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1. Introduction

Let Sk(�) be the space of holomorphic cusp forms of even integral weight k for the full
modular group � = SL(2, Z). Suppose that f (z) is an eigenfunction of all Hecke operators
belonging to Sk(�). Then the Hecke eigenform f (z) has the following Fourier expansion
at the cusp ∞:

f (z) =
∞∑

n=1

a(n)e2π inz,

where we have normalized f (z) such that a(1) = 1. Instead of a(n), one often considers
the normalized Fourier coefficients

λ(n) = a(n)

n
k−1

2

.

Here λ(n) are real and satisfy the multiplicative property that

λ(m)λ(n) =
∑

d|(m,n)

λ
(mn

d2

)
, (1.1)
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where m and n are any positive integers. It also satisfies the celebrated Deligne’s bound [2]
that

λ(n) ≤ d(n) �ε nε, (1.2)

where d(n) is the number of divisors of n and ε is any arbitrarily small positive constant.
Sign changes of Fourier coefficients a(n) for n ≥ 1 of cusp forms in one or several vari-

ables have been studied in various aspects. It is known that, if the Fourier coefficients of
a cusp form are real then they change signs infinitely often [6]. Further, many quantitative
results for the number of sign changes for the sequence of the Fourier coefficients have been
established. The sign changes of the subsequence of the Fourier coefficients at prime num-
bers was first studied by Ram Murty [14] (see also the work of Kohnen and Sengupta [9]).
Later, Meher et al. [13] studied the problem for the subsequence {a(n j )}n≥1 ( j = 2, 3, 4).
In 2014, Kohnen and Martin [7] proved that the subsequence {a(p jn)}n≥0 has infinitely
many sign changes for almost all primes p and j ∈ N.

In this article, we are mainly interested in studying the sign changes of the subsequence
{λ(nk)}nk≥1, where nk can be written as a sum of two squares i.e., nk = c2 + d2 for
some integers c and d. In our main theorem, we obtain the behaviour of infinitely many
sign changes of the sequence. In fact, we provide the lower bound for the number of sign
changes in the interval (x, 2x], for sufficiently large x . For more details on problems related
to sign changes of Fourier coefficients, we refer to [3,8,12].

2. Main theorem

Let f ∈ Sk(�) be a normalized Hecke eigenform of even integral weight k for the full
modular group and λ(n) denotes its n-th normalized Fourier coefficient. We state our main
result.

Theorem 2.1. The sequence {λ(c2 + d2)}c,d≥1 has infinitely many sign changes.
Moreover, the sequence changes its signs at least x1/8−2ε times in the interval (x, 2x]
for sufficiently large x, where ε is arbitrarily small positive constant.

3. Background set up

To get the sign change at the sum of two squares, one needs to consider the partial sums

S1(x) :=
∑

n=c2+d2≤x

λ(c2 + d2),

S2(x) :=
∑

n=c2+d2≤x

λ2(c2 + d2)

for x ≥ 1 and (c, d) ∈ Z
2. Also, one needs to find the upper bound of S1(x) and the

approximate behaviour of S2(x). As we are just interested in the sign change of the coeffi-
cients at sum of two squares, one can use r2(n) (the number of ways n can be written as sum
of two squares) as the weighted characteristic function of the sum of two squares. Also,
r2(n) is always non-negative, so to consider the sign change of the Fourier coefficients at
sum of two squares, it is enough to consider the following sums:



Proc. Indian Acad. Sci. (Math. Sci.)           (2020) 130:2 Page 3 of 9     2 

S(x) =
∑
n≤x

λ(n)r2(n),

S f (x) =
∑
n≤x

λ2(n)r2(n),

as multiplication by r2(n) does not affect the sign of λ(n) and restricts the sum to all those
n, which can be written as the sum of two squares. In number theory, the function r2(n)

has received much attention. It is well-known that θ2(z) = 1 + ∑∞
n=1 r2(n)e2π inz is a

modular form of weight 1 for �0(4) with character χ−4, where θ(z) = 1+2
∑∞

n=1 e2π in2z

is the classical theta function. A formula for r2(n) is given by

r2(n) = 4
∑
d|n

χ−4(d),

see for example [4]. We set r(n) := 1
4r2(n) = ∑

d|n χ−4(d). So for any prime p, we have

r(p) = 1 + χ−4(p), r(p2) = 1 + χ−4(p) + χ−4(p2), (3.1)

and so on. We define

L(s) :=
∞∑

n=1

λ2(n)r(n)

ns
. (3.2)

We use the following L-functions associated to f defined by

L(s, f × f ) :=
∞∑

n=1

λ2(n)

ns
(3.3)

and

L(s, f × f × χ−4) :=
∞∑

n=1

χ−4(n)λ2(n)

ns
, (3.4)

where Re(s) > 1. Note that one can think of L(s, χ−4 × f × f ) as the convolution
L-function associated to f and g = f ⊗ χ−4 = ∑

n≥1 a(n)χ−4(n)e2π inz . Then the
Rankin–Selberg L-functions associated to f and g = f ⊗ χ−4 are given by

L(s, f ⊗ f ) := ζ(2s)L(s, f × f ), (3.5)

L(s, f ⊗ f ⊗ χ−4) := ζ(2s)L(s, f × f × χ−4). (3.6)

These L-functions are well studied, they have analytic continuation and also satisfy func-
tional equation. For details, we refer to [1]. The following lemmas are important to study
the average behaviour of S(x) and S f (x).

Lemma 3.1. For Re(s) > 1, we have

L(s) = L(s, f × f )L(s, f × f × χ−4)U (s), (3.7)
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where U (s) converges absolutely and uniformly in the half-plane Re(s) ≥ 1/2+ ε for any
ε > 0. L(s, f × f ) and L(s, f × f × χ−4) are defined as in (3.3) and (3.4) respectively.

Proof. The Euler product representation of L(s, f × f ) and L(s, f × f × χ−4) can be
written in the form

L(s, f × f ) =
∏

p

(
1 + λ2(p)

ps
+ λ2(p2)

p2s
+ · · ·

)
(3.8)

and

L(s, f × f × χ−4) =
∏

p

(
1 + λ2(p)χ−4(p)

ps
+ χ−4(p2)λ2(p2)

p2s
+ · · ·

)

(3.9)

respectively, for Re(s) > 1. Since the coefficients in (3.2) are multiplicative, after apply-
ing (3.1) and (1.1), we have

L(s) =
∞∑

n=1

λ2(n)r(n)

ns

=
∏

p

(
1 + λ2(p)r(p)

ps
+ λ2(p2)r(p2)

p2s
+ · · ·

)

=
∏

p

(
1 + λ2(p)(1 + χ−4(p))

ps

+ λ2(p2)(1 + χ−4(p) + χ−4(p2))

p2s
+ · · ·

)
(3.10)

for Re(s) > 1. Now from (3.8), (3.9) and (3.10), we have, for Re(s) > 1,

L(s) = L(s, f × f )L(s, f × f × χ−4)U (s),

where

U (s) =
∏

p

(
1 − χ−4(p)(2λ2(p) − 1)

p2s
+ · · ·

)
.

It follows from (1.2) that U (s) converges absolutely and uniformly in the half-plane
Re(s) ≥ 1/2 + ε. This completes the proof. �

Lemma 3.2. For any ε > 0 and 0 ≤ σ ≤ 1, we have

s − 1

s + 1
L(σ + i t, f ⊗ f ) � f,ε (1 + |t |)2(1−σ)+ε. (3.11)
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Proof. The proof involves standard arguments using the Stirling formula for Gamma func-
tion in the functional equation of L(σ + i t, f ⊗ f ) and the Phargmen–Lindelöf principle.
One can refer to page 100, chapter 5 of [5]. �

Lemma 3.3. For 1/2 ≤ σ ≤ 3/4, we have

(i)
∫ T

0
|L(σ + i t, f ⊗ f )|2dt � T 4−4σ (log T )1+ε (3.12)

and

(ii)
∫ 2T

T
|L(σ + i t, f ⊗ f )|2dt � T 4−4σ (log T )1+ε . (3.13)

Proof. We refer to [11] for a proof. We also mention that the second inequality is valid
for Rankin–Selberg convolution of two different forms f and g. The proof goes exactly
as in the case f = g, so we omit the details here. For more details, we refer to §4 and §5
of [11]. �

Now we state the main proposition, which provides the asymptotic behaviour of S f (x)

and the upper bound for S(x). We use the basic tool of [10] to prove this proposition.

PROPOSITION 3.4

We have

S(x) � x3/4+ε (3.14)

and

S f (x) = Cx + O f,ε(x3/4+ε), (3.15)

where C is a constant and ε > 0 is arbitrarily small.

Proof. Define

L j (s) =
{

L(s, f ⊗ θ2) if j = 1,

L(s) if j = 2.
(3.16)

Now by using truncated Perron’s formula (cf. [5, Proposition 5.54]), we have

S(x) =
∑
n≤x

λ(n)r2(n) = 1

2π i

∫ b+iT

b−iT
L1(s)

xs

s
ds + O

(
x1+ε

T

)
(3.17)

and

S f (x) = 4
∑
n≤x

λ2(n)r(n) = 4

2π i

∫ b+iT

b−iT
L2(s)

xs

s
ds + O

(
x1+ε

T

)
, (3.18)
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where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later. We observe that
L1(s) has an analytic continuation to the whole complex plane as it is a Rankin–Selberg
L-function of a cusp form f and θ2 (see [1] for details on Rankin–Selberg L-function).
Also, it follows from Lemma 3.1 and the analytic continuation of Rankin–Selberg L-
function (cf. [1]) that L2(s) can be analytically continued to the half plane Re(s) > 1/2.
In this region, L2(s) has a simple pole at s = 1.

Next we move the line of integration to Re(s) = 1/2 + ε and apply the Cauchy residue
theorem to obtain

∑
n≤x

λ(n)r2(n) = 1

2π i

{ ∫ 1/2+ε+iT

1/2+ε−iT
+

∫ b+iT

1/2+ε+iT

+
∫ 1/2+ε−iT

b−iT

}
L1(s)

xs

s
ds + O

(
x1+ε

T

)

= I1 + I2 + I3 + O

(
x1+ε

T

)
(3.19)

and

∑
n≤x

λ2(n)r(n) = 4 s = 1
Res

L(s) x + 4

2π i

{ ∫ 1/2+ε+iT

1/2+ε−iT
+

∫ b+iT

1/2+ε+iT

+
∫ 1/2+ε−iT

b−iT

}
L(s)

xs

s
ds + O

(
x1+ε

T

)

= Cx + J1 + J2 + J3 + O

(
x1+ε

T

)
. (3.20)

Here C = 4 Res
s=1

L(s) is a constant. Now we evaluate the integrals in equation (3.19). By

using the convexity bound for the Rankin–Selberg L-function Lemma 3.2, we have

I1 � x1/2+ε

(
1 +

∫ T

1

|L1(1/2 + ε + i t)|
t

dt

)
(3.21)

� x1/2+ε + x1/2+εT 1−ε . (3.22)

To evaluate the horizontal integral, we write s = σ + i t .

I2 + I3 �
∫ 1+ε

1/2+ε

|L1(σ + iT )| xσ

T
dσ

�
∫ 1+ε

1/2+ε

max
1/2+ε<σ≤1+ε

|L1(σ + iT )xσ |
T

dσ � x1/2+ε

T ε
+ x1+ε

T 1+ε
.

(3.23)

So, we have

S(x) = O(x1/2+εT 1−ε) + O

(
x1+ε

T 1+ε

)
. (3.24)
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Now we evaluate the integrals in equation (3.20). By applying Lemma 3.1 and Cauchy–
Schwartz inequality on the first integral J1, we obtain

J1 � x1/2+ε

[ (∫ T

0
|L(1/2 + ε + i t, f ⊗ f )|2dt

)1/2

×
(∫ T

0

|L(1/2 + ε + i t, χ−4 ⊗ f ⊗ f )|2
|1/2 + ε + i t |2 dt

)1/2 ]

� x1/2+ε

[ (∫ T

0
|L(1/2 + ε + i t, f ⊗ f )|2dt

)1/2

×
(

1 +
∫ T

1

|L(1/2 + ε + i t, χ−4 ⊗ f ⊗ f )|2
t2 dt

)1/2 ]
. (3.25)

Here, we use standard argument and Lemma 3.3(ii) in the second integral of (3.25) and
obtain

∫ T

1

|L(1/2 + ε + i t, χ−4 ⊗ f ⊗ f )|2
t2 dt

� log T max
1<T1≤T

1

T 2
1

∫ T1

T1/2
|L(1/2 + ε + i t, χ−4 ⊗ f ⊗ f )|2dt

� log T . (3.26)

By inserting (3.26) in (3.25) and applying Lemma 3.3(i), we obtain

J1 � x1/2+ε T 1−2ε(log T )3/2+ε . (3.27)

Now, we will concentrate on the horizontal integrals J2 and J3. Consider s = σ + i t . After
applying Lemma 3.2, we get

J2 + J3 �
∫ 1+ε

1/2+ε

|L(σ + iT, f ⊗ f )||L(σ + iT, χ−4 ⊗ f ⊗ f )| xσ

T
dσ

� max
1/2+ε<σ≤1+ε

xσ T 4(1−σ)+2ε T −1 = max
1/2+ε<σ≤1+ε

( x

T 4

)σ

T 3+2ε

� x1+ε

T 1+2ε
+ x1/2+ε T 1−2ε . (3.28)

Finally from (3.20), (3.27) and (3.28), we get

S f (x) = Cx + O

(
x1+ε

T 1+2ε

)
+ O(x1/2+ε T 1−2ε(log T )3/2+ε). (3.29)

Now, we choose T = x1/4 in both the cases (3.24) and (3.29) and we obtain

S(x) � x3/4+ε
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and

S f (x) = Cx + O(x3/4+ε),

which completes the proof of the proposition. �

4. Proof of Theorem 2.1

Now consider h = h(x) = x7/8. The proof is by contradiction, so assume that the sequence
{λ(n) : n = c2 + d2)}n≥1 has a constant sign, say positive for all n ∈ (x, x + h].

Now we apply (1.2) and Proposition 3.4 respectively to obtain

∑
x<n≤x+h

λ2(n)r2(n) =
∑

x<n≤x+h

λ(n)λ(n)r2(n) � xε
∑

x<n≤x+h

λ(n)r2(n)

� x2ε[(x + h)3/4+ε + x3/4+ε] � x3/4+2ε . (4.1)

On the other hand, from Proposition 3.4, we get

∑
x<n≤x+h

λ2(n)r2(n) = Ch + O f,ε(x3/4+ε) 	 x7/8. (4.2)

Note that each time ε may have different value. Now we compare the bounds in (4.1)
and (4.2) and arrive at a contradiction. Therefore, the sequence {λ(n)r2(n)}n≥1 has atleast
one sign change in the interval (x, x + h]. This in particular gives us that the sequence
{λ(c2 + d2)}c,d≥1 has infinitely many sign changes. In fact, there are atleast x1/8−2ε many
sign changes in the interval (x, 2x], for sufficiently large x , where ε is arbitrarily small.
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