tensor which is a periodic 
function of position is removed. The medium is characterised solely by its helical 
symmetry and a lirtear response to an applied electromagnetic field. This suffices 
to explain the optical properties and, surprisingly, the exact solution of the normal 
i~lcidence problem is still possible, even when terms equivalent to the ~a~ and ¢.,~ 
of eq. 2 are retained. This solution describes wave propagation in a cholesteric 
liquid crystal with the long axes of the molecules tilted towards the axis of the 
helix, rather than normal to it. Such a conical ordering may be produced by a 
static magnetic field applied along the axis (Leslie 1970). 

This co~gurat ion is energetically favourable provided the diamagnetic suscepti- 
bility is numerically greater perpendicular to molecular axis, so that this direction 
in turn tends to be perpendicular to the field. This is not so in cholesteryl chloride 
and cholesteryl myristate, two of the commonly studied cholesteric materials. 
Therefore, a special choice of material seems necessary before such conical ordering 
can be achieved.~ 

2. Methods of spatial dispersion theory 

Since the methods of spatial dispersion theory have not been applied in this field 
they are summarised below. Details and references can be found in the review 
by Ginzburg and Agranovich (1966). 

Dispersion usually connotes the frequency dependence of the dielectric response, 
ion, equivalently, the failure of the induced polarisation to follow the variation of 
the applied field in time. For example, if we apply an impulsive field 

E ( t )  = a(t  - to) (3)  

* Fox' improvements and corrections, 
Chandrasekhar and Ranganath (1973). 

"t" I thank the referee for this remark. 

see Chandrasekhar and Shashidhara Prasad (1971); 
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the polarisation is not  itself impulsive but grows and decays according to a definite 
law 

e(t)= K ( t -  to) (4) 

Figure 2 shows K(t -- to) for a damped oscillator. The response to an impulsive 
field determines, in principle, the response to an arbitrary field E(t) since this can 
be regarded as a continuous superposition of  impulses 

+ o o  
E ( t ) =  I E ( t ' ) 8 ( t - - t ' ) d t '  (5) 

- - O 0  

Using the linear property of  the response, P(t) is obtained by replacing 8( t--  t') 
i n e q .  5 b y  K ( t - - t ' ) w h i c h i s  zero for t < t ' .  We get 

t 

P ( t ) =  S K t - - t ' ) E ( t ' ) d t '  (6) 

We can use eq. 4 to determine the response to a harmonically vaxying field 

E (t') = E0e -' '°e 

We get 

where 

t 

P , , t ) :  S 
- -  0 0  

K ,t - -  t') E@ -"n" dt' 

0 

---- -- J" Kt~') Eoe -~'(f-T) dr  l:utting t' : t -- r 
O o  

= ~ (oJ) Eoe-"' (7) 

a (¢o) ----- f K (r) e"°rdr 
0 

The response is linear ia Eo with a frequency dependent coefficient or(co) related 
to K. Bquations (3) to (7~ represent a well known approach to frequency depen- 
dence of  the polarisability (Landau and Lifshitz 1968) which has been repeated 
here for comparison with spatial dispersion which is described below. 

i 

P ( t )  

0 ~t 

Figure 2. The response of a damped oscillator 
to an impulsive electric field applied at t ~= t o 

(o) 

Figure 3. (a) A configuration ef x and x" in 
which the response function K (x, x') is appre- 
ciabl©, (b) A configuration with tile same value 
of x - x' in which X (x, x') is much smaller. 
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Proceeding similarly, a localised electric field 

e (x) = tro (X - Xo) (an) 

will produce a polarisation given in general by eq. 8 b and not a localised 
polarisation 

P (x') : K (x', x0) E (x0) (8b) 

We have explicitly brought out the vector nature of E and P and the tensor nature 
of K in this section. Further, K depends on x' and Xo individually and not solely 
on their difference, in contrast to the case of temporal dispersion. That is because 
we are not assuming the homogeneity of space, while ¢q. (4) assumes the homogeneity 
of time. An example clarifying this is given in figure 3. Figure 3 a shows the 
application of a loealised field at x where an atom is located. The atom is polarised 
and produces a local field at its neighbour which is at x'. This gives rise to some 
value of K (x', x). Howe~¢r, if we translate both x and x' by d, as ,hewn in figure 
3 b, the whole effect is ver~ ~attch smaller because polarisable matter is absent at 
x and x', even though the difference x - x' is the same as before. This example 
can be used to make the point that there are two situations which can be treated 
by the formalism of spatial dispersion theory--inhomogeneity and local field effects. 
The generalised Oseen model mentioned in the introduction clearly introduces 
inhomogeneity effects, and it corresponds to taking 

K (x, x') = F (x) a (x -- x') 

It doe~ not explicitly include local field effects. We expect inhomogeneity effects 
to be appreciable if the applied electric field has significant variation over a length 
characterising the spatial variation of the system. This could Ize the interatomic 
spacing' a '  in the case of crystals, and in crystal optics a/A can be taken as the small 
parameter characterising spatial dispersion effects. Optical activity is of the 
first order in this parameter, and the birefringence of cutic crystals of the second 
order (Agranovich and Ginzburg 1965, Pastrnak and Vedam 1971). Iv the 
cholesteric liquid crystal the pitch P determines the inhomogeneity and the ' small' 
parameter P/A is of the order of unity. This is the motivation for considering it 
a spatially dispersive medium. 

It is convenient, as in the case of temporal dispersion, to consider the response 
to a field E ( k ) e  ik'x which has a periodic variation in space. We obtain 

e (x) = I< (x, x') E (x') dx' 

: J'K(x, x') E(k)e ik 'X 'dx '  (9) 

We fourier analyse P(x)  to obtain P(k ' )  

P (k') = ~ P (x) e - ik ' 'x  dx 

= S , [K(x ,x ' )E(k )e  ik'x' e - i k ' x  d x ' d x  

= L (k', k) E (k) (tO) 
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L(k', k) = $I K (x, x') eik'x'e-ik' 'x dacdx' (11) 

P (k') measures the polarisation of wave vector k' generated by an applied field 
of wave vector k. The reason for the appearance of a new wave vector in the 
induced l.olarisation is that the medium is not homogeneous and modulates the 

applied field E(k)e ik'x with its own periodicities. For a homogeneous medium, 
K (x, x') is a function of the difference x -- x' and in this case k (k', k) is seen to 

vanish for k ' ~  k. This is the usual assumption in crystal optics (Ginzburg and 
Agranovich 1966), but the ablity of the liquid crystal to change the wave vector 
of an incident wave is central to its optical properties, so we retain k (k, k') in full 
generality. 

We now consider the role of k (k, k') in determining the nature of the wave pro- 
pagated in the medium. If we seek a normal w a v e -  one with a harmonic time 
dependence exp (-- kot) - -  we can consider the wave equation in the form 

t o  fl 

V X (~7 X E) = cV (E + 4rrP) (12) 

This can be regarded as determining the electric field E radiated by a polarisation 
P. To this we add the constitutive equation in the form (9) or (10). The deter- 
mination of a normal wave is thus seen to Ice a self-consistency problem--the field 
radiated by the polarisation P must be precisely enough to maintain it (Ewald 
1966). If we choose to express E and P in term> of Fourier components as in (10) 
and introduce the result into (12), the left and right sides become homogeneous 
linear expressions in the components of E(k) for various k's. To determine E(k) 
we thus have to solve a secular equation which gives the dispersion relation for the 
normal waves, as well as the values of E(k) for various k's. An example of this 
procedure can be found in the papers on the Oseen modt ! Icy Kats (1970) and by 
the author (Nityananda 1973); in these treatments the normal wave was a super- 
position of  left and right circular warts with different wave vectors. 

3. Selection rules for L (k, k') in the presence of helical symmetry 

We first need a symmetry property of K, viz. 

K,, (x, x') = Kj, (x', x) (13) 

The physical meaning of this relation is illustrated in figure 4. In figure 4 a, an 
electric field is applied at x' along the cartesian axis j and the response P measured 
at x along the cartesian axis i. This represents K~j (x, x'). Figure 4 b similarly 
represents K,  (x', x) and eq. (13) asserts that the responses in these two cases are 
nuraerieally equal. Fquatioa (13) is only a p~trticular case of equation (14) which 
includes temporal dispersion as well 

x', t')=K,,(x', t; x,t') (14) 
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P t E 
J 

(o) (b) 

Figure 4. (a) The configuration defining K,j (x, x'), (b) The configuration defining 
Kti (x', x). In both cases the vector P indicates that component which is being 
measured, not the entire polarisation generated. 

Equation (14) can be explicitly derived from the Kubo formula (Kubo 1957) 
expressing response functions in terms of correlation functions, but can also be 
regarded as a descendant cf  the Onsagar reciprocity relations, or, in the case where 
there is no dissipation, even as a consequence of the interchangeability of source 
and field points in electro, static problems. Equation (13) can be combined with 
eq. (11) to give 

L,,(k, k') = Lj, ( - -  k ' ,  - -  k)  = q , *  (k', k) ( i s )  

the last equality assuming that K is real, i.e., temporal dispersion effects are 
neglected. 

Now we can exploit the helical symmetry of the medium. It is left invariant under 

(i) arbitrary translations by vectors f l i + # j  in the xy  plane (i~f/~) are the 

usual unit vectors), (ii) Translation by tk  along z followed by rotation by an 
angle 0----(t/P)2z, about the z-axis. A particular case is simply translation by 

nPf¢ where n is any integer, without rotation. 

(i) Rep/acing x and x'  by x + f i r+ t~f and x' + h f +  ufshould not alter the 
value of K. This implies 

L~j (k, k') : .f K~tj(x , x ')  e - i k ' x  e ik'.x" d.xdx' from (1 I) 

= .f K,j (x + ;~i + d ,  x '  + A'i + t~i) e - ik"  x eik '. x' dxdx '  

i ( k - k ' )  • ( )~+t*] )  e i ( k ' . v - - k . u )  = e f I K,, (u, v) dudv 

: e i ( k - k ' ) .  (;~+t,J) L~j (k, k') 

The exponential can be equal to unity for all values of A and ~z only if (k -- k'). 

= (k --  k ')  - ]  = 0, that is, k --  k '  has no component in the xy  plane. This 
selection rule is clearly analogous to the conservation of the x and y components 
of momentum and is a consequence of the homogeneity in the xy  plane. 
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(ii) We first consider translations by nPk  which will give us, as the condition 

ei(k--k') • nffk = 1 

for all integral n. Hence 

(k  - -  k ' )  . k = 2mrr/P 

Combining this with the condition derived in (i) and introducing the reciprocal 
lattice vector 

we get 

k - -  k '  = mG.  

Now we consider the operation of rotation by 0 about the z axis. The components 
of E and P are transformed to new values 

/~, = &,E, 
cosO s ine  ! ]  

R --= - - s inO cosO 
0 0 

(16) 

The new ,tensor k relating E and P is given by 

= R K R -1 or K,, ,  ----- R,,,~K~jRj; -1 

L also transforms similarly, since the double Fourier transformation (11) relating 
L and K does not disturb the tensor indices i andj .  Under a translation of 
(0/2,r) P and a rotation by 0 the medium must remain invariant. Under the trans- 
lation we get 

L'---- exp {--i (k--k ' ) .kOP/2~r} L = e -~'e k 

using 

k - - k ' = n G ,  G ' k : 2 ~ r / P  

Now if we rotate by 0 about z we should recover the original L. 

L = e -~'o R LR -~ 

Setting sin 0 = s, cos O = c, we get 

Lll = e -i'° (c ~ ~ + s~ L2~ + cs ( ~  + L~O), etc. (17) 

Bquation (17) has to be fulfilled as an identity in 0. Since the left side is independent 
of 0, only those terms on the right which are also independent of  0 can be non- 
vanishing. Since the power of e i° in the matrix on the RHS ofeq.  (17) lies between 
-- 2 and + 2, it is only for n in the same range that we can got a term independent 
of 0 on the RHS. I-Ience, in addition to the selection rule k -- k' = nG which 
follows from periodicity, we obtain further the result n = 0, + 1, 4- 2 on account 
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of the continuous helical symmetry. For each of  the values of  n, the non-vanishing 
coeffiebnts and the relations between them can be found from eq. (17). Only one 
illustration of  this routine procedure is given, and the results are collected later. 

(i) n = 4- 2: Bquating the 11 component on both sides in eq. (17) 

L u (cos 28 --t- i sin 20) 

---- L n e o s  ~ 0 - f  L~ sin 2 0 q- (LI., + L=I) sin O cos 0 

_ ( / - a l + L , , )  ( ___~ '~ ( / - q ~ + L , 1 ) s i n 2 0  2 + \-L4-1z-L~-', c°s 20 + 2 

• L~i Lii--L. . . . .  = 2 , L i t  - '  - -  ]-qx, L l l  - -  . . . .  L t : t  -4- i L x l  

Similarly we can compare the 12, 13 . . . .  etc., components. The results concerning 
the nonvanishing components are: 

n = : k  2 : L.,2 = - -  L l l ,  Li2  = L m  = :~  i L n  

n = -4- 1 : L32 -- 4- iLax, L~s = 4- iLa~ 

n = 0 : /-q~ ---- Lss, /~s nonvanishing. 

The remaining components vanish. 

The value of  n will be used as a superscript if necessary. We introduce a notation 
for k t") (k, k') which treats k and k' more symmetrically by writing 

nG k' nG k = q + ~ ;  =q-~-  

L is now a function of the average wave vector q and the index n. The symmetry 
condition eq. (15) now reads 

L * (-'~ (q) L,~ <') (q) = ,i 

We now int roduce new var iabbs 

E. + iE~ 
E±_ d2 

in place of  the x and y components of  the electric field. These describe two 
opposite circular polarisations. We can transform the components of the tensor 
k so that  it can operate on the new variables. 

Since 

LE.j o LE.J E]J 

is the transformation law for the field components, the transformation law for 

I_ is [.----A I.A-'. The tilde denotes a quantity expressed in the circular wave 
representation, i.e., operating on the -b and z components. The transformed 
I.'s are given below. 
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n ~ O  
i i  i 

°0] 
L 0 0 ~,~ 

n = + l  

[(+1) [ioo  3]o 
£~ 0 

L.(-1) 0 L81" 
L~8 0 0 

n = + 2  [02Ll10] [0 0!] 
~.(+2) =__- 0 0 0 [-(-~) ~ 2Ln* 0 

0 0 0 0 0 

We can physically interpret these relations as follows: The n : q- 2 component 
tells us that if we impress an electric field E_, i.e., a left circular wave propagating 
along + z, then a polarisation, P~_ will be generated with wave vector increased 
by 2G. Similarly an applied wave E+ will generate a polarisation P_ with wave 
vector reduced by 2G. This is in agreement with the results found for the restricted 
Oseen model (Kats 1970; Rajaram Nityananda 1972). This property made it 
possible to find a normal wave made up of left and right circular waves differing 
by 2G in wave vector. Now, however, we have the n = 4- 1 terms which can 
convert + and -- polarisations into ' z '  polarisation with a change of wave vector 
by G. 

The allowed changesare represented in a graphical scheme in figure 5. There are 
no other possibilities of generating new wave vectors or polarisations. Thus for this 
case, a normal wave can be built up of a left circular wave and a right circular wave 
accompanied by a longitudinal wave (described by the E, component). The dispersion 
relation and the coefficients of the three components must be determined from 
a 3 × 3 secular equation by methods quite similar to those used for the Oseen 
model. The fact that these three waves form a closed set enables us to build up 
a normal wave from them and solve a third order secular equation.* This property 
fails when we go to oblique incidence. The operator V × (V x) on the left side 
of the wave equation (12) can generate + and -- components from E, with the 
same wave vector, and this immediately takes us out of the scheme illustrated 
earlier. 

* To avoid misunderstanding, we note that  the equatior~ is still quartic in q and gives us 4 
normal  wav¢~, two in each direction, as be£ore. 
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n=*2 

(k- G)- k Z (k*GC 

n=-1 n=-1 

1-1=-2 

Figure 5. A graphical representation of the selection 
rules for wave vector and polarisation. The latter is 
denoted by + ,  - ,  and z written as a superscript to the 
wave vector. There are no other allowed transitions; so 
a suitable cornbinatEon of these three can be chosen as a 
normal wave. 

4. Conclusions 

The constitutive relation for a medium with helical symmetry has been con- 
structed using only the linear response and symmetry properties. The various 
nonvanishing coefficients have been found in the most general case, and their effect 
on the nature of the normal waves which can propagate in this medium has been 
discussed. Earlier results on the Oseen model for a cholestreic liquid crystal 
emerge as special cases. Even when the principal axes of tbe dielectric ellipsoid 
have no special orientation which respect to the helical axes, the normal waves 
can be constructed front two circular waves and a longitudinal wave. This solu- 
tion may be of interest in describing the optical properties of a cholesteric liquid 
crystal placed in a strong magnetic field parallel to its axis, subject to the qualifi- 
cations made in section 1. 

Note added in proof 

Recently D W Berreman (1973 Mol. Cryst. Liquid Cryst. 22 175) has used the 
Oseen model with an arbitrary orientation of the principal axes (as in section 1) 
to calculate the optical properties of the twisted smectic C phase. His approach 
to the problem is numerical. The results of the present paper should be 
applicable to this problem as well. 
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