
Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:18 
https://doi.org/10.1007/s12044-021-00609-8

© Indian Academy of Sciences

AMenon-type identity concerning Dirichlet characters
and a generalization of the gcd function

ARYA CHANDRAN1, K VISHNU NAMBOOTHIRI2,∗
and NEHA ELIZABETH THOMAS3

1Department of Mathematics, University College, Thiruvananthapuram 695 034, India
2Department of Mathematics, Government College, Ambalapuzha 688 561, India
3Department of Mathematics, SD College, Alappuzha 688 003, India
*Corresponding author.
E-mail: aryavinayachandran@gmail.com; kvnamboothiri@gmail.com;
nehathomas2009@gmail.com

MS received 26 June 2020; revised 16 August 2020; accepted 25 September 2020

Abstract. Menon’s identity is a classical identity involving gcd sums and the Euler
totient function φ. In a recent paper, Zhao and Cao (Int. J. Number Theory 13(9) (2017)
2373–2379) derived the Menon-type identity

∑n
k=1(k − 1, n)χ(k) = φ(n)τ ( nd ), where

χ is a Dirichlet character mod n with conductor d . We derive an identity similar to this
replacing gcd with a generalization it. We also show that some of the arguments used in
the derivation of Zhao–Cao identity can be improved if one uses the method we employ
here.
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1. Introduction

Menon’s identity that originally appeared in [9] is a gcd sum turning out to be equal to a
product of the Euler totient function φ and the number of divisors function τ . If (m, n)

denotes the gcd of m and n, the identity states that

n∑

m=1
(m,n)=1

(m − 1, n) = φ(n)τ (n). (1)

This identity was generalized by several authors in various directions. For example,
Sury [12] derived the following Menon-type identity

∑

1≤m1,m2,...,ms≤n
(m1,n)=1

(m1 − 1,m2, . . . ,ms, n) = φ(n)σs−1(n),
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where σs(n) = ∑
d|n ds using properties of group actions. When s = 1, this becomes the

Menon’s identity. Zhao and Cao [16] recently derived another Menon-type identity
n∑

k=1

(k − 1, n)χ(k) = φ(n)τ
(n

d

)
, (2)

where χ is the Dirichlet character mod n with conductor d. When χ is the principal
character mod n, this identity reduces to the Menon’s identity. A generalization of this
Zhao–Cao identity involving even functions mod n was derived by Tóth in [14].

For positive integers a, b and s, Cohen [3] suggested a generalization of the gcd function
which we denote in this paper by (a, b)s (see next section for the definition of this function).
In [2], the authors of this paper proposed a generalization to the Menon’s identity which
was obtained by replacing the gcd function with (a, b)s . Various other generalizations of
the Menon’s identity were provided by many authors. See, for example, [4,6,11,13] and
the more recent papers [5,15].

The Klee’s function �s is a natural generalization of the Euler totient function. The
generalized divisor function τs defined in [2] generalizes the usual divisor function τ (see
next section for the definitions of these generalizations). A natural question arising is if the
gcd function in the Zhao–Cao identity (2) is replaced with the generalized gcd function
suggested by Cohen, what could be the possible change that can happen to this identity? We
propose here a Menon-type identity modifying the identity (2) replacing the gcd function
appearing in (2) with generalized gcd function. Our techniques closely follow the style of
arguments appearing in [16]. The main results we propose in this paper are the following.

Theorem 1.1. Let s, n ∈ N and χ be a primitive Dirichlet character mod n, where n is
the s-th power of some natural number. Then

n∑

k=1
(k,n)s=1

(k − 1, n)sχ(k) = �s(n).

Theorem 1.2. Let χ be a Dirichlet character mod n, where n = mqs , m, q, s ∈ N. If
d = mts , 1 ≤ t ≤ q is the conductor of χ , then

n∑

k=1
(k,n)s=1

(k − 1, n)sχ(k) = �s(n)τs(n/d).

2. Notations and basic results

Most of the notations, functions and identities we use in this paper are standard and their
definitions can be found in [1]. We give below the definitions of some other less popular
terms and functions which we use in this paper.

DEFINITION 2.1 [3]

For positive integers a, b and s, the generalized gcd of a and b denoted by (a, b)s is
defined to be the largest ls (where l ∈ N) dividing both a and b.
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The function (a, b)1 is thus the usual gcd of a and b. Like the gcd function, (a, b)s =
(b, a)s .

The next statement is elementary and can be proved easily. We state it without proof.

Lemma 2.2. (a, b)s is multiplicative in first variable.

It can be further observed that (a, b)s is not completely multiplicative as a single variable
function of a. Also, it is not multiplicative in s.

DEFINITION 2.3

If (a, b)s = 1, then we say that a and b are relatively s-prime to each other.

DEFINITION 2.4 [7]

The Klee’s function �s(n) is defined as the cardinality of the set {m ∈ N : 1 ≤ m ≤
n, (m, n)s = 1}.

Thus �s(n) denotes the number of positive integers ≤ n that are relatively s-prime to
n. Various properties satisfied by �s(n) are listed in [2, Section 2].

If M is a complete residue system mod n, then the subset of elements from M that
are relatively s-prime to n is called an s-reduced system. Further, if M is a subset of
{a : 0 ≤ a < n} then the s-reduced system is called a minimal s-reduced residue system
(mod n).

DEFINITION 2.5

For natural numbers n and s, by τs(n), we mean the number of ls dividing n where l ∈ N.

It was observed in [2] that �s(n) and τs(n) are multiplicative in n.
The following lemma is essential to prove one of the main results that we propose in

this paper.

Lemma 2.6 [3, Lemma 3]. Let A = {m | 1 ≤ m ≤ n and (m, n)s = 1} and let d > 0 be
any s-th power divisor of n. Then A is the union of �s (n)

�s (d)
disjoint sets each of which is an

s-reduced residue system mod d.

3. Proofs of the main results

We here provide proofs of the claims we made in the first section. To prove Theorem 1.1,
we need the following lemma.

Lemma 3.1. Let s, n ∈ N and χ be a primitive Dirichlet character mod pn , where p is
prime and n is a multiple of s. If m is a multiple of s such that s ≤ m < n, then

pn−m
∑

k=1
(k,pn−m )s=1

χ(kpm + 1) =
{

−1, m = n − s

0, otherwise.
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Proof. By the conditions imposed on s,m and n, we see that n �= s. Suppose m = n − s.
Since pn−s is not an induced modulus for χ , there exists an integer b, 1 ≤ b < ps with
(bpn−s + 1, pn) = 1 and bpn−s + 1 ≡ 1(mod pn−s), but χ(bpn−s + 1) �= 1. So

χ(bpn−s + 1)

ps−1∑

k=0

χ(kpn−s + 1) =
ps−1∑

k=0

χ(kbp2n−2s + bpn−s + kpn−s + 1)

=
ps−1∑

k=0

χ((k + b)pn−s + 1)

=
ps−1∑

k=0

χ(kpn−s + 1).

Hence
∑ps−1

k=0 χ(kpn−s + 1) = 0 and so
∑ps

k=1 χ(kpn−s + 1) = 0. It follows that

ps∑

k=1
(k,ps )s=1

χ(kpn−s + 1) =
ps∑

k=1

χ(kpn−s + 1) −
ps∑

k=1
(k,ps )s �=1

χ(kpn−s + 1)

= −
ps∑

k=1
(k,ps )s �=1

χ(kpn−s + 1)

= −χ(kpn + 1)

= −χ(1)

= −1.

Next we consider the case m �= n − s. As in the previous case.

χ(bpn−s + 1)

pn−m
∑

k=1
(k,pn−m )s=1

χ(kpm + 1) =
pn−m
∑

k=1
(k,pn−m )s=1

χ(bkpm pn−s

+ kpm + bpn−s + 1)

=
pn−m
∑

k=1
(k,pn−m )s=1

χ(kpm + bpn−s + 1).

We claim that {kpm + bpn−s + 1 : 1 ≤ k ≤ pn−m, (k, pn−m)s = 1} is the same as the
residue system kpm + 1(mod pn). Suppose 1 ≤ k1 ≤ pn−m and (k1, pn−m)s = 1. If c ≡
k1 pm + bpn−s + 1(mod pn) for some integer c, then let k2 ≡ k1 + bpn−s−m (mod pn−m).
Note that if (k2, pn−m)s = prs for some prime p and 1 ≤ r ≤ n−m

s , then we have ps | k2,
which implies ps | k1 + bpn−s−m . But in this case s ≤ m ≤ n − 2s and ps | pn−s−m

implying that ps | k1 which is not possible. Therefore (k2, pn−m)s = 1 and also 1 ≤ k2 ≤
pn−m . Now we have k2 pm + 1 ≡ c (mod pn). If k1 pm + bpn−s + 1 = k1

′ pm + bpn−s +
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1 (mod pn) then k1 ≡ k′
1 (mod pn−m). Similarly if k2 pm + 1 ≡ k′

2 p
m + 1 (mod pn), then

k2 ≡ k′
2 (mod pn−m). Therefore both these residue systems consists of �s(pn−m) different

elements, and so we get

χ(bpn−s + 1)

pn−m
∑

k=1
(k,pn−m )s=1

χ(kpm + 1) =
pn−m
∑

k=1
(k,pn−m )s=1

χ(kpm + 1).

This implies that
∑pn−m

k=1
(k,pn−m )s=1

χ(kpm + 1) = 0 which is what we required. �

Proof of Theorem 1.1. Let f (n) = ∑n
k=1

(k,n)s=1
(k−1, n)sχn(k), where χn is some Dirichlet

character mod n. For r , t ∈ N, we have

f (r t) =
r t∑

k=1
(k,r t)s=1

(k − 1, r t)sχr t (k).

Now we use the fact that if (r, t) = 1 then the two sets {k | 1 ≤ k ≤ r t, (k, r t)s = 1}
and {tk1 + rk2 | 1 ≤ k1 ≤ r, (k1, r)s = 1, 1 ≤ k2 ≤ t, (k2, t)s = 1} are the same.
Note that χ mod k can be factored uniquely as a product of the form χk = χk1χk2 · · · χkr ,
where k = k1k2 · · · kr with (ki , k j ) = 1 if i �= j . In particular, if χ is primitive then each
χki is primitive mod ki . Since the generalized gcd function is multiplicative in the second
variable, we get

f (r t) =
r∑

k1=1
(k1,r)s=1

t∑

k2=1
(k2,t)s=1

(tk1 + rk2 − 1, r)s(tk1 + rk2 − 1, t)s

× χr (tk1 + rk2)χt (tk1 + rk2)

=
r∑

k1=1
(k1,r)s=1

t∑

k2=1
(k2,t)s=1

(tk1 + rk2 − 1, r)s

(tk1 + rk2 − 1, t)sχr (tk1)χt (rk2).

Now we observe that (tk1 + rk2 − 1, r)s = (tk1 − 1, r)s and (tk1 + rk2 − 1, t)s =
(rk2 − 1, t)s . So

f (r t) =
r∑

k1=1
(k1,r)s=1

t∑

k2=1
(k2,t)s=1

(tk1 − 1, r)s(rk2 − 1, t)sχr (tk1)χt (rk2)

=
r∑

k1=1
(k1,r)s=1

(tk1 − 1, r)sχr (tk1)

t∑

k2=1
(k2,t)s=1

(rk2 − 1, t)sχt (rk2).
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Since (r, t) = 1,

f (r t) =
r∑

k1=1
(k1,r)s=1

(k1 − 1, r)sχr (k1)

t∑

k2=1
(k2,t)s=1

(k2 − 1, t)sχt (k2)

= f (r) f (t).

Thus f is multiplicative and so we need to verify our claim only for prime powers pa ,
where a = qs, q ∈ N. Therefore,

f (pa) =
pa∑

k=1
(k,pa)s=1

(k − 1, pa)sχpa (k)

=
pa∑

k=1

(k − 1, pa)sχpa (k) −
pa∑

k=1
(k,pa)s �=1

(k − 1, pa)sχpa (k)

=
pa∑

k=1

(k − 1, pa)sχpa (k)

=
pa∑

k=1
(k−1,pa)s �=1

(k − 1, pa)sχpa (k) +
pa∑

k=1
(k−1,pa)s=1

χpa (k)

=
pa∑

k=1
(k−1,pa)s �=1

(k − 1, pa)sχpa (k) +
pa∑

k=1

χpa (k) −
pa∑

k=1
(k−1,pa)s �=1

χpa (k)

=
pa∑

k=1
(k−1,pa)s �=1

(k − 1, pa)sχpa (k) −
pa∑

k=1
(k−1,pa)s �=1

χpa (k)

=
pa∑

k=1
(k−1,pa)s �=1

((k − 1, pa)s − 1)χpa (k)

=
q∑

t=1

pa∑

k=1
(k−1,pa)s=pts

(pts − 1)χpa (k)

=
pa∑

k=1
(k−1,pa)s=pa

(pa − 1)χpa (k) +
q−1∑

t=1

pa∑

k=1
(k−1,pa)s=pts

(pts − 1)χpa (k)

= (pa − 1) +
q−1∑

t=1

(pts − 1)

pa∑

k=1
(k−1,pa)s=pts

χpa (k).



Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:18 Page 7 of 13    18 

We need to compute the sum
∑pa

k=1
(k−1,pa)s=pts

χpa (k). We have

pa∑

k=1
(k−1,pa)s=pts

χpa (k) =
pa∑

k=1
(k,pa)s=pts

χpa (k + 1).

To evaluate this, for a fixed prime power pts we take the sum over all those k in the
range 1 ≤ k ≤ pa , where (k, pa)s = pts . If we write k = j pts , then 1 ≤ k ≤ pa and
(k, pa)s = 1 if and only if 1 ≤ j ≤ pa−ts and ( j, pa−ts)s = 1. Then the last sum can be
re-written as

pa∑

k=1
(k,pa)s=pts

χpa (k + 1) =
pa−ts
∑

j=1
( j,pa−ts )s=1

χpa ( j p
ts + 1)

and

f (pa) = (pa − 1) +
q−1∑

t=1

(pts − 1)

pa−ts
∑

j=1
( j,pa−ts )s=1

χpa ( j p
ts + 1).

By Lemma 3.1, we obtain

pa−ts
∑

j=1
( j,pa−ts )s=1

χpa ( j p
ts + 1) =

{
−1 if t = q − 1

0 otherwise
.

Then

f (pa) = pa − 1 + (p(q−1)s − 1)(−1)

= pa − pqs−s

= pa − pa−s

= �s(p
a),

which concludes the proof. �

The above theorem reduces to Theorem 1.1 in [16] when s = 1. We would like to further
remark that Theorem 1.1 in [16] was proved using Lemma 2.1 and Lemma 2.2 in [16]. If
one employs the technique we used above, only [16, Lemma 2.1] is required to prove [16,
Theorem 1.1].

To prove Theorem 1.2, we require the following two lemmas. First lemma generalizes
[16, Lemma 2.4].
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Lemma 3.2. Let s, n ∈ N and χ be a Dirichlet character mod pn , where n = qs for some
q ∈ N. Let pl be the conductor of χ , where l = rs for some r ∈ N and 1 ≤ r ≤ q. If m is
a multiple of s such that s ≤ m < n, we have

∑pn−m

k=1
(k,pn−m )s=1

χ(kpm + 1) =

⎧
⎪⎨

⎪⎩

�s(pn−m), if l ≤ m < n

−pn−l , if m = l − s

0, if s ≤ m < l − s.

Proof. First we consider the case l ≤ m < n. We have

pn−m
∑

k=1
(k,pn−m )s=1

χ(kpm + 1) =
pn−m
∑

k=1
(k,pn−m )s=1

χ(1)

=
pn−m
∑

k=1
(k,pn−m )s=1

1

= �s(p
n−m).

Next we move on to the case s ≤ m ≤ l − s. Note that every Dirichlet character χ mod k
can be expressed as a product of the form χ(n) = ψ(n)χ1(n) for all n, where ψ is a
primitive character modulo conductor of χ and χ1 is the principal character mod n. Then

pn−m
∑

k=1
(k,pn−m )s=1

χ(kpm + 1) =
pn−m
∑

k=1
(k,pn−m )s=1

ψ(kpm + 1)χ1(kp
m + 1),

where ψ is the primitive character mod conductor of χ and χ1 is the principal character
mod pn . Since s ≤ m ≤ l − s, (kpm + 1, pn) = 1, using Lemma 2.6 and Lemma 3.1, we
get

pn−m
∑

k=1
(k,pn−m )s=1

χ(kpm + 1) =
pn−m
∑

k=1
(k,pn−m )s=1

ψ(kpm + 1)

= �s(pn−m)

�s(pl−m)

pl−m
∑

k=1
(k,pl−m )s=1

ψ(kpm + 1)

= pn−l
pl−m
∑

k=1
(k,pl−m )s=1

ψ(kpm + 1)

=
{

−pn−l if m = l − s

0 if s ≤ m < l − s,
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which completes the proof.
Next we prove a lemma, which is key to the proof of Theorem 1.2.

Lemma 3.3. Let s, a ∈ N and χ be a Dirichlet character mod pa , where a = qs for some
q ∈ N. If prs is the conductor of χ , where r ∈ N and 1 ≤ r ≤ q, we have

pa∑

k=1
(k,pa)s=1

(k − 1, pa)sχ(k) = (q − r + 1)�s(p
a).

Proof. We prove the lemma case by case.

Case 1. r = 1. In this case ps is the conductor of χ . From the proof of Theorem 1.1,
we have

f (pa) = (pa − 1) +
q−1∑

t=1

(pts − 1)

pa−ts
∑

j=1
( j,pa−ts )s=1

χpa ( j p
ts + 1).

Using Lemma 3.2,

pa∑

k=1
(k,pa)s=1

(k − 1, pa)sχ(k) = pa − 1 +
q−1∑

t=1

(pts − 1)

pa−ts
∑

j=1
( j,pa−ts )s=1

χpa ( j p
ts + 1)

= pa − 1 +
q−1∑

t=1

(pts − 1)�s(p
a−ts)

= pa − 1 +
q−1∑

t=1

(pts − 1)pa−ts(1 − 1

ps
)

= pa − 1 +
q−1∑

t=1

(pa − pa−ts)(1 − p−s)

= pa − 1 +
q−1∑

t=1

(pa − pa−s − pa−ts + pa−(t+1)s)

= pa − 1 +
q−1∑

t=1

(pa − pa−s)

+
q−1∑

t=1

(pa−(t+1)s − pa−ts)

= pa − 1 + (pa − pa−s)(q − 1)

+ (pa−qs − pa−s)

= pa − 1 + (pa − pa−s)(q − 1) + 1 − pa−s
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= q(pa − pa−s)

= q�s(p
a).

Case 2. r = q. In this case χ is the primitive character mod pa . The claim immediately
follows from Theorem 1.1.

Case 3. 2 ≤ r ≤ q − 1. As in the first case, we have

f (pa) = (pa − 1) +
q−1∑

t=1

(pts − 1)

pa−ts
∑

j=1
( j,pa−ts )s=1

χpa ( j p
ts + 1).

By Lemma 3.2, we get

pa−ts
∑

j=1
( j,pa−ts )s=1

χ( j pts + 1) =

⎧
⎪⎨

⎪⎩

�s(pa−ts), if r ≤ t < q

−pa−rs, if t = r − 1

0, if 1 ≤ t < r − 1.

Now

f (pa) = pa − 1 +
q−1∑

t=1

(pts − 1)

pa−ts
∑

j=1
( j,pa−ts )s=1

χpa ( j p
ts + 1)

= pa − 1 +
r−2∑

t=1

(pts − 1)

pa−ts
∑

j=1
(k,pa−ts )s=1

χ( j pts + 1)

+ (p(r−1)s − 1)(−pa−rs)

+
q−1∑

t=r

(pts − 1)

pa−ts
∑

j=1
(k,pa−ts )s=1

χ( j pts + 1)

= pa − 1 − (prs−s − 1)pa−rs +
q−1∑

t=r

(pts − 1)�s(p
a−ts)

= pa − 1 − (prs−s − 1)pa−rs +
q−1∑

t=r

(pts − 1)pa−ts(1 − 1

ps
)

= pa − 1 − pa−s + pa−rs +
q−1∑

t=r

(pts − 1)pa−ts(1 − p−s)

= pa − 1 − pa−s + pa−rs +
q−1∑

t=r

(pa − pa−s − pa−ts + pa−(t+1)s)
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= pa − 1 − pa−s + pa−rs +
q−1∑

t=r

(pa − pa−s)

+
q−1∑

t=r

(pa−(t+1)s − pa−ts)

= pa − 1 − pa−s + pa−rs + (pa − pa−s)(q − r) + pa−qs − pa−rs

= pa − 1 − pa−s + (pa − pa−s)(q − r) + 1

= (q − r + 1)(pa − pa−s)

= (q − r + 1)�s(p
a).

�

Lemma 3.4. Lemma 3.4 is very much similar to [16, Lemma 3.1]. The identity in [16,
Lemma 3.1] reduces to the Menon’s identity when χ is a principal character. But because
of the assumptions in the lemma above, χ cannot be taken as the principal character and
so this lemma cannot be strictly taken as a generalization of [16, Lemma 3.1].

Finally we prove Theorem 1.2, which is similar to Theorem 1.2 in [16]. But our conditions
are more restrictive than those appearing in [16, Theorem 1.2].

Proof of Theorem 1.2. We use the fact that if n = pa1
1 pa2

2 · · · parr then χn = χp
a1
1

χp
a2
2

· · ·
χparr , where χn is the Dirichlet character mod n. Also if g(χ) denotes the conduc-
tor of χ , then g(χn) = g(χp

a1
1

)g(χp
a2
2

) · · · g(χparr ). Let n = pa1s
1 pa2s

2 · · · par sr , d =
pb1s

1 pb2s
2 · · · pbr sr , where 1 ≤ bi ≤ ai . Now f (n) = ∑n

k=1
(k,n)s=1

(k − 1, n)sχn(k) is multi-

plicative. Therefore,

n∑

k=1
(k,n)s=1

(k − 1, n)sχ(k) = f (n)

= f (pa1s
1 ) f (pa2s

2 ) · · · f (par sr )

=
r∏

i=1

f (pai si )

=
r∏

i=1

p
ai s
i∑

k=1
(k,p

ai s
i )s=1

(k − 1, pai si )sχp
ai s
i

(k).

Note that pb1s
1 pb2s

2 · · · pbr sr = g(χp
a1s
1

)g(χp
a2s
2

) · · · g(χpar sr
). It is clear that g(χp

ai s
i

) =
pbi si . Hence by Lemma 3.3,

n∑

k=1
(k,n)s=1

(k − 1, n)sχ(k) =
r∏

i=1

(ai − bi + 1)�s(p
ai s
i )



   18 Page 12 of 13 Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:18 

=
r∏

i=1

τs(p
(ai−bi )s
i )�s(p

ai s
i )

= �s(n)τs

(n

d

)
,

which completes the proof. �

Lemma 3.5. A strict generalization of Theorem 1.2 in [16]would have been
∑n

k=1
(k,n)s=1

(k−
1, n)sχ(k) = �s(n)τs(n/d), where χ is a Dirichlet character mod n with conductor d.
But this identity cannot be derived. For example, if we take q = 1, s = 2, r = 0 and
p = 2, the LHS of this identity evaluates to (0, 4)2 + (2, 4)2 = 5 whereas the RHS gives 6.

In [14], Tóth derived an identity similar to Menon’s identity involving even functions mod
n, Möbius function and the Euler totient function. Note that an arithmetical function is
n-even if f (k) = f ((k, n)). A concept similar to n-even function is (n, s)-even functions
defined by McCarthy. An arithmetical function f is (n, s)-even if f (k) = f ((k, ns)s) (see
[8] for details). Many of the properties of such functions were studied in [10]. We feel
that Tóth’s results can be generalized to (n, s)-even functions and similar identities can be
derived if one uses the results appearing in [10].
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