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Abstract. This paper deals with the anomalous behaviour of  l iquid caesium at  high 
pressures. A model for the phenomenon of electron collapse in the  liquid phase, based 
on the anomalous density variation of liquid caesium with pressure has been proposed. 
The  process of 6s-~5d electron collapse is pictured as the formation of a virtual bound 
state and  the tunnelling process accounts for the 6s ~ 5d dynamic conversion. The  
same model together with the Friedel sum rule has been used to explain the resistivity 
variation of liquid caesium with pressure. The resistivity min imum observed in most of 
the liquid alkali metals in the low pressure region has been explained. The  agreement 
with the experimental  curve is good in the low pressure region whereas a large 
discrepancy exists at  higher pressures. This may  be due to the breakdown of  the 
Zimart 's resistivity formula under conditions of resonance scattering. 
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I.  I n t r o d u c t i o n  

The high pressure behaviour of caesium has been a subject of numerous investigations. 
The main interest in this substance is centered round the existence of a double maxi- 
mum in the fusion curve, first established by Kennedy et al (1962) and a later dis- 
covery of an iso-structural phase transition near 42 kbar pressure (Hall et al 1964). 
Jayaraman et al (1967) and later McWhan and Stevens (1969) have made a more 
detailed study of the phase diagram of caesium upto 50 kbar pressure. 

Figure 1 shows the phase diagram of caesium given by McWhan and Stevens (1969). 
At 23 kbar pressure, there is a phase transition involving bcc to fcc transformation. 
However, at 42"5 kbar, there is another first order phase transition involving the so- 
called 6s-5d electron collapse (Sternheimer 1950). Hall et al (1964) through their 
high pressure x-ray diffraction work established that this phase transition is iso-structural 
and also measured the lattice parameter decrease accompanying the transition. 

The main feature of the phase diagram is the existence of a double maximum in 
the melting curve. The application of the Clausius-Clapeyron equation, d T / d P  
= A V / A S ,  to the melting process leads to the result that at the maxima, the density 
of liquid caesium is equal to that of the solid phase lying below the corresponding 
maxima. The negative slopes following the two maxima in the fusion curve imply 
that the density of the liquid phase is higher than that of the corresponding solid phase. 
The increase in density immediately after the first maximum can, in principle, be 
understood as arising due to an increase in the co-ordination number in the li.quid 
phase relative to the bcc co-ordination. However, this kind of reasoning fails to account 
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Figure 1. Phase diagram of 
60 caesium (McWhan & Stevens 

1969). 

for the density variation in the region following the second maximum, as the solid 
phase underneath is in the closest packed configuration. This anomalous variation in 
the density of liquid caesium with pressure, i.e. the liquid becoming denser than the closest packed 
solid phase, is perhaps the most interesting feature of  this substance. Jayaraman et al (1967), 
based on their resistance data on liquid caesium obtained as a function of pressure 
npto 50 kbar, postulated that the electron collapse occurs in the liquid phase over a 
broad pressure range, in contrast to the solid phase where this phenomenon 
takes place at 42.5 kbar pressure. 

The present investigation was undertaken to provide a model for the phenomenon 
o f '  electron collapse ' in the liquid phase and also to seek an explanation for its resist- 
ivity behaviour under pressure. I t  is proposed that the 6s-5d electron collapse results 
in the formation of a 'virtual bound state'  accompanied by d-wave scattering re- 
sonance (Ramaseshan 1972, Ramesh and Ramaseshan 1972). Numerical calculations 
based on this postulate generally explains all the main features of the experimental 
resistivity versus pressure data. However, the large discrepancy between the experi- 
mental and the theoretically derived resistivity values in the high pressure region (30 
to 40 kbar) is shown to be mainly due to the breakdown of Ziman's resistivity 
formula rather than that of the basic model itself. 

2. Two species model  

We shall briefly go into the so called ' two species ' model of liquid caesium. Klement 
pointed out that the negative slope of the fusion curve in the region lying after the 
second maximum, implies that the phenomenon of electron collapse occurs in the 
liquid phase at much lower pressures. Following this suggestion O f Klement, Rapap- 
port (1968) developed the 'two-species' model from a thermodynamic point of view 
and obtained the concentration of the collapsed species at various pressures using the 
resistance data ofJayaraman et al (1967). 

The two-species mode/ that  we have employed to explain the experimental results 
of Jayaraman et al (1967) needs explanation. We choose the nearest neighbour 
distance exhibited by caesium atoms in the collapsed fcc phase as an empirical cri- 
terion for the occurrence of electron collapse in the liquid phase. When such a con- 
figuration is realised, the empty 5d band which normally lies above the 6s conduction 
band, would be lowered due to the enhancement in the d-orbital overlap. The 
6s-5d electron collapse can then be pictured as the formation of a virtual bound state. 
The electron is held in the region of the potential by the centrifugal barrier potential 
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Figure 2. Schematic diagram showing the 
effect of adding the centrifugal barrier potential 
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rise to an effective potential Vtf f. The position 
of the resonance level E d is also shown. 

8 

EXPT 
t 

s / /  

/ . ,,,,o 

0 I I I I I [ I [ 
0 I0 20 5<3 40 

PRESSURE ( kbor ) 

]Figure 3. Resistivity vs pressure diagram for 
liquid caesium. The experimental curve from 
Jayaraman et al (1967) compared with the 
theoretical prediction. Curve a corresponds to 
the choice Ed--E =1-'/2 used in evaluating the 
resonant d-wave form factor. Curve b corres- 
ponds to the resistivity data computed using 
the Friedel Sum rule. 

l ( l+ l ) / r  ~. This is schematically represented in figure 2. However the lifetime of  
an electron in the virtual bound state is finite so that when it tunnels out of  the po- 
tential well, the collapsed caesium atom reverts back to its normal  form. This 6s ~-5d 
dynamic conversion is a new feature of  our model. The  collapsed species have a 
smaller atomic volume as the 5d state is more localised than the 6s state. We note 
that a virtual bound  state can indeed be more localised than a real bound state 
(Anderson 1967). 

I n  support of  the two species model, we emphasise that the inhomogenities present 
in the liquid phase favour the creation of  the collapsed species at  a very much lower 
pressure. This conclusion is based on the general thermodynamic  result relating the 
relative fluctuation in the number  density in a volume element V to the isothermal 
compressibility, viz. 

( ( N - - N ) z / N  ~ ) ---- k r X T / V  (1) 

Here ~" represents the mean  number  density and XT, the isothermal compressibility. 

The  high compressibility of  liquid caesium together with T = 500 K imply the exist- 
ence of  large density fluctuations in the system. In  this connection mention should be 
made of  the work of  Yoshlda and Kamakura  (1973) who have shown that a maxi- 
m u m  in the melting curve can occur owing to the softness o f  the repulsive potential. 
These two facts taken together suggest that over short ranges, a critical interatomic 
distance would be favoured in the liquid phase accompanied by 6s ~ 5d electron col- 
lapse. The  increase of  pressure facilitates the occurrence of such a configuration, 
thereby increasing the concentration of  the collapsed species. 
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3. Resist iv i ty  variation with pressure 

Figure 3 shows the relative resistivity versus pressure curve (Jayaraman et al 1967) 
for liquid caesium at 220°C. The salient features of this curve include the resistivity 
minimum observed in the low pressure region, the rapid increase in the resistivity in 
the 20-40 kbar region, and a general flattening above 40 kbar pressure. 

4. Eletron-lon scattering ampHtude 

The phenomenon of resonance scattering is well known (Messiah 1965). In our 
present model we assume that when the special interatomic distance is favoured in the 
liquid phase, an electron possessing the 6s character is resonantly scattered to the 5d 
state. As remarked in the earlier section, the caesium ion together with the conduc- 
tion electron in a virtual bound state forms what may be termed the ' collapsed spe- 
cies.' The formation of a virtual bound state as the 5d band approaches the 6s con- 
duction band is equivalent to the d-wave component of the scattering amplitude 
passing through a resonance. The d-wave scattering amplitude is given by the partial 
wave formula (Messiah 1965), 

fd(E, 0) = 2/+_~I P/(cos 0) exp [i3t(E)] sin 3I(E) (2) 
k 

Here 3l(E) represents the phase shift associated with the I th partial wave and is 
of prime importance in evaluating the scattering amplitude. The Legendre poly- 
nomial Pl (cos 8) describes the angular variation of the sacttering amplitude. The 
behaviour of the phase shift 8 l near the resonance energy level Ed is well described by 
the formula 

tan 3 l = F/2(Ed--E) (3) 

Here F represents the half-width of the d-wave resonance. Under conditions of re- 
sonance the formula for the d-wave scattering amplitude reduces to the well-known 
Breit-Wigner relation 

fd(E, 0) = 2/+____11 Pl (cos 0) F (4) 
k 2(Ed--E)- - i  F 

The scattering amplitude associated with all the other partial waves is represented 
by f0 and this approximately describes the electron-normal species interaction. Thus 
the normal species (referred to as A species) and the collapsed B species are characterised 
by the scattering amplitudes 

fa ----fo } 
and fB = f o  + fd + i l l  (5) 

Herefd  and f ;  correspond to the real and the imaginary parts of the d-wave scatter- 
ing amplitude given by relation (4). The notation is similar to that used in the ano- 
malous scattering of  x-rays or neutrons (Ramesh and Ramaseshan 1971). It is clear 
from the relation (5) that the scattering amplitude associated with the collapsed spe- 
cies is essentially complex. The physical significance of the imaginary component of 

the scattering amplitude is contained in the optical theorem where fd  ~ (0) is related to 
the total scattering cross-section by Eq. (6) 

4-n- . 
" = -£ f,/ (0) (6) 
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We may note  here that  even f0 is associated with an imaginary component  o f  a much  
smaller magni tude  which is omitted. To obtain the electron-ion form factor f rom the 
scattering ampli tude,  we use the t-matrix formulation (Ziman 1969). Th e  ba re  ion 
d-wave form factor in this approach is given by 

2~t~ ~ 
Ud(E , O) -~-- r n ~  fd(E'  O) (7) 

where ~ 0 represents the atomic volume. These form factors are then screened using 
the Har t ree  static dielectric function ~(X) given by the relation 

~9. { I+X ~_ II+X ~ 
e(X) = 1 + ~  ½ + .  4X log l - - X )  (8) 

where }tg"=(lra0k) -1 and X----sin 8]2, 0 being the scattering angle. Thus  Vo, V d and 

lr d represent the screened form factors associated with f0, fd  and f d  respectively. 

I t  is clear f rom relation (4) that calculation of the d-wave scattering ampl i tude  
requires a knowledge of  the two parameters and Ed=-E. We have chosen for 1-" a value 
of  0.1 Ry in conformity with Ham's  band structure calculations (Ham 1962). For  the 
present discussion we treat  Ed- -E  as an adjustable parameter  though in a later section 
a more appropria te  procedure for obtaining the scattering ampli tude is discussed. 

Figure 4 shows the variation of V d with X (-----sin 0[2) obtained by assuming 

Ed--E-= F / 2 .  For  this particular choice OfEd- -E  , the screened form factors V d and g d 

are identical except for a phase diffence of zr/2 between them. 
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]Figure 4. The screened form factor Vo(x ) 
for normal species from Bortolani and 
(]alandra (1970). The resonant form factor 
V;(x) when Ed--E=F/2 , a special case 
wherein V'd(x ) = V*g(x). 

The  sudden dip in IT d near  X -  1, corresponding to back scattering on the Fermi 

surface is the main  feature of  the d-wave resonance. The  form factor V 0 in figure 4 
is taken from the work of  Bortolani and Calandra (1970) where even the off  resonance 
contribution to the form factor has been taken into account. 
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5. Resist ivity o f  a t w o - s l i d e s  sys tem 

The resistivity of a monoatomic liquid metal, according to Ziman's theory (Ziman 
1964) is given by 

127r ~0  f l  2 
p JoS(X)V X) x ax (9) 

where S(X) and V(X) represent the structure factor and the form factor respectively. 
This basic formula has been modified for a two-species system when one of the species 
possesses a complex form factor (Ramesh and Ramaseshan 1971). The resistivity for- 
mula appropriate to our ' two-species 'system is given by 

12. (1 Z X" dX (lO) 
& 

where Z-----,CSBB(X)I, rB(X)~r; (,70+(I_C)SAA(X)P'A(X) 

+2[C(1--C)]I/" San(X) VA(X){Fo(X) + V~(X)} 
Here C represents the concentration of the collapsed species. SAA(X), SBB(X) and 
SAB(X) represent the partial structure factors of the system corresponding to A--A, 
B--B and A--B interaction. The presence of the weightage factor X 3 in the inte- 
grand emphasises that the region X--" 1 corresponding to back scattering on the 
Fermi surface makes a significant contribution to the resistivity. 

It is evident from the relation (6) that a calculation of the resistivity of a two-species 
system requires a knowledge of the partial structure factors, the concentration of the 
collapsed species at a given pressure and the form factors. The partial structure 
factors of a binary system can, in principle, be obtained experimentally using special 
techniques (Ramesh and Ramaseshan 1971). However it is unlikely that these me- 
thods can be utilised in the case of liquid caesium, for the x-ray form factors would 
be nearly the same for both the normal and the collapsed species. In view of these 
experimental difficulties, we take recourse to an analytical approach, viz. the Percus- 
Yevick (PY) theory of binary liquid mixtures, to obtain the partial structure factors 
of liquid caesium at various pressures. Detailed expressions for the partial structure 
factors were given by Ashcroft ,and Langreth (1967). The parameters involved in 
these expressions are the packing fraction :7, the concentration of the collapsed species 
C, and a, the ratio of the hard sphere diameters of the two species. The concentration 
of the collapsed species at various pressures has been obtained by Rapapport (1968) 
from a thermodynamic analysis and we use this data in our work. The hard sphere 
diameter of the normal species was chosen to be the one which best describes the 
structure factor at 30°C. The high pressure x-ray diffraction work of Hall et al (1964) 
is used to estimate the hard sphere diameter of the collapsed species. The packing 
fraction which is a function of pressure can then be determined using the relation that 
exists between the long wavelength limit of the structure factor given by the Ornstein- 
Zernicke compressibility formula and the Percus-Yevick theory of binary liquid mix- 
tures (Ashcroft and Langreth 1967), viz. 

S(O) = kT XT~_ (l --'q)'{(1-4-27/)'--A] --1 (11) 
O0 

I 3~qa(1--C+Ca')} where A =3*I(1--a)2C(1--C)(1--C)+Ca s (2+*/) ( l + a )  + (l--C)+ Gaa 
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]Figure 5. Partial structure factors of a binary system of normal  and  collapsed 
a t o m s  o f  caes ium.  

The isothermal compressibility, XT, was evaluated at various pressures using the spe- 
cific volume versus pressure graph of liquid caesium given by Kennedy  et al (I 962). 
The parameters 7/, ¢ and a (which are essentially fixed using experimental data) are 
sufficient to evaluate the partial structure factors of the system. Figure 5 shows a 
typical set .of  partial structure factors calculated from the PY theory for a particular 
value of C-~0"025. Since the concentration of the collapsed species is very small, 
the partial structure factor SBB(X) is close to unity throughout, signifying the random 
arrangement  of the collapsed species. The partial structure factor SAB(X) describing 
the unlike species interaction oscillates about zero and negative in the low X region. 
This behaviour is due to a particular choice in the definition of  the partial structure 
factor, viz. 

S=B(X ) = 3.p + (C.Cp)~ foo [g=~--l] sin kr4,,r ~ dr (12) 
0 kr 

In  calculating the resistivity as a function of  pressure, one has to consider the effect 
of  the volume contraction on (a) the radius kF of the Fermi sphere, (b) the partial 
structure factors, and (c) the form factors appropriate to the normal and  the coIlapsed 
species. 

The  variation in the radius of  the Fermi sphere with pressure has been taken into 
account using the free electron formula 

k~ = 3~'n (13) 

where n represents the number density of electrons. The partial structure factors 
at each pressure can be evaluated using an appropriate choice of the parameters 7/, 
C and a as described in the last section. The effect of pressure on the form factors is 
neglected in our simplified model. However this approximation is justified as the large 
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enhancement  in the resistivity with pressure is mainly due to the increase in the con- 
centration of  the collapsed species. 

6. R e s u l t s  a n d  d i s c u s s i o n  

Th e  resistivity of  liquid caesium evaluated as a function of  pressure is given in figure 
3. Curve a corresponds to the choice Ed--E-= F [2 used in evaluating the d-wave 
form factor. Curve b represents the resistivity data  computed from the d-wave phase 
shift 3s(EF) which is estimated using the Friedel sum rule (Friedel 1954). The  values 
of  the parameters used in the calculation are summarized in table 1. 

Table 1. Values of the parameters used in the calculation of the resistivity of liquid 
caesium (see figure 3) ' 

Pressure in 
kbar 77 C a 

0 0.4504 0 1 
5 0-4874 0-025 0.961 

10 0"5112 0"05 0"961 
20 0"5220 0-2 0.961 
30 0.5234 0"55 0-961 
40 0"5424 0-90 0.961 

6.1. Resistivity minimum in the low pressure region 

T h e  resistivity minimum observed in the low pressure region is a general feature of  
the alkali metals (except lithium) both in the solid and liquid phase and was first 
observed by Bridgman (I 949). In  the solid phase the initial decrease in the resistivity 
is connected with the change in the lattice vibrational spectrum with volume and 
is governed by the Gruneisen-Bloch equation. However,  the same behaviour observed 
in the liquid phase has not  been explained so far. The  present investigation provides 
a simple explanation for .this behaviour. We shall treat here only the case of  liquid 
caesium though the argument holds good for the other liquid alkali metals as well. 
In  the low pressure region the concentration of the collapsed species is so small that for 
all qualitative reasoning we can treat  the liquid as a one-component  system. The 
initial decrease in the isothermal compressibility with pressure causes the long wave- 
length limit of  the structure factor SAA(O) to decrease in accordance with the Ornstein- 
Zernicke compressibility formula. Thus the contribution to the resistivity integral 
f rom the region of  small momentum transfer called the plasma resistance decreases 
with increase of pressure. On  the other hand, the increase in kF with pressure causes 
the upper  limit of  integration in the resistivity formula to sample regions of  higher 
values of  SAA(X) so that  the structural resistance increases with pressures. Further  
the existence of the collapsed species though in a small concentrat ion has the effect of  
increasing the structural resistance due to their large form factor in the region X "~ 1. 
However  the former effect i.e. the decrease in the plasma resistance slightly predo- 
minates over the latter leading to a shallow minimum in the resistivity of liquid caesium 
at  about  8 kbar  pressure. In other alkali metals the resistivity min imum is more pro- 
nounced due to the absence of the collapsed species. Figure 6 shows the resistivity 
integrand evaluated as a function of  X for two pressures, viz. P = 0  and 5 kbar. The  
two opposite effects in the region of  small and large values of  X can be clearly seen in 
the diagram. 
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6.2. Steep resistivity variation in the 20-40 kbar region 

The large variation of the resistivity in the 20 to 40 kbar region is due to the increas- 
tt  

ing concentration of the collapsed species. The strong dip in V d and V d near X-~ I 

(the region of high weightage in the resistivity integrand) shows that the collapsed 
species (resonant scatterers) contribute significantly to the resistivity. The theoreti- 
cally calculated resistivity curve obtained by choosing Ed--E= r / 2  is in close agree- 
ment with the experimental curve. 

As remarked previously the central quantity involved in evaluating the d-wave 
scattering amplitude is 32(E ), the phase shift of t h e / = 2  partial wave. Though two 
parameters F and Ed--E are involved in the Breit-Wigner formula, it is important 
to notice that knowledge of just 3 z alone, evaluated at the Fermi energy, is sufficient 
to arrive at the appropriate form factor. Further, an estimate of 33 can be made 
using the Friedel sum rule, viz. 

Z = 2 ~ t  (2/+1) 3 t (E/r) (14) 
71. 

where Z represents the screening charge around each of the ions in the liquid. While 
applying this reIation to the system of interest, one could make the reasonable assump- 
tion that ~, contributes most to the screening charge around the collapsed atom. Put- 
ting Z ~ l  (caesium being monovalent) we get 3~(E/r) ,.o rr/10. It is clear from relation 
(3) that choosing Ed--E= I" [2 is equivalent to 32 assuming a value ofzr/4 radian which 
is much higher than what is allowed by the Friedel sum rule. The recent ab initio 
calculation of Stocks et al (1972) on the variation of 33 with energy confirms the value 
3=(E/r) "" ~r/10 estimated using the Friedel sum rule. The angular variation of the form 
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factor V d (X) evaluated using this value of  3~ remains the same although its magni- 

tude is reduced in the region X~-~- 1. Curve b in figure 3 corresponds to the resistivity 
data computed using these form factors. In  the low pressure region the agreement 
with the experimental curve is still good whereas a large discrepancy exists in the 
high pressure region. This, we believe, is due to the failure of  the Ziman's resistivity 
formula to take into account the effects associated with multiple scattering under 
conditions of  scattering resonances. I n  the low pressure region, caesium behaves as 
an alkali metal whereas at higher pressures it closely resembles a liquid transition metal. 
The  recent work of  Mott  (1972) emphasises the non-validity of  Ziman's  resistivity 
formula for the case of  liquid transition metals and his general conclusions are appli- 
cable to the present problem as well. 

6.3. Saturation above 45 kbar 

This is essentially due to the process of  electron collapse being nearly complete. The 
variation in the resistivity with pressure in this region is due to the structure factor and 
form factor variations of  the collapsed species. 
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