Infinitely many solutions for the stationary fractional p-Kirchhoff problems in \mathbb{R}^N

EBUBEKIR AKKOYUNLU1 and RABIL AYAZOGLU2,3,*

1Vocational School of Social Sciences, Bayburt University, Bayburt, Turkey
2Faculty of Education, Bayburt University, Bayburt, Turkey
3Institute of Mathematics and Mechanics of ANAS, Baku, Azerbaijan
*Corresponding author.
E-mail: eakkoyunlu@bayburt.edu.tr; rabilmashiyev@gmail.com; rayazoglu@bayburt.edu.tr

MS received 24 August 2018; revised 28 February 2019; accepted 18 March 2019

Abstract. In the present paper, we investigate the existence of multiple solutions for the nonhomogeneous fractional p-Kirchhoff equation

$$
M \left(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x-y|^{N+ps}} \, dx \, dy + \int_{\mathbb{R}^N} V(x) \, |u|^p \, dx \right) \times ((-\Delta)_p^s u + V(x) |u|^{p-2} u) = f(x, u) \text{ in } \mathbb{R}^N,
$$

where $(-\Delta)_p^s$ is the fractional p-Laplacian operator, $0 < s < 1 < p < \infty$ with $sp < N$, $M : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is a nonnegative, continuous and increasing Kirchhoff function, the nonlinearity $f : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function that obeys some conditions which will be stated later and $V \in C(\mathbb{R}^N, \mathbb{R}_0^+)$ is a non-negative potential function. We first establish the Bartsch–Pankov–Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the variational method, (S_+) mapping theory and Krasnoselskii’s genus theory.

Keywords. Kirchhoff equation; fractional p-Laplacian; variational methods; Krasnoselskii’s genus; infinitely many solutions.

Mathematics Subject Classification. 35R11, 35A15, 35J60, 47G20.

1. Introduction and preliminaries

In this paper, we investigate the existence of multiple solutions for fractional p-Kirchhoff equations. More precisely, we consider

$$
M \left(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x-y|^{N+ps}} \, dx \, dy + \int_{\mathbb{R}^N} V(x) \, |u|^p \, dx \right) \times ((-\Delta)_p^s u + V(x) |u|^{p-2} u) = f(x, u) \text{ in } \mathbb{R}^N,
$$

© Indian Academy of Sciences
Published online: 27 July 2019
where \(0 < s < 1 < p < \infty\) with \(sp < N\), \(M : \mathbb{R}_0^+ \to \mathbb{R}_0^+\) is a nonnegative, continuous and nondecreasing function, the nonlinearity \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}\) is a Carathéodory function that obeys some conditions which will be stated later, \(V \in C(\mathbb{R}^N, \mathbb{R}^+)^\times\) is a non-negative potential function and \((-\Delta)^p\) is the fractional \(p\)-Laplace operator which (up to normalization factors) may be defined along any \(\varphi \in C_0(\mathbb{R}^N)\) as

\[
(-\Delta)^p \varphi(x) = 2 \lim_{\delta \to 0^+} \int_{\mathbb{R}^N} \frac{|\varphi(x) - \varphi(y)|^{p-2} (\varphi(x) - \varphi(y))}{|x - y|^{N + ps}} \, dy
\]

for \(x \in \mathbb{R}^N\), where \(B_\varepsilon(x) := \{ y \in \mathbb{R}^N : |x - y| < \varepsilon\}\).

There are some fundamental results that concern the fractional \(p\)-Laplacian, such as the nonlinear \(p\)-fractional Kirchhoff and Schrödinger–Kirchhoff equations in [1,4,11,13,21,22,26] and references therein. On the other hand, we remark that (1.1) is a fractional version of the well-known \(p\)-Laplacian, given by \(\text{div}(|\nabla u|^{p-2}\nabla u)\), that is associated with the Sobolev space \(W^{1,p}(\mathbb{R}^N)\).

When \(p = 2\) and \(M \equiv 1\), equation (P) becomes the fractional Laplacian equation

\[
(-\Delta)^s u + V(x)u = f(x, u) \quad \text{in} \quad \mathbb{R}^N.
\]

We would like to quote some important and interesting results for the problems involving the fractional Laplacian \((-\Delta)^s\), \(0 < s < 1\) (see [14–17,30]).

Problem (P) is a generalization of a model, the so-called Kirchhoff equation, introduced by Kirchhoff. To be more precise, Kirchhoff established a model given by the equation

\[
\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 \, dx \right) \frac{\partial^2 u}{\partial x^2} = f(x, u),
\]

where \(P_0\), \(h\), \(E\), \(L\) are constants, which extends the classical D’Alambert’s wave equation by considering the effects of the changes in the length of the strings during vibrations. A distinguishing feature of the Kirchhoff equation (K) is that the equation contains a nonlocal coefficient \(\frac{P_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 \, dx\), which depends on the average \(\frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 \, dx\) of the kinetic energy \(\frac{1}{2} \left| \frac{\partial u}{\partial x} \right|^2\) on \([0, L]\), \(f\) is the area of the cross section, and hence the equation is no longer a pointwise identity.

Pucci et al. [21] investigated the existence of multiple solutions for the following non-homogeneous fractional \(p\)-Laplacian equation of the Schrödinger–Kirchhoff type

\[
M \left(\iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + ps}} \, dx \, dy \right) ((-\Delta)^p u + V(x)|u|^{p-2}u) = f(x, u) + g(x) \quad \text{in} \quad \mathbb{R}^N,
\]

where \(f\), \(g\) functions obey some conditions. The Kirchhoff function \(M\) and the potential \(V\) satisfies the following assumptions:

\((M_1)\): \(M \in C(\mathbb{R}_0^+)\) satisfies \(\inf_{t \in \mathbb{R}_0^+} M(t) \geq a > 0\), where \(a > 0\) is a constant;

\((M_2)\): There exists \(\theta \in [1, N/(N - sp))\) such that

\[
\theta \dot{M}(t) = \theta \int_0^t M(\tau) \, d\tau \geq M(t)t \quad \text{for any} \quad t \in \mathbb{R}_0^+;
\]
(V)\(_1\): \(V \in C(\mathbb{R}^N)\) is bounded from below;
(V)\(_2\): There exists \(r > 0\) such that
\[
\lim_{|y| \to \infty} |\{ x \in B_r(y) : V(x) \leq L \}| = 0 \quad \text{for any } L > 0.
\]

Conditions (V)\(_1\) and (V)\(_2\) which are weaker than the coercivity assumption \(V(x) \to +\infty\) as \(|x| \to +\infty\) (see the following Remark 1.1), was originally introduced by Bartsch and Wang in [3] to overcome the lack of compactness. In [3], the conditions (V)\(_1\) and (V)\(_2\) were used to investigate the existence and multiplicity of solutions to the nonlinear Schrödinger equations, see for example [2] for further discussions.

Remark 1.1. Let \(V\) be a zig-zag function with respect to \(|x|\) defined by
\[
V(x) = n \sin [\pi |x| - \pi (n - 1)] - 1, \quad n - 1 \leq |x| \leq n, \quad n \in \mathbb{N}.
\]

It is easy to check that \(V\) satisfies (V)\(_1\) and (V)\(_2\) in [21], but \(V\) does not satisfy the condition \(V(x) \to +\infty\) as \(|x| \to +\infty\).

In [23], Piersanti and Pucci dealt with critical \(p\)-fractional Hardy Schrödinger Kirchhoff type, that is,

\[
M(||u||_{W^s_p(\mathbb{R}^N)}^p)((-\Delta)^s_p u + V(x)|u|^{p-2}u) - \gamma \frac{|u|^{p-2}u}{|x|^{ps}} = \lambda f(x,u) + g(x,u) + K(x)(u^+)^{p_s^*-1} \quad \text{in } \mathbb{R}^N,
\]

where \(\lambda\) and \(\gamma\) are real parameters, \(0 < s < 1 < p < \infty\) such that \(sp < N\) and \(u^+ = \max\{u, 0\}\). The exponent \(p_s^* = Np/(N - sp)\) is critical in the sense of Sobolev, while the nonlinear terms \(f\) and \(g\) are subcritical. In this paper, the weights \(K\) and \(V\) satisfy

\([K_1]\): \(K \geq 0\) a.e. in \(\mathbb{R}^N\) and \(K \in L^\infty(\mathbb{R}^N)\);

\([V_1]\): \(V \in C(\mathbb{R}^N)\) and \(V(x) \geq V_0 > 0\) for all \(x \in \mathbb{R}^N\), where \(V_0\) is a positive constant;

while the main Kirchhoff function \(M\) verifies the condition.

\([M_1]\): \(M : \mathbb{R}^+_0 \to \mathbb{R}^+_0\) is a nonnegative continuous function and there exists \(\theta \in [1, N/(N - sp)]\) such that
\[
\theta M(t) = \theta \int_0^t M(\tau) d\tau \geq M(t)t \quad \text{for any } t \in \mathbb{R}^+_0.
\]

The existence theorems of nonnegative entire solutions of stationary critical \(p\)-fractional Hardy Schrödinger Kirchhoff equations are presented by Piersanti and Pucci [23].

In [25], Song and Shi studied a class of degenerate \(p\)-fractional Kirchhoff equations

\[
M(||u||_{W^s_p(\mathbb{R}^N)}^p)((-\Delta)^s_p u + V(x)|u|^{p-2}u) = \lambda f(x,u) + \gamma \frac{|u|^{p_s^*(\alpha)-2}u}{|x|^{\alpha}} \quad \text{in } \mathbb{R}^N,
\]

with critical Hardy–Sobolev nonlinearities. In this paper, the \(f\) function obeys some conditions. \(V\) and \(M\) functions satisfy the following assumptions:

\([V]\): \(V : \mathbb{R}^N \to \mathbb{R}^+\) is a continuous function and there exists \(V_0 > 0\) such that \(\inf_{t \in \mathbb{R}^N} V(t) \geq V_0 > 0\);
(M): $M : \mathbb{R}^+_0 \to \mathbb{R}^+_0$ is assumed to be continuous and satisfy the following assumptions.

(M$_1$): There exists $\theta \in [1, p_s^*(\alpha)/p)$, $p_s^*(\alpha) = p(N - \alpha)/(N - ps)$ such that $\theta \dot{M}(t) \geq M(t)t$ for all $t \in \mathbb{R}^+_0$, where $\dot{M}(t) = \int_0^t M(\tau)\,d\tau$;

(M$_2$): For any $\tau > 0$, there exists $m = m(\tau) > 0$ such that $M(t) \geq m$ for all $t \geq \tau$;

(M$_3$): There exists $m_0 > 0$ such that $M(t) \geq m_0 t^{\theta-1}$ for all $t \in [0, 1]$.

Notice that the original meaning of the Kirchhoff function M in the equations (1.3),(1.5) and (1.6) should be an increasing function. Then

$$\theta \dot{M}(t) < \int_0^t M(t)\,ds = M(t)t \quad \text{for all } t \in \mathbb{R}^+_0,$$

and therefore, condition (1.4) cannot be satisfied. The condition (1.4) imposed on M is far away from the physical sense of the original Kirchhoff equation.

Some interesting topics concern the fractional Laplacian, such as the nonlinear fractional Schrödinger–Kirchhoff equations (see [7,10,20,23,28]).

Motivated by the above work, by using the variational approach, (S_+) mapping theory and Krasnoselskii’s genus theory, we show that the existence of multiple solutions for Schrödinger–Kirchhoff type equation involves the fractional p-Laplacian in \mathbb{R}^N under some weaker assumptions. We also establish a Bartsch–Pankov–Wang type compact embedding theorem for fractional Sobolev space.

We use the following assumptions:

(V$_0$): $(V$ is coercive type potential): $V \in C(\mathbb{R}^N, \mathbb{R}^+)$, $\inf_{x \in \mathbb{R}^N} V(x) = V^- > 0$ and

$$\lim_{|x| \to +\infty} V(x) = +\infty;$$

(M$_0$): $(\text{Polynomial growth condition})$: $M : \mathbb{R}^+_0 \to \mathbb{R}^+_0$ is a nonnegative, continuous and increasing Kirchhoff function

$$a_0 t^{\beta-1} \leq M(t) \leq a_1 t^{\alpha-1},$$

for all $t \in \mathbb{R}^+_0$ with $1 < \beta \leq \alpha < \infty$ and a_0, a_1 are constants such that $0 < a_0 \leq a_1 < \infty$;

(f$_1$): $f : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function satisfying

$$|f(x, t)| \leq \sum_{i=1}^m b_i(x) |t|^\gamma_i - 1 \quad \text{for a.e } x \in \mathbb{R}^N \text{ and for all } t \in \mathbb{R},$$

where $b_i \geq 0, b_i \in L^p(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N), 1 < p < \gamma_i < \beta p$, and there are constants s_i such that $s_i < p_s^*$ and

$$\frac{1}{r_i} + \frac{\gamma_i}{s_i} = 1;$$

(f$_2$): there exist a nonzero measure open set $G \subset \mathbb{R}^N$ and three constants $b_0, \delta > 0$, and $1 < \gamma_0 < p$ such that

$$F(x, t) \geq b_0 |t|^{\gamma_0}, \forall (x, t) \in G \times [-\delta, \delta],$$

where $F(x, t) = \int_0^t f(x, s)\,ds$;

(f$_3$): f is an odd function according to t, that is, $f(x, t) = -f(x, -t)$ $\forall (x, t) \in \mathbb{R}^N \times \mathbb{R}$.

For any real $s > 0$ and for any $p \in [1, \infty)$, we define the fractional Sobolev spaces $W^{s,p}(\mathbb{R}^N)$. In the literature, the fractional Sobolev-type spaces are also called Aronszajn, Gagliardo or Slobodeckij spaces, by the name of those who introduced them, almost simultaneously.

We start by fixing the fractional exponent s in $(0, 1)$. For any $p \in [1, +\infty)$, we define $W^{s,p}(\mathbb{R}^N)$ as follows:

$$W^{s,p}(\mathbb{R}^N) = \left\{ u \in L^p(\mathbb{R}^N) : [u]_{s,p} = \left(\iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + sp}} \, dx \, dy \right)^{1/p} < \infty \right\},$$

is the so-called Gagliardo (semi) norm of u and $W^{s,p}(\mathbb{R}^N)$ is equipped with the norm

$$\|u\|_{W^{s,p}(\mathbb{R}^N)} := \|u\|_{s,p} = \left(\|u\|_{L^p(\mathbb{R}^N)}^p + \|u\|_{L^p(\mathbb{R}^N)}^p \right)^{1/p} = \left([u]_{s,p}^p + \|u\|_{L^p(\mathbb{R}^N)}^p \right)^{1/p}.$$

As it is well-known, $W^{s,p}(\mathbb{R}^N) = (W^{s,p}(\mathbb{R}^N), \|\cdot\|_{s,p})$ is a uniformly convex Banach space.

Let $W(\mathbb{R}^N)$ denote the completion of $C_0^\infty(\mathbb{R}^N)$, with respect to the norm

$$\|u\|_{W(\mathbb{R}^N)} = ([u]_{s,p} + \|u\|_{L^p(\mathbb{R}^N)})^{1/p}, \quad \|u\|_{L^p(\mathbb{R}^N)} = \int_{\mathbb{R}^N} V(x)|u|^p \, dx,$$

where $V: \mathbb{R}^N \rightarrow \mathbb{R}^+$ is a potential function. Clearly the definition makes sense since every $\varphi \in C_0^\infty(\mathbb{R}^N)$ has a finite Gagliardo norm as well as a finite norm $\|\varphi\|_{L^p(\mathbb{R}^N)}$. Indeed, $L^p(\mathbb{R}^N), V) = (L^p(\mathbb{R}^N), V), \|\cdot\|_{L^p(\mathbb{R}^N)}$ is a uniformly convex Banach space, thanks to (V0).

By standard arguments, it is clear that $W(\mathbb{R}^N)$ is a uniformly convex Banach space.

DEFINITION 1.1

We call that $u \in W(\mathbb{R}^N)$ is a weak solution of (P), if

$$M(\|u\|_{W(\mathbb{R}^N)})B_\varphi(u) = \int_{\mathbb{R}^N} f(x, u)\varphi(x) \, dx \quad \text{for any } \varphi \in W(\mathbb{R}^N),$$

where

$$B_\varphi(u) = \iint_{\mathbb{R}^{2N}} |u(x) - u(y)|^{p-2}(u(x) - u(y))(\varphi(x) - \varphi(y))K(x, y) \, dx \, dy$$

$$+ \int_{\mathbb{R}^N} V(x)|u|^{p-2}u\varphi \, dx,$$

and $K(x, y) = |x - y|^{-(N + ps)}$.

Let $0 < s < 1 < p < \infty$ be real numbers with $sp < N$, and let p_s^* be the fractional Sobolev critical exponent defined by $p_s^* = Np/(N - sp)$.

Lemma 1A [9,21]. Let $(V)_1$ and $(V)_2$ hold. If $v \in [p, p_s^*]$, then the embeddings $W(\mathbb{R}^N) \hookrightarrow W^{s,p}(\mathbb{R}^N) \hookrightarrow L^v(\mathbb{R}^N)$ are continuous, with $\min\{1, V^-\} \|u\|_{s,p} \leq \|u\|_{W(\mathbb{R}^N)}^p$ for all $u \in W(\mathbb{R}^N)$. In particular, there exists a constant $C_v > 0$ such that $\|u\|_v \leq C_v \|u\|_{W(\mathbb{R}^N)}$ for all $u \in W(\mathbb{R}^N)$. If $v \in [1, p_s^*)$, then the embedding $W(\mathbb{R}^N) \hookrightarrow L^v(B_R)$ is compact for any $R > 0$.
2. Proof of the main result

The following Bartsch–Pankov–Wang type new compact embedding (see [2,3]) which will be proved by us play a crucial role in our subsequent arguments.

Theorem 2.1. Let \((V_0)\) hold true. Then the embedding \(W(\mathbb{R}^N) \hookrightarrow L^\nu(\mathbb{R}^N)\) with \(\nu \in [p, p^*_s)\) is compact.

Proof. For \(R > 0\), we denote by \(B_R := \{x \in \mathbb{R}^N : |x| < R\}\) the open ball in \(\mathbb{R}^N\) with center 0 radius \(R\) and, \(|B_R| := \text{meas}(B_R)\) and \(B^c_R = \mathbb{R}^N \setminus B_R\). We first consider the case \(\nu = p\). Let \(Y = L^p(\mathbb{R}^N)\) and denote \(W(\Omega), Y(\Omega)\) the spaces of functions \(u \in W(\mathbb{R}^N), u \in Y\) restricted onto \(\Omega \subset \mathbb{R}^N\) respectively.

Firstly, by Lemma 1A, we claim that the embedding \(W(B_R) \hookrightarrow Y(B_R)\) is compact. Assume that \(\{|u_n|\}\) is a bounded sequence in \(W(B_R)\). Then \(\{|u_n|\}\) is bounded in \(W(B_R)\). By compactness of the imbedding theorem in the bounded domain \(B_R\), it follows that there exist \(u \in Y(B_R)\) and a subsequence \(\{|u_{n_k}|\}\) of \(\{|u_n|\}\) such that

\[\|u_{n_k} - u\|_{p, B_R} \to 0\]

as \(k \to \infty\). Without loss of generality, we let

\[\|u_{n} - u\|_{p, B_R} \to 0\]

as \(n \to \infty\). By \((V_0)\), we let \(\inf_{x \in B^c_R} V(x) = V^-_R > 0\) for any \(R > 0\) and obviously, \(V^-_R \to +\infty\) as \(R \to +\infty\). We need to show that \(W(B^c_R) \hookrightarrow Y(B^c_R)\), i.e. there exists a constant \(C(R) > 0\) independent of function \(u\) such that

\[\|u\|_{Y(B^c_R)} \leq C(R)\|u\|_{W(\mathbb{R}^N)}\]

We get

\[\int_{B^c_R} |u|^p \, dx \leq \frac{1}{V^-_R} \int_{\mathbb{R}^N} V(x) |u|^p \, dx \leq \frac{1}{V^-_R} \|u\|_{W(\mathbb{R}^N)}^p,\]

which implies

\[\|u\|_{Y(B^c_R)} \leq \frac{1}{V^-_R} \|u\|_{W(\mathbb{R}^N)}\]

Secondly, we claim

\[\lim_{R \to +\infty} \sup_{u \in W(\mathbb{R}^N) \setminus \{0\}} \frac{\|u\|_{Y(B^c_R)}}{\|u\|_{W(\mathbb{R}^N)}} = 0.\] (2.1)

In the following, we show that \(u_n \to u\) in \(Y\). Since \(W(\mathbb{R}^N)\) is a reflexive Banach space and \(\{|u_n|\}\) is bounded in \(W(\mathbb{R}^N)\), we can assume (up to a sequence) that \(u_n \to u\) in \(W(\mathbb{R}^N)\) and

\[\|u_n\|_{W(\mathbb{R}^N)} \leq C_0\] (2.2)
for some constant $C_0 > 0$. By (2.1) and (2.2), we know that for any $\varepsilon > 0$, there exists $R_\varepsilon > 0$ so large that

$$
\|u_n\|_{Y(\mathbb{B}_c R_\varepsilon)} \leq C_0^{-1} \varepsilon \|u_n\|_{W(\mathbb{R}^N)} \leq \frac{\varepsilon}{3}, \quad n = 1, 2, \ldots.
$$

(2.3)

From continuousness of measure, we have

$$
\lim_{R \to \infty} \|u\|_{Y(\mathbb{B}_c R_\varepsilon)} = 0,
$$

and thus there exists maybe a new $R_\varepsilon > 0$ such that (2.3) holds and additionally,

$$
\|u\|_{Y(\mathbb{B}_c R_\varepsilon)} \leq \frac{\varepsilon}{3}.
$$

(2.4)

Since $W(\mathbb{B}_c R_\varepsilon) \hookrightarrow \hookrightarrow L^p(\mathbb{B}_c R_\varepsilon)$ is compact for any $R_\varepsilon > 0$, we have

$$
\lim_{n \to \infty} \|u_n - u\|_{L^p(\mathbb{B}_c R_\varepsilon)} = 0.
$$

Thus, there exists n_ε, when $n \geq n_\varepsilon$,

$$
\|u_n - u\|_{Y(\mathbb{B}_c R_\varepsilon)} \leq \frac{\varepsilon}{3}.
$$

(2.5)

Using (2.3), (2.4) and (2.5), given an ε, we may find R_ε and then n_ε such that

$$
\|u_n - u\|_Y \leq \|u_n\|_{Y(\mathbb{R}^N \setminus \mathbb{B}_c R_\varepsilon)} + \|u\|_{Y(\mathbb{R}^N \setminus \mathbb{B}_c R_\varepsilon)} + \|u_n - u\|_{Y(\mathbb{B}_c R_\varepsilon)} \\
\quad \leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon
$$

which shows that $\{u_n\}$ is convergent in Y, and $W(\mathbb{R}^N) \hookrightarrow \hookrightarrow Y = L^p(\mathbb{R}^N)$. This implies $u_n \to u$ in $L^p(\mathbb{R}^N)$. For $p < \nu < p^*$, choose $\lambda \in (0, 1)$ satisfying

$$
\frac{1}{\nu} = \frac{\lambda}{p} + \frac{1 - \lambda}{p^*}.
$$

Then by Hölder inequality and Lemma 1A, we get

$$
\|u_n - u\|_{L^{\nu}(\mathbb{R}^N)} \leq \|u_n - u\|_{L^{\nu}(\mathbb{R}^N)}^{\lambda - \nu} \|u_n - u\|_{L^{\nu}(\mathbb{R}^N)}^{\nu - \lambda} \\
\quad \leq C\nu \|u_n - u\|_{L^{\nu}(\mathbb{R}^N)}^{\lambda - \nu} \|u_n - u\|_{L^{\nu}(\mathbb{R}^N)}^{\nu - \lambda} \\
\quad \leq (C\nu) \|u_n - u\|_{L^{\nu}(\mathbb{R}^N)}^{\lambda - \nu} \to 0 \text{ as } n \to \infty,
$$

since $\{u_n\}$ is bounded in $W(\mathbb{R}^N)$, which shows that $\{u_n\}$ is convergent in $L^\nu(\mathbb{R}^N)$, and $W(\mathbb{R}^N) \hookrightarrow \hookrightarrow L^\nu(\mathbb{R}^N)$. The proof of Theorem 2.1 is completed. \qed

For $u \in W(\mathbb{R}^N)$, we define

$$
I(u) = \frac{1}{p} \hat{M}(\|u\|_{W(\mathbb{R}^N)}) - \int_{\mathbb{R}^N} F(x, u)dx := J(u) - \Psi(u),
$$
where \(F(x, t) = \int_0^t f(x, s)ds \) and \(\hat{M}(t) = \int_0^t M(s)ds \) for all \(t \in \mathbb{R}^+ \). Obviously, the energy functional \(I : W(\mathbb{R}^N) \to \mathbb{R} \) associated to problem (P) is well defined.

On the one hand, if \((V_0)\) and \((M_0)\) hold, then the functional \(J : W(\mathbb{R}^N) \to \mathbb{R} \) is well defined and of class \(C^1(\mathbb{R}^N) \). Moreover, the derivative of \(J \) is
\[
\langle J'(u), v \rangle = M(\|u\|_{W(\mathbb{R}^N)}) B(u)
\]
for any \(u, v \in W(\mathbb{R}^N) \) and \(J \) is weakly lower semi-continuous in \(W(\mathbb{R}^N) \) (see, for example, [23,25]). On the other hand, if \((V_0)\) and \((f_1)\) hold, then the functional \(\Psi : W(\mathbb{R}^N) \to \mathbb{R} \) is well defined and of class \(C^1(\mathbb{R}^N) \) and
\[
\langle \Psi'(u), v \rangle = \int_{\mathbb{R}^N} f(x, u) v(x) dx.
\]
Thus, if \(v_n \to v \) weakly in \(W(\mathbb{R}^N) \), then \(\langle \Psi'(u), v_n \rangle \to \langle \Psi'(u), v \rangle \) as \(n \to \infty \) and the functional is weakly continuous in \(W(\mathbb{R}^N) \).

In a standard way, it can be shown that \(I \in C^1(\mathbb{R}^N) \) and that the critical points of \(I \) are solutions of \((P)\). Moreover, the derivative of \(I \) is given by
\[
\langle I'(u), v \rangle = M(\|u\|_{W(\mathbb{R}^N)}) B_v(u)
\]
\[
- \int_{\mathbb{R}^N} f(x, u) v(x) dx := \langle J'(u), v \rangle - \langle \Psi'(u), v \rangle,
\]
for any \(u, v \in W(\mathbb{R}^N) \).

The main result of this paper is the following Theorem 2.2.

Theorem 2.2. Suppose \((V_0)\), \((M_0)\), \((f_1)\), \((f_2)\) and \((f_3)\) hold. Then problem (P) has infinitely many pairs of nontrivial weak solutions \(\{ \pm u_k : k = 1, 2, \ldots \} \) with \(I(\pm u_k) < 0 \).

Before proving Theorem 2.2, we first give some auxiliary lemmas.

Lemma 2.1. Suppose \((V_0)\), \((M_0)\) and \((f_1)\) hold. Then \(I \) is coercive and bounded from below.

Proof. For any \(u \in W(\mathbb{R}^N) \), by \((M_0)\), \((f_1)\), Lemma 1A and the Hölder inequality, we have
\[
I(u) = \frac{1}{p} \hat{M}(\|u\|_{W(\mathbb{R}^N)}) - \int_{\mathbb{R}^N} F(x, u) dx
\]
\[
\geq \frac{a_0}{p} \int_0^{\|u\|_{W(\mathbb{R}^N)}} \tau^{p-1} d\tau - \sum_{i=1}^m \frac{1}{\gamma_i} \int_{\mathbb{R}^N} b_i(x)|u|^{\gamma_i} dx
\]
\[
\geq \frac{a_0}{p\beta} \|u\|_{W(\mathbb{R}^N)}^{\beta p} - \sum_{i=1}^m \frac{1}{\gamma_i} \|b_i\|_{L^p(\mathbb{R}^N)} \|u\|_{s_i(\mathbb{R}^N)}^{\gamma_i}
\]
\[
\geq \frac{a_0}{p\beta} \|u\|_{W(\mathbb{R}^N)}^{\beta p} - \sum_{i=1}^m C_b C_{\gamma_i} \|u\|_{W(\mathbb{R}^N)}^{\gamma_i},
\]
(2.6)
where \(C_b, C_{\gamma_i} \) are positive constants. Since \(1 < \gamma_i \leq \beta p, i = 1, 2, \ldots , m \), we have \(I(u) \to \infty \) as \(\|u\|_{W(\mathbb{R}^N)} \to \infty \). Hence, \(I \) is coercive and bounded from below. The proof of Lemma 2.1 is completed. \(\square \)
We prove the following properties about the derivative operator of J. We denote $L = J' : W(\mathbb{R}^N) \to W^*(\mathbb{R}^N)$.

Lemma 2.2. Suppose (M0) hold, then

(i) $L : W(\mathbb{R}^N) \to W^*(\mathbb{R}^N)$ is a continuous, bounded and strictly monotone operator;

(ii) L is a mapping of type (S_+), i.e. if $u_n \to u$ in $W(\mathbb{R}^N)$ and

\[\lim_{n \to +\infty} \langle L(u_n) - L(u), u_n - u \rangle \leq 0, \]

then $u_n \to u$ in $W(\mathbb{R}^N)$;

(iii) $L : W(\mathbb{R}^N) \to W^*(\mathbb{R}^N)$ is a homeomorphism.

Proof.

(i) It is obvious that L is continuous and bounded since M is continuous. For any $u, v \in W(\mathbb{R}^N)$ with $u \neq v$, without loss of generality, we may assume that $\|u\|_{W(\mathbb{R}^N)} \geq \|v\|_{W(\mathbb{R}^N)}$ (otherwise, by changing the role of u and v in the following proof). Then we have

\[M(\|u\|_{W(\mathbb{R}^N)})^p \geq M(\|v\|_{W(\mathbb{R}^N)})^p \tag{2.7} \]

since M is a monotone function. From Cauchy’s inequality, we can write

\[
(u(x) - u(y))(v(x) - v(y)) \leq |u(x) - u(y)| |v(x) - v(y)| \\
\leq \frac{|u(x) - u(y)|^2 + |v(x) - v(y)|^2}{2}. \tag{2.8}
\]

Using (2.8), we obtain

\[
\iint_{\mathbb{R}^{2N}} |u(x) - u(y)|^p K(x, y) dx dy \\
- \iint_{\mathbb{R}^{2N}} |u(x) - u(y)|^{p-2}(u(x) - u(y))(v(x) - v(y)) K(x, y) dx dy \\
\geq \frac{1}{2} \iint_{\mathbb{R}^{2N}} |u(x) - u(y)|^{p-2}|u(x) - u(y)|^2 - |v(x) - v(y)|^2 K(x, y) dx dy \tag{2.9}
\]

and

\[
\iint_{\mathbb{R}^{2N}} |v(x) - v(y)|^{p-2}(v(x) - v(y))(u(x) - u(y)) K(x, y) dx dy \\
- \int_{\mathbb{R}^N \times \mathbb{R}^N} |v(x) - v(y)|^p K(x, y) dx dy \\
\geq \frac{1}{2} \iint_{\mathbb{R}^{2N}} |v(x) - v(y)|^{p-2}|v(x) - v(y)|^2 - |u(x) - u(y)|^2 K(x, y) dx dy. \tag{2.10}
\]
By using Young’s inequality, we can write
\[
\int_\mathbb{R}^2 \left| u(x) - u(y) \right|^{p-2} \left| v(x) - v(y) \right|^2 K(x, y) \, dx \, dy \\
\leq \frac{p-2}{p} \int_\mathbb{R}^2 \left| u(x) - u(y) \right|^p K(x, y) \, dx \, dy \\
+ \frac{2}{p} \int_\mathbb{R}^2 \left| v(x) - v(y) \right|^p K(x, y) \, dx \, dy,
\]
(2.11)
and
\[
\int_\mathbb{R}^2 \left| v(x) - v(y) \right|^{p-2} \left| u(x) - u(y) \right|^2 K(x, y) \, dx \, dy \\
\leq \frac{p-2}{p} \int_\mathbb{R}^2 \left| v(x) - v(y) \right|^p K(x, y) \, dx \, dy \\
+ \frac{2}{p} \int_\mathbb{R}^2 \left| u(x) - u(y) \right|^p K(x, y) \, dx \, dy.
\]
(2.12)
Therefore, by (2.11) and (2.12), we can write
\[
\int_\mathbb{R}^2 \left| u(x) - u(y) \right|^{p-2} \left| v(x) - v(y) \right|^2 K(x, y) \, dx \, dy \\
+ \int_\mathbb{R}^2 \left| v(x) - v(y) \right|^{p-2} \left| u(x) - u(y) \right|^2 K(x, y) \, dx \, dy \\
\leq \int_\mathbb{R}^2 \left| u(x) - u(y) \right|^p K(x, y) \, dx \, dy \\
+ \int_\mathbb{R}^2 \left| v(x) - v(y) \right|^p K(x, y) \, dx \, dy.
\]
(2.13)
Using (2.7), (2.9), (2.10) and (2.13), we obtain
\[
\langle L(u) - L(v), u - v \rangle \\
= \langle L(u), u \rangle - \langle L(u), v \rangle + \langle L(v), v \rangle - \langle L(v), u \rangle \\
= M(\|u\|_{W^{1,p}(\mathbb{R}^N)}) \left[\int_\mathbb{R}^2 \left| u(x) - u(y) \right|^p K(x, y) \, dx \, dy + \int_{\mathbb{R}^N} V(x) |u|^p \, dx \right] \\
- M(\|u\|_{W^{1,p}(\mathbb{R}^N)}) \left[\int_\mathbb{R}^2 \left| u(x) - u(y) \right|^{p-2} |v(x)| \, dx \, dy \right]
\]
\[-u(y)(v(x) - v(y))K(x, y)dx\,dy\]
\[-\int_{\mathbb{R}^N} V(x)|u|^{p-2}uv\,dx\]
\[+ M(\|v\|^p_{W(\mathbb{R}^N)}) \left[\int_{\mathbb{R}^2N} |v(x) - v(y)|^p K(x, y)dx\,dy + \int_{\mathbb{R}^N} V(x)|v|^p\,dx \right]\]
\[-M(\|v\|^p_{W(\mathbb{R}^N)}) \left[\int_{\mathbb{R}^2N} |v(x) - v(y)|^{p-2}(v(x) - v(y))dx\,dy \right]\]
\[+ \int_{\mathbb{R}^N} V(x)|v|^{p-2}uv\,dx\]
\[\geq \frac{1}{2} M(\|u\|^p_{W(\mathbb{R}^N)}) \left[\int_{\mathbb{R}^2N} |u(x) - u(y)|^{p-2}(|u(x) - u(y)|^2 \right.
- |v(x) - v(y)|^2)K(x, y)dx\,dy
\[+ \int_{\mathbb{R}^N} V(x)(|u|^{p-2} - |v|^{p-2})(|u|^2 - |v|^2)\,dx \right]\]
\[-\frac{1}{2} M(\|v\|^p_{W(\mathbb{R}^N)}) \left[\int_{\mathbb{R}^2N} |v(x) - v(y)|^{p-2}(|u(x) - u(y)|^2 \right.
- |v(x) - v(y)|^2)K(x, y)dx\,dy
\[+ \int_{\mathbb{R}^N} V(x)(|v|^{p-2} - |u|^{p-2})(|v|^2 - |u|^2)\,dx \right] \geq 0,
\](2.14)
i.e. \(L\) is a monotone. In fact, \(L\) is strictly monotone. Indeed, if \((L(u) - L(v), u - v) = 0\),
from (2.14), we have
\[
\int_{\mathbb{R}^2N} (|u(x) - u(y)|^{p-2} - |v(x) - v(y)|^{p-2})(|u(x) - u(y)|^2
- |v(x) - v(y)|^2)K(x, y)dx\,dy
\[+ \int_{\mathbb{R}^N} V(x)(|u|^{p-2} - |v|^{p-2})(|u|^2 - |v|^2)\,dx = 0,
\]
so \(|u(x) - u(y)| = |v(x) - v(y)|\) and \(|u| = |v|\). Thus, we get

\[
\langle L(u) - L(v), u - v \rangle = \langle L(u), u - v \rangle - \langle L(v), u - v \rangle
\]

\[
= M(\|u\|_{W^2}^p) \left[\int_{\mathbb{R}^{2N}} |u(x) - u(y)|^{p-2}(u(x) - u(y)) \right.
\]

\[
- |v(x) - v(y)|^2 K(x, y) \text{d}x \text{d}y
\]

\[
+ \int_{\mathbb{R}^N} V(x)|u|^{p-2}(u - v)^2 \text{d}x = 0,
\]

i.e. \(u \equiv v\), which is contrary with \(u \neq v\). So, \(\langle L(u) - L(v), u - v \rangle > 0\). Then we can say that \(L\) is strictly a monotone operator in \(W(\mathbb{R}^N)\).

(ii) According (i), if \(u_n \rightharpoonup u\) and \(\limsup_{n \to \infty} \langle L(u_n) - L(u), u_n - u \rangle \leq 0\), we have \(\lim_{n \to +\infty} \langle L(u_n) - L(u), u_n - u \rangle = 0\). In view of (2.14), \(u_n(x) - u_n(y) \to u(x) - u(y)\) and \(u_n \to u\) in \(\mathbb{R}^N\), so we get a subsequence satisfying \(u_n \to u\), a.e. \(x, y \in \mathbb{R}^N\) (by Theorem 2.1). Since \(\{u_n\}\) is bounded in \(W(\mathbb{R}^N)\) and by using condition \((M_0)\), for sufficiently large \(n\), we have

\[
M(\|u_n\|_{W^2}^p) \geq a_0\|u_n\|_{W^2}^{p(\beta - 1)} \geq c_2^* > 0,
\]

for some positive constant \(c_2^*\). From Fatou’s lemma,

\[
\liminf_{n \to \infty} \left(\int_{\mathbb{R}^{2N}} |u_n(x) - u_n(y)|^p K(x, y) \text{d}x \text{d}y + \int_{\mathbb{R}^N} V(x)|u_n|^p \text{d}x \right)
\]

\[
\geq \int_{\mathbb{R}^{2N}} |u(x) - u(y)|^p K(x, y) \text{d}x \text{d}y + \int_{\mathbb{R}^N} V(x)|u|^p \text{d}x.
\]

(2.15)

From \(u_n \to u\), we have

\[
\lim_{n \to \infty} \langle L(u_n), u_n - u \rangle = \lim_{n \to \infty} \langle L(u_n) - L(u), u_n - u \rangle.
\]

Using (2.15) and Young’s inequality, we get

\[
\langle L(u_n), u_n - u \rangle
\]

\[
= M(\|u_n\|_{W^2}^p) \left[\int_{\mathbb{R}^{2N}} |u_n(x) - u_n(y)|^p K(x, y) \text{d}x \text{d}y + \int_{\mathbb{R}^N} V(x)|u_n|^p \text{d}x \right]
\]

\[
- M(\|u_n\|_{W^2}^p) \left[\int_{\mathbb{R}^{2N}} |u_n(x) - u_n(y)|^{p-2}(u_n(x) - u_n(y))(u(x)
\]
\[-u(y)K(x, y)dx\,dy - \int_{\mathbb{R}^N} V(x)|u_n|^{p-2}u_n\,dx\]

\[\geq M(\|u_n\|_{W(\mathbb{R}^N)^p}) \left[\iint_{\mathbb{R}^{2N}} |u_n(x) - u_n(y)|^p K(x, y)\,dx\,dy \right.\]

\[\left. - \iint_{\mathbb{R}^{2N}} |u_n(x) - u_n(y)|^{p-1}|u(x) - u(y)|K(x, y)\,dx\,dy \right]\]

\[+ M(\|u_n\|_{W(\mathbb{R}^N)^p}) \left(\int_{\mathbb{R}^N} V(x)|u_n|^p\,dx - \int_{\mathbb{R}^N} V(x)|u_n|^{p-1}\,dx \right)\]

\[\geq M(\|u_n\|_{W(\mathbb{R}^N)^p}) \left[\iint_{\mathbb{R}^{2N}} |u_n(x) - u_n(y)|^p K(x, y)\,dx\,dy \right.\]

\[\left. - \iint_{\mathbb{R}^{2N}} \left(\frac{p-1}{p} |u_n(x) - u_n(y)|^p + \frac{1}{p} |u(x) - u(y)|^p \right) K(x, y)\,dx\,dy \right]\]

\[+ M(\|u_n\|_{W(\mathbb{R}^N)^p}) \left(\int_{\mathbb{R}^N} V(x)|u_n|^p\,dx - \int_{\mathbb{R}^N} V(x)\left(\frac{p-1}{p} |u_n(x)|^p + \frac{1}{p} |u(x)|^p \right)\,dx \right)\]

\[\geq \frac{c_2^p}{p} \left[\iint_{\mathbb{R}^{2N}} |u_n(x) - u_n(y)|^p K(x, y)\,dx\,dy + \int_{\mathbb{R}^N} V(x)|u_n|^p\,dx \right.\]

\[\left. - \iint_{\mathbb{R}^{2N}} |u(x) - u(y)|^p K(x, y)\,dx\,dy - \int_{\mathbb{R}^N} V(x)|u|^p\,dx \right]. \tag{2.17}\]

According to (2.16) and (2.17), we get

\[\lim_{n \to +\infty} \iint_{\mathbb{R}^{2N}} |u_n(x) - u_n(y)|^p K(x, y)\,dx\,dy \]

\[= \iint_{\mathbb{R}^{2N}} |u(x) - u(y)|^p K(x, y)\,dx\,dy, \tag{2.18}\]

and

\[\lim_{n \to +\infty} \int_{\mathbb{R}^N} V(x)|u_n(x)|^p\,dx = \int_{\mathbb{R}^N} V(x)|u(x)|^p\,dx.\]

From (2.18), it follows that the integrals of the functions family \{\|u_n(x) - u_n(y)|^p\} possess absolutely equicontinuity on \(\mathbb{R}^N\) (see [18, Chapter 6, section 3]). Since

\[(|u_n(x) - u_n(y)| - |u(x) - u(y)|)^p \leq C (|u_n(x) - u_n(y)|^p + |u(x) - u(y)|^p),\]
the integrals of the family \(\{(u_n(x) - u_n(y)) - |u(x) - u(y)|^p\}\) are also absolutely equicontinuous on \(\mathbb{R}^N\) and therefore,

\[
\lim_{n \to +\infty} \int_{\mathbb{R}^{2N}} (|u_n(x) - u_n(y)| - |u(x) - u(y)|^p) K(x, y) \, dx \, dy = 0.
\]

Similarly,

\[
\lim_{n \to +\infty} \int_{\mathbb{R}^N} V(x)|u_n(x) - u(x)|^p \, dx = 0.
\]

Then we have

\[
\lim_{n \to +\infty} \left(\int_{\mathbb{R}^{2N}} (|u_n(x) - u(x)| - |u_n(y) - u(y)|^p) K(x, y) \, dx \, dy + \int_{\mathbb{R}^N} V(x)|u_n(x) - u(x)|^p \, dx \right) = 0.
\]

Therefore, \(u_n \to u\) in \(W(\mathbb{R}^N)\), i.e. \(L\) is an operator of type \((S_+)\).

(iii) It is clear that \(L\) is an injection since \(L\) is a strictly monotone operator in \(W(\mathbb{R}^N)\). Since

\[
\lim_{\|u\|_{W(\mathbb{R}^N)} \to +\infty} \frac{\langle L(u), u \rangle}{\|u\|_{W(\mathbb{R}^N)}^p} = \lim_{\|u\|_{W(\mathbb{R}^N)} \to +\infty} M(\|u\|_{W(\mathbb{R}^N)}^p) B_u(u) \geq a_0 \lim_{\|u\|_{W(\mathbb{R}^N)} \to +\infty} \|u\|_{W(\mathbb{R}^N)}^{p-1} = +\infty,
\]

\(L\) is coercive, and thus \(L\) is a surjection in view of the Minty–Browder theorem (see [29, Theorem 26A]). Therefore, \(L\) has an inverse mapping \(L^{-1} : W^*(\mathbb{R}^N) \to W(\mathbb{R}^N)\).

Therefore, the continuity of \(L^{-1}\) is sufficient to ensure that \(L\) is a homeomorphism. If \(f_n, f \in W^*(\mathbb{R}^N)\) such that \(f_n \to f\) in \(W^*(\mathbb{R}^N)\). Let \(u_n = L^{-1}(f_n)\) and \(u = L^{-1}(f)\), then \(L(u_n) = f_n\) and \(L(u) = f\). So \(\{u_n\}\) is bounded in \(W(\mathbb{R}^N)\). Without loss of generality, we can assume that \(u_n \to u_0\). Since \(f_n \to f\),

\[
\lim_{n \to +\infty} \langle L(u_n) - L(u_0), u_n - u_0 \rangle = \lim_{n \to +\infty} \langle f_n, u_n - u_0 \rangle = 0.
\]

Since \(L\) is of type \((S_+)\), \(u_n \to u_0\), we conclude that \(u_n \to u\) so \(L\) is continuous. Therefore, the functional \(L\) is a homeomorphism. The proof of Lemma 2.2 is completed.

\[\square\]

Lemma 2.3. Suppose \((V_0)\), \((M_0)\) and \((f_1)\) hold. Then \(I\) satisfies the Palais–Smale \((PS)\) condition.

Proof. Let us assume that there exists a sequence \(\{u_n\}\) in \(W(\mathbb{R}^N)\) such that

\[
I(u_n) \to c \in \mathbb{R} \text{ and } I'(u_n) \to 0 \text{ in } W^*(\mathbb{R}^N) \text{ as } n \to \infty.
\]

(2.19)
From (2.19), we have \(|I(u_n)| \leq c \). Combining this fact with (2.6) implies that

\[
c \geq I(u_n) \geq \frac{a_0}{p^\beta} \|u_n\|_{W(R^N)}^{\beta p} - \sum_{i=1}^{m} \frac{C_b C_{\gamma_i}}{\gamma_i} \|u_n\|_{W(R^N)}^{\gamma_i} \geq c_1^*
\]

for any \(c_1^* > 0 \). Because \(1 < \gamma_i \leq p^\beta, i = 1, 2, \ldots, m \), we obtain that \(\{u_n\} \) is bounded in \(W(R^N) \). Going, if necessary, to a subsequence, thanks to Theorem 2.1, we have

\[
\begin{align*}
&u_n \rightharpoonup u \text{ in } W(R^N), \\
u_n \rightarrow u \text{ in } L^{s_i}(R^N), p \leq s_i < p^*_i, \\
u_n(x) \rightarrow u(x) \text{ a.e. in } x \in R^N.
\end{align*}
\]

Now, using \((f_1)\), the Hölder inequality and Lemma 1A, we get

\[
\langle \Psi'(u_n) - \Psi'(u), u_n - u \rangle = \int_{R^N} |(f(x, u_n)) - f(x, u)(u_n - u)| \, dx
\]

\[
\leq \sum_{i=1}^{m} \int_{R^N} b_i(x) (|u_n|^{\gamma_i} - |u|^{\gamma_i}) |u_n - u| \, dx
\]

\[
\leq \sum_{i=1}^{m} \|b_i\|_{\gamma_i, R^N} (\|u_n\|_{\gamma_i, R^N}^{\gamma_i-1} + \|u\|_{\gamma_i, R^N}^{\gamma_i-1}) \|u_n - u\|_{\gamma_i, R^N}
\]

\[
\leq \sum_{i=1}^{m} C_b C_{\gamma_i} (\|u_n\|_{W(R^N)}^{\gamma_i-1} + \|u\|_{W(R^N)}^{\gamma_i-1}) \|u_n - u\|_{\gamma_i, R^N}
\]

for any \(C_b, C_{\gamma_i} > 0, i = 1, 2, \ldots, m \). Since \(\{u_n\} \) converges strongly to \(u (u_n \rightharpoonup u) \) in \(L^{s_i}(R^N), i = 1, 2, \ldots, m \), that is, \(\|u_n - u\|_{s_i, R^N} \rightarrow 0 \) as \(n \rightarrow \infty \), we get

\[
\langle \Psi'(u_n) - \Psi'(u), u_n - u \rangle = \int_{R^N} |(f(x, u_n)) - f(x, u)(u_n - u)| \, dx \rightarrow 0.
\]

(2.20)

From Lemma 2.2, we have known that \(J' \) is of \((S_+)\) type. By (2.20), we have \(I' \) is of \((S_+)\) type. Now,

\[
\langle I'(u_n) - I'(u), u_n - u \rangle \rightarrow 0
\]

as \(n \rightarrow \infty \). Thus

\[
o(1) = \langle I'(u_n) - I'(u), u_n - u \rangle = \langle J'(u_n) - J'(u), u_n - u \rangle - \langle \Psi'(u_n) - \Psi'(u), u_n - u \rangle.
\]

Since \(I' \) is an operator of type \((S_+)\), we conclude that \(u_n \rightharpoonup u \) in \(W(R^N) \), therefore \(I \) satisfies the Palais–Smale (PS) condition. Thus, we have \(\|u_n - u\|_{W(R^N)} \rightarrow 0 \) as \(n \rightarrow \infty \). The proof of Lemma 2.3 is completed. \(\square \)
Let X be a separable and reflexive Banach space, then there exist $\{e_n\}_n \subset X$ and $\{e_n^*\}_n \subset X^*$ such that
\[
\langle e_n^*, e_m \rangle = \delta_{n,m} = \begin{cases}
1 & \text{if } n = m, \\
0 & \text{if } n \neq m,
\end{cases}
\]
and
\[
X = \text{span}\{e_n; 1, 2, \ldots\}, \quad X^* = \text{span}\{e_n^*; 1, 2, \ldots\}.
\]

We use Krasnoselskii’s genus theory (see [5,12]) to get the proof of our main results. So, we recall some basic notations of Krasnoselskii’s genus.

Set
\[
\mathcal{R} = \{A \subset X \setminus \{0\} : A \text{ is compact and } A = -A\}.
\]

DEFINITION 2.1

Let $A \subset \mathcal{R}$ and $X = \mathbb{R}^k$. The genus $\eta(A)$ of A is defined by
\[
\eta(A) = \min\{k \geq 1 : \text{there exists an odd continuous mapping } \phi : A \to \mathbb{R}^k \setminus \{0\}\}.
\]

If such a mapping does not exist for any $k > 0$, we set $\eta(A) = +\infty$. Moreover, from definition, $\eta(\emptyset) = 0$. A typical example of a set of genus k is a set, which is homeomorphic to a $(k-1)$-dimensional sphere via an odd map.

Proof of Theorem 2.2. Set (see [5,8])
\[
\mathcal{R}_k = \{A \subset \mathcal{R} : \eta(A) \geq k, k \in \mathbb{N}\}
\]
and
\[
c_k = \inf_{A \subset \mathcal{R}_k} \sup_{u \in A} I(u), \quad k = 1, 2, \ldots,
\]
we have
\[
-\infty < c_1 \leq c_2 \leq \cdots \leq c_k \leq c_{k+1} \leq \cdots.
\]

Now, we will show that $c_k < 0$ for every $k \in \mathbb{N}$. For each k, we take k disjoint open sets disjoint open sets K_i such that $\bigcup_{i=1}^k K_i \subset G$ (see, for example, [6,19]). For $i = 1, 2, \ldots, k$, let $u_i \in (W(\mathbb{R}^N) \cap C_0^\infty(K_i)) \setminus \{0\}$, $\|u_i\|_{W(\mathbb{R}^N)} = 1$ and
\[
E_k = \text{span}\{u_1, u_2, \ldots, u_k\}, \quad S_k = \{u \in E_k : \|u\|_{W(\mathbb{R}^N)} = 1\}.
\]
For any $u \in E_k$, there exists $\mu_i \in \mathbb{R}$, $i = 1, 2, \ldots, k$ such that
\[
u(x) = \sum_{i=1}^k \mu_i u_i(x) \text{ for } x \in \mathbb{R}^N.
\] (2.21)
Then

\[
\|u\|_{\gamma_0,\mathbb{R}^N} = \left(\int_{\mathbb{R}^N} |u(x)|^{\gamma_0} \, dx \right)^{1/\gamma_0} = \left(\sum_{i=1}^{k} |\mu_i|^{\gamma_0} \int_{\mathbb{R}^N} |u_i(x)|^{\gamma_0} \, dx \right)^{1/\gamma_0} \tag{2.22}
\]

and

\[
\|u\|_{W_p(\mathbb{R}^N)}^p = \sum_{i=1}^{k} |\mu_i|^p \left(\int_{\mathbb{R}^N} \left|u_i(x) - u_i(y)\right|^p K(x, y) \, dx \, dy + \int_{\mathbb{R}^N} V(x)|u_i| \, dx\right)
\]

\[
= \sum_{i=1}^{k} |\mu_i|^p \|u_i\|_{W_p(\mathbb{R}^N)}^p = \sum_{i=1}^{k} |\mu_i|^p. \tag{2.23}
\]

As all norms of a finite dimensional normed space are equivalent, there is a constant \(C_1 > 0\) such that

\[
C_1 \|u\|_{W_p(\mathbb{R}^N)} \leq \|u\|_{\gamma_0,\mathbb{R}^N} \text{ for all } u \in E_k. \tag{2.24}
\]

By \((f_2)\) \((2.22)\), \((2.23)\) and \((2.24)\), we have

\[
I(tu) = \frac{1}{p} \mathcal{M}(\|tu\|_{W_p(\mathbb{R}^N)}^p) - \int_{\mathbb{R}^N} F(x, tu) \, dx
\]

\[
\leq \frac{a_1}{p\alpha} t^{p\alpha} - \sum_{i=1}^{k} \int_{K_i} F(x, tu_i(u(x))) \, dx
\]

\[
\leq \frac{a_1}{p\alpha} t^{p\alpha} - \gamma_0 b_0 t^{\gamma_0} \sum_{i=1}^{k} |\mu_i|^{\gamma_0}
\]

\[
\int_{K_i} |u_i|^{\gamma_0} \, dx = \frac{a_1}{p\alpha} t^{p\alpha} - \gamma_0 b_0 t^{\gamma_0} \|u\|_{\gamma_0,\mathbb{R}^N}^{\gamma_0}
\]

\[
\leq \frac{a_1}{p\alpha} t^{p\alpha} - \gamma_0 b_0 C_1^{-\gamma_0} t^{\gamma_0},
\]

for all \(u \in S_k\) and \(0 < t \leq \delta, \delta\) be given in \((f_2)\). Since \(1 < \gamma_0 < p < p\alpha\), we can find \(t_0 = t(k) \in (0, 1)\) and \(\varepsilon_0 = \varepsilon(k) > 0\) such that

\[
I(t_0u) \leq -\varepsilon_0 < 0 \text{ for all } u \in S_k,
\]

that is,

\[
I(u) \leq -\varepsilon_0 < 0 \text{ for all } u \in S_0^k = \{t_0u : u \in S_k\}, k \in \mathbb{N}
\]
which, together with the fact that $I \in C^1(W(\mathbb{R}^N), \mathbb{R})$ and is even, implies that $S_k^{t_0} \in \mathcal{R}$. On the other hand, it follows from (2.21) and (2.23) that

$$S_k^{t_0} = \left\{ \sum_{i=1}^{k} \mu_i u_i : \sum_{i=1}^{k} |\mu_i|^p = t_0^p \right\}.$$

So we define a map $\Upsilon : S_k^{t_0} \to \partial \Sigma$ as follows:

$$\Upsilon (u) = (\mu_1, \mu_2, \ldots, \mu_k), \quad \forall u \in S_k^{t_0},$$

where

$$\Sigma = \left\{ (\mu_1, \mu_2, \ldots, \mu_k) \in \mathbb{R}^k : \sum_{i=1}^{k} |\mu_i|^p < t_0^p \right\}.$$

It is easy to verify that $\Upsilon : S_k^{t_0} \to \partial \Sigma$ is an odd homeomorphic map. By Proposition 7.7 in [24], $\eta(S_k^{t_0}) = k$ and so $-\infty < c_k \leq -\varepsilon_0 < 0$, that is, for any $k \in \mathbb{N}$, c_k is a real negative number. Since k is arbitrary, we obtain infinitely many critical points of I, and hence there is a sequence of solutions $\{\pm u_k : k = 1, 2, \ldots\}$ of problem (P) such that $I(\pm u_k) = c_k < 0$. The proof of Theorem 2.2 is completed. \hfill \Box

Acknowledgement

The author would like to thank the referees for their helpful suggestions.

References

COMMUNICATING EDITOR: Parameswaran Sankaran