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Abstract. Let S (or T ) be the set of permutations of [n] = {1, . . . , n} avoiding
123 and 132 patterns (or avoiding 123, 132 and 213 patterns). The monomial ideals

IS = 〈xσ = ∏n
i=1 x

σ(i)
i : σ ∈ S〉 and IT = 〈xσ : σ ∈ T 〉 in the polynomial ring

R = k[x1, . . . , xn] over a field k have many interesting properties. The Alexander dual
I [n]
S of IS with respect to n = (n, . . . , n) has the minimal cellular resolution supported

on the order complex �(�n) of a poset �n . The Alexander dual I [n]
T also has the minimal

cellular resolution supported on the order complex �(�̃n) of a poset �̃n . The number of
standard monomials of the Artinian quotient R

I [n]
S

is given by the number of irreducible

(or indecomposable) permutations of [n + 1], while the number of standard monomials
of the Artinian quotient R

I [n]
T

is given by the number of permutations of [n + 1] having

no substring {l, l + 1}.

Keywords. Permutations avoiding patterns; cellular resolutions; standard monomials;
parking functions.
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1. Introduction

Many classes of monomial ideals I in the polynomial ring R = k[x1, . . . , xn] over a field k
have the property that the number of standard monomials in the Artinian quotient R

I is given
in terms of determinant of a square matrix. For many combinatorially defined monomial
ideals I , the standard monomials in R

I correspond to suitable combinatorial objects. For an
oriented graph (digraph)G on the vertex set {0, 1, . . . , n} rooted at 0, Postnikov and Shapiro
[9] associated a monomial ideal MG in R such that the Artinian quotient R

MG
has a stan-

dard monomial basis corresponding to G-parking functions and the number of G-parking
functions equals the number of (oriented) spanning trees of G, i.e., dimk(

R
MG

) = det(LG),
where LG is the truncated Laplace matrix of G. More precisely, if A = [ai j ]0≤i, j≤n is the
adjacency matrix of the oriented graph G, then the monomial ideal MG is given by

MG =
〈
∏

i∈I
xdI (i)i : I ∈ �

〉

,
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where dI (i) = ∑
j∈{0,1,...,n}−I ai j is the number of (oriented) edges from the vertex i to a

vertex outside of the subset I and � is the poset of all non-empty subsets of [n] (ordered

by inclusion). Also, LG = [li j ]1≤i, j≤n is given by li j =
{
d{i}(i) if i = j,

−ai j if i �= j.
The adjacency

matrix of a (non-oriented) graph is symmetric and therefore a graph can be identified with a
unique oriented graph having the same (symmetric) adjacency matrix. Under this identifi-
cation, oriented spanning trees correspond to usual spanning trees of the graph. Therefore,
notion of G-parking functions also make sense for a graph G. An oriented graph G with
adjacency matrix A = [ai j ] is called saturated if ai j ≥ 1 for i �= j . For a saturated
graph G, the monomial ideal MG is an order monomial ideal (Definition 2.3) and its
minimal resolution is the cellular resolution supported on the first barycentric subdivision
Bd(�n−1) of an (n−1)-simplex �n−1 (see Corollary 6.9 of [9]). If G is a complete graph
Kn+1, the monomial ideal

MKn+1 =
〈(
∏

i∈I
xi

)n−|I |+1

: I ∈ �

〉

is called a tree ideal. Further, we see that a Kn+1-parking function is a (ordinary) park-
ing function of length n, which is defined as a sequence p = (p1, . . . , pn) ∈ N

n with
0 ≤ pi < n such that the non-decreasing rearrangement q1 ≤ · · · ≤ qn of p satisfies
qi < i (or equivalently, |{ j ∈ [n] : p j < i}| ≥ i, ∀i ∈ [n]).

For λ = (λ1, . . . , λn) ∈ N
n with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 1, the monomial ideal

Iλ = 〈(∏i∈A xi )λ|A| : ∅ �= A ⊆ [n]〉 in R has an Artinian quotient R
Iλ

having a standard
monomial basis corresponding to λ-parking functions. A sequencep = (p1, . . . , pn) ∈ N

n

is called a λ-parking function of length n if its non-decreasing rearrangement q1 ≤ q2 ≤
· · · ≤ qn satisfiesqi < λn−i+1, ∀i . The (ordinary) parking functions of lengthn correspond
to λ = (n, n − 1, . . . , 1). Also, there is a Steck determinant formula for counting the
number of λ-parking functions. Further, if λ1 > λ2 > · · · > λn , then the minimal cellular
resolution of Iλ is supported on Bd(�n−1) [9]. For more on λ-parking functions, we refer
to [8,12]. The multigraded Betti numbers of Iλ for any λ are given in [4].

Let Sn be the set of all permutations of [n] = {1, 2, . . . , n}. Let S be the subset of
permutations σ ∈ Sn avoiding 123 and 132 patterns and let T be the subset of permutations
σ ∈ Sn avoiding 123, 132 and 213 patterns. Then, it is shown in [10] that |S| = 2n−1

and |T | = Fn+1, where Fn is the n-th Fibonacci number (i.e., F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2; n ≥ 2).

Now consider the monomial ideals IS = 〈xσ : σ ∈ S〉 and IT = 〈xσ : σ ∈ T 〉 in
R = k[x1, . . . , xn] induced by subsets S and T , respectively. The minimal generators of
the Alexander dual I [n]

S of IS with respect to n = (n, . . . , n) are given by (Lemma 2.1)

I [n]
S =

〈

xl+1
l ,

⎛

⎝
n∏

j=m

x j

⎞

⎠

m

: 1 ≤ l ≤ n − 1, 1 ≤ m ≤ n

〉

.

Similarly, the minimal generators of the Alexander dual I [n]
T are given by

I [n]
T =

〈

xl+1
l ,

⎛

⎝
∏

j∈[m,m+1]
x j

⎞

⎠

m

: 1 ≤ l ≤ n − 1, 1 ≤ m ≤ n

〉

,
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where [m,m + 1] = {m,m + 1} for 1 ≤ m ≤ n − 1 and [n, n + 1] stands for {n}. The
monomial ideal ISn = 〈xσ : σ ∈ Sn〉 is called a permutohedron ideal and the Alexander
dual I [n]

Sn
= MKn+1 = Iλ for λ = (n, n − 1, . . . , 1).

Let �n = {{l} : 1 ≤ l ≤ n − 1}⋃ {[m, n] : 1 ≤ m ≤ n}, where [a, b] = {x ∈ N : a ≤
x ≤ b} denotes an integer interval for 1 ≤ a ≤ b ≤ n. We define a partial ordering � on
�n as follows: for l, l ′ ∈ [n − 1] and m,m′ ∈ [n], {l} � {l ′} � [m, n] if m ≤ l ′ ≤ l and
[m, n] � [m′, n] � {l} if l+1 < m′ ≤ m. Consider the order complex �(�n) of the poset
(�n,�). An r -dimensional face of �(�n) is a (strict) chain C1 ≺ C2 ≺ · · · ≺ Cr+1 of
length r in �. Let fr (�(�n)) be the number of r -dimensional faces of �(�n). Then, we
prove that (Theorem 2.7)

fr (�(�n)) =
r+1∑

s=0

(
n − 1

s

)(
n − s

r + 1 − s

)

, (0 ≤ r ≤ n − 1).

Let �̃n = {{l} : 1 ≤ l ≤ n − 1}⋃ {[m,m + 1] : 1 ≤ m ≤ n}, where [m,m + 1] =
{m,m+1} for 1 ≤ m ≤ n−1 and [n, n+1] = {n}. We define a partial ordering �′ on �̃n as
follows: for l, l ′ ∈ [n−1] andm,m′ ∈ [n], [m,m+1] ≺′ {l} ≺′ {l ′} if l ′+1 < l < m−1
and {l} �′ [m,m + 1] �′ [m′,m′ + 1] if m′ ≤ m ≤ l. The order complex �(�̃n) of the
poset (�̃n,�′) is a simplicial complex of dimension n − 1. We prove that (Theorem 2.7)
the number fr (�(�̃n)) of r -dimensional faces of �(�̃n) is given by

fr (�(�̃n)) =
r+1∑

s=0

(
n − s

s

)(
n − s

r + 1 − s

)

, (0 ≤ r ≤ n − 1).

We label the vertices {l} or [m, n] of �(�n) by monomials xl+1
l or (

∏
j∈[m,n] x j )m ,

respectively. Similarly, the vertices {l} and [m,m + 1] of �(�̃n) can be naturally labelled
with monomials xl+1

l or (
∏

j∈[m,m+1] x j )m , respectively. Now labelling the faces F by the
LCM of monomial labels on the vertices of F , we see that the order complexes �(�n)

and �(�̃n) are both labelled simplicial complexes. Both the ideals I [n]
S and I [n]

T are order
monomial ideals (Proposition 2.5). In view of Theorem 2.4, the free complex associated to
the labelled simplicial complexes �(�n) and �(�̃n) give the minimal cellular resolution
of I [n]

S and I [n]
T , respectively. Thus Betti numbers of I [n]

S and I [n]
T are given by

βi (I
[n]
S ) = fi (�(�n)) and βi (I

[n]
T ) = fi (�(�̃n)),

for 0 ≤ i ≤ n − 1. For more on cellular resolutions, we refer to [1,2,6].
We show that the standard monomial basis of R

I [n]
S

is given by xp, wherep = (p1, . . . , pn)

is a parking function of length n satisfying pi ≤ i, ∀i . Such parking functions may be
called Catalan parking functions. Let �n be the set of all parking functions of length n.
Then |�n| = (n + 1)n−1. Let �Cat

n be the set of Catalan parking functions of length n. We
show that (Theorem 3.4)

|�Cat
n | = dimk

(
R

I [n]
S

)

= (−1)n det([mi j ](n+1)×(n+1)),

where mi j =
{

( j − i + 1)! if i ≤ j + 1,

0 if i > j + 1.
Further, it is observed that the number of

Catalan parking functions of lengthn equals the number of irreducible (or indecomposable)
permutations of [n + 1].
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Since IT ⊆ IS , we have I [n]
S ⊆ I [n]

T . Thus a standard monomial xp of R
I [n]
T

is also a

standard monomial of R
I [n]
S

. We observe that xp is a standard monomial of R
I [n]
T

if and only

if p = (p1, . . . , pn) is a Catalan parking function of length n such that for 1 ≤ i ≤ n − 1,
if pi = i , then pi+1 < i . A Catalan parking function p = (p1, . . . , pn) of length n such
that either pi < i or pi+1 < i for every i ∈ [n − 1] is called a restricted Catalan parking
function of length n. Let �̃Cat

n be the set of all restricted Catalan parking functions of length
n. We show that (Theorem 4.5)

|�̃Cat
n | = dimk

(
R

I [n]
T

)

= det([m̃i j ]n×n),

where m̃i j =

⎧
⎪⎨

⎪⎩

j if i = j or i = j + 1,

−1 if j = i + 1,

0 otherwise.

The number of restricted Catalan parking

functions of length n equals the number of permutations of [n + 1] having no substring
{l, l + 1}.

In the last section, we have discussed some generalizations.

2. Betti numbers of I [n]S and I [n]T

Let t ≤ n be positive integers and τ be a fixed permutation of [t] called a pattern. A
permutation σ ∈ Sn is said to avoid the pattern τ if there does not exist integers 1 ≤
j1 < · · · < jt ≤ n such that for all 1 ≤ a < b ≤ t , we have τ(a) < τ(b) if and only if
σ( ja) < σ( jb). Let S and T be the subsets of Sn as defined in the Introduction. In this
section, we study Alexander duals I [n]

S and I [n]
T of the the monomial ideals IS and IT . The

Alexander dual I [n]
S of IS with respect to n = (n, . . . , n) is a monomial ideal in R and

a vector b = (b1, . . . , bn) ≤ n (i.e., bi ≤ n ∀i) is maximal with xb /∈ IS if and only if

xn−b = ∏n
j=1 x

n−b j
j is a minimal generator of I [n]

S [6,7].

Lemma 2.1. The minimal generators of I [n]
S are given by

I [n]
S =

〈

xl+1
l ,

⎛

⎝
∏

j∈[m,n]
x j

⎞

⎠

m

: 1 ≤ l ≤ n − 1 and 1 ≤ m ≤ n

〉

.

Proof. For any l ∈ [n − 1], let bl = (n, . . . , n − l − 1, . . . , n) (i.e. n − l − 1 at the
l-th place and elsewhere n). We claim that xbl /∈ IS . If not, then there is a σ ∈ S such
that xσ divides xbl . Thus 1 ≤ σ(l) ≤ n − l − 1. This implies that l ≤ n − 2. Also,
|[l + 1, n]| = n − l and |{a ∈ [n] : a < σ(l)}| ≤ n − l − 2 ensure that there exists
i, j ∈ [l + 1, n] such that σ(l) < σ(i) < σ( j). But, then σ contains either 123 pattern
or 132 pattern, a contradiction. Further, for any vector b′

l with bl < b′
l ≤ n, xσ ′

divides

xb
′
l for σ ′ = (n − 1, n − 2, . . . , 1, n) ∈ S. This gives the minimal generators xl+1

l for all
l ∈ [n−1]. For [m, n], we takeb[m,n] = (n, . . . , n, n−m, . . . , n−m) (i.e., the last n−m+1
co-ordinates are n −m, elsewhere n). Again, xb[m,n] /∈ IS , otherwise there is a σ ∈ S such
that xσ divides xb[m,n] . Thus σ(i) ≤ n − m ∀i ∈ [m, n]. Since |[m, n]| = n − m + 1
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and |[1, n − m]| = n − m, by the pigeon-hole principle, no such permutation σ exist.
Also, if b[m,n] < b′[m,n] ≤ n, then we have xb

′[m,n] ∈ IS . This gives the minimal generator
(
∏

j∈[m,n] x j )m . �

As in Lemma 2.1, we compute the minimal generators of I [n]
T .

Lemma 2.2. The minimal generators of I [n]
T are given by

I [n]
T =

〈

xl+1
l ,

⎛

⎝
∏

j∈[m,m+1]
x j

⎞

⎠

m

: 1 ≤ l ≤ n − 1 and 1 ≤ m ≤ n

〉

,

where [m,m + 1] = {m,m + 1} for m ∈ [n − 1] and [n, n + 1] = {n}.

Proof. Proceeding as in the last lemma, we see that xl+1
l is a minimal generator of I [n]

T for
all l ∈ [n− 1]. For m ∈ [n− 1], we take b[m,m+1] = (n, . . . , n, n−m, n−m, . . . , n) (i.e.
m-th and (m + 1)-th co-ordinates are n −m, elsewhere n). Also, b[n,n+1] = (n, . . . , n, 0)

(i.e., n-th co-ordinate is 0 and elsewhere n). We claim that xb[m,m+1] /∈ IT . Otherwise, there
is a σ ∈ T such that xσ divides xb[m,m+1] . Form = n, we have σ(n) ≤ 0, and form = n−1,
we must have σ(n− 1) ≤ 1 and σ(n) ≤ 1. Such a permutation σ is not possible. Also, for
m = 1, we have σ(1) ≤ n − 1 and σ(2) ≤ n − 1. But for σ ∈ T , it can be checked that
either σ(1) = n or σ(2) = n. Thus, we assume that 2 ≤ m ≤ n − 2. Then σ(m) ≤ n −m
and σ(m+1) ≤ n−m. Since |[m, n]| = n−m+1 and |[1, n−m]| = n−m, by the pigeon-
hole principle, there exists l ∈ [m + 2, n] such that n − m < σ(l). If σ(m) < σ(m + 1),
then permutation σ has a 123 pattern and if σ(m) > σ(m + 1), then it has a 213 pattern.
Since σ ∈ T , this is not possible. Also, it is easy to verify that b[m,m+1] ≤ n is a maximal
vector such that xb[m,m+1] /∈ IT . This gives the minimal generator (

∏
j∈[m,m+1] x j )m . �

We proceed to show that ideals I [n]
S and I [n]

T are both order monomial ideals. Order
monomial ideals are introduced and studied in [9].

DEFINITION 2.3

Let P be a finite poset. Let {ωu : u ∈ P} be a collection of monomials in k[x1, . . . , xn].
The ideal I = 〈ωu : u ∈ P〉 is called an order monomial ideal if for any pair u, v ∈ P ,
there is an upper bound w ∈ P of u and v such that ωw divides the least common multiple
LCM(ωu, ωv) of ωu and ωv .

Now we state a result of Postnikov and Shapiro (Theorem 6.1 of [9]) in terms of cellular
resolution. Let � be a labelled simplicial (or polyhedral) cell complex and F∗(�) be the
free complex associated to � (see [6]).

Theorem 2.4 [9]. Let I = 〈ωu : u ∈ P〉 be an order monomial ideal. Then the free
complex F∗(�(P)) supported on the order complex �(P) is a cellular resolution of I .
Further, the cellular resolution F∗(�(P)) is minimal if the monomial label on any face of
�(P) is different from the monomial labels on its proper subfaces.
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Let (�n,�) and (�̃n,�′) be the posets defined in the Introduction. Let �(�n) and
�(�̃n) be associated order (simplicial) complexes. If F is an i − 1-dimensional face of
�(�n) corresponding to a (strict) chain C1 ≺ · · · ≺ Ci of length i − 1 in �n , then the
monomial label xν(F) on F is given by

xν(F) =
i∏

q=1

⎛

⎝
∏

j∈Cq−Cq−1

x
ν j,Cq
j

⎞

⎠ ,

where C0 = ∅ and

ν j,Cq =
{
l + 1 if Cq = {l},
m if Cq = [m, n]. (2.1)

Similarly, if F̃ is an i − 1-dimensional face of �(�̃n) corresponding to a (strict) chain
C̃1 ≺′ · · · ≺′ C̃i of length i − 1 in �̃n , then the monomial label xμ(F̃) on F̃ is given by

xμ(F̃) =
i∏

q=1

⎛

⎜
⎝

∏

j∈C̃q−C̃q−1

x
μ j,C̃q
j

⎞

⎟
⎠ ,

where C̃0 = ∅ and

μ j,C̃q
=
{
l + 1 if C̃q = {l},
m if C̃q = [m,m + 1]. (2.2)

PROPOSITION 2.5

The ideals I [n]
S and I [n]

T are both order monomial ideals in R.

Proof. It is clear that I [n]
S = 〈ωu : u ∈ �n〉 and I [n]

T = 〈ωũ : ũ ∈ �̃n〉, where

ω{l} = xl+1
l , ω[m,n] =

⎛

⎝
∏

j∈[m,n]
x j

⎞

⎠

m

and ω[m,m+1] =
⎛

⎝
∏

j∈[m,m+1]
x j

⎞

⎠

m

.

Let u, v be a pair of elements of �n . If u and v are comparable, then an upper bound w of

u and v is given by w =
{

v if u � v,

u if v � u.
Clearly, ωw divides LCM(ωu, ωv). If u and v are

non-comparable, then {u, v} = {{i}, [i + 1, n]} for some i < n. Clearly, w = [i, n] is an
upper bound of u and v such that ωw divides LCM(ωu, ωv). Similarly, if we take a pair of
non-comparable elements ũ, ṽ in �̃n , then {ũ, ṽ} = {{i}, {i + 1}} or {{i}, [i + 1, i + 2]}
for some i < n. In either of the cases, we take an upper bound w̃ = [i, i + 1] of ũ and ṽ,
and see that ωw̃ divides LCM(ωũ, ωṽ). This completes the proof. �

Example 2.6. For n = 1 or 2, we have S = T = Sn and hence I [n]
S = I [n]

T = I [n]
Sn

.

Thus we consider these ideals for n = 3. We have I [3]
S = 〈x2

1 , x3
2 , x3

3 , x1x2x3, x2
2 x

2
3 〉

and I [3]
T = 〈x2

1 , x3
2 , x3

3 , x1x2, x2
2 x

2
3 〉, while I [3]

S3
is a tree ideal. The Hasse diagrams of

posets (�3,�), (�̃3,�′) and (�,⊆) are given in figure 1 and their order complexes with
monomial vertex labels are indicated in figure 2. In figure 1, the vertices are subsets of
{1, 2, 3}, which are represented by an array of elements.
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1

123

23

2 3

1

12

23

2 3

12

123

2313

1 2 3

Σ Σ Σ

Figure 1. Hasse diagrams of �3, �̃3 and �.

Δ Σ Δ Σ Δ Σ

Figure 2. Order complexes with monomial labels on vertices.

In view of Theorem 2.4, the cellular resolution supported on �(�n) ( or �(�̃n)) gives
the minimal resolution of I [n]

S (respectively, I [n]
T ). Thus the i-th Betti numbers βi (I

[n]
S ) =

fi (�(�n)) and βi (I
[n]
T ) = fi (�(�̃n)), where fi (�) denotes the number of i-dimensional

faces of a simplicial complex �.

Theorem 2.7. For 0 ≤ r ≤ n − 1,

(a) βr (I
[n]
S ) = fr (�(�n)) = ∑r+1

s=0

(n−1
s

)( n−s
r+1−s

)
.

(b) βr (I
[n]
T ) = fr (�(�̃n)) = ∑r+1

s=0

(n−s
s

)( n−s
r+1−s

)
.

Proof.

(a) There are n − 1 singletons {l} and n integer intervals [m, n] in the poset �n . An
r -dimensional face of �(�n) is a (strict) chain

C1 ≺ C2 ≺ · · · ≺ Cr+1 (2.3)

of length r in �n . Suppose exactly s members in the chain (2.3) are singletons. Then any
two singletons (or any two integer intervals) in �n are comparable but a singleton {l} is
comparable to an integer interval [m, n] if and only if m �= l + 1. Also, for s singleton
members in (2.3), exactly s integer intervals cannot occur in the chain. Now s singleton
members in the chain (2.3) can be chosen in

(n−1
s

)
ways, and for each such choice, the

remaining r + 1 − s integer intervals in the chain can be chosen in
( n−s
r+1−s

)
ways. Thus the

total number of chains in � of length r having exactly s singleton members is
(n−1

s

)( n−s
r+1−s

)
.

As s varies from 0 to r + 1, we get part(a).
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(b) An r -dimensional face of �(�̃n) is a (strict) chain

C̃1 ≺′ C̃2 ≺′ · · · ≺′ C̃r+1 (2.4)

of length r in �̃n . Suppose exactly s members in the chain (2.4) are singletons. Then any
two non-consecutive singletons in �̃n are comparable and s singletons in the chain form
a s-subset of [n − 1] having no consecutive elements. The number of such s-subsets is
precisely

(n−s
s

)
. Also, for s singleton members in the chain (2.4), exactly s integer intervals

cannot occur in the chain. Now proceeding as in the part (a), we obtain part (b). �

Miller et al. [5] defined generic and strongly generic monomial ideals. For more on
generic ideals, we refer to [6]. We end this section with the following remarks.

Remark 2.8.

(1) The tree ideal MKn+1 = I [n]
Sn

is generic and therefore, a minimal resolution of the
tree ideal is supported on its Scarf complex (see Theorem 6.13 of [6]). The Scarf complex
of the tree ideal I [n]

Sn
is isomorphic to the first barycentric subdivision Bd(�n−1) of an

(n − 1)-simplex �n−1.
(2) The ideals I [n]

S and I [n]
T are in fact strongly generic. Thus the Scarf complex of I [n]

S (or

I [n]
T ) is isomorphic to the order complex �(�n) (respectively, �(�̃n)) (see Lemma 6.5 of

[9]).

3. Catalan parking functions

The standard monomials of R
I [n]
Sn

are of the form xp, where p is an (ordinary) parking

function of length n. Since IS ⊆ ISn , we have I [n]
Sn

⊆ I [n]
S . Thus every standard monomial

of R
I [n]
S

is also a standard monomial of R
I [n]
Sn

. We now characterize the standard monomials

of R
I [n]
S

.

Lemma 3.1. For a parking function p = (p1, . . . , pn) of length n, xp /∈ I [n]
S if and only if

pi ≤ i, ∀i ∈ [n].

Proof. We see that xp ∈ I [n]
S if and only if either pl ≥ l + 1 for some l ∈ [n − 1] or there

exists m ∈ [n] with p j ≥ m ∀ j ∈ [m, n]. Therefore,

xp /∈ I [n]
S ⇔

{
(i) pl ≤ l ∀l ∈ [n − 1], and

(ii) for any m ∈ [n], ∃ j ∈ [m, n] with p j < m.

As pn < n, condition (i) is equivalent to pi ≤ i for all i . Now we show that condition (ii)
follows from condition (i). Let m ∈ [n]. If pm < m, we can take j = m. So we assume
that pm = m and condition (ii) fails. Thus p j ≥ m for all j ∈ [m, n]. As pi ≤ i for all i ,
we see that {l ∈ [n] : pl < m} = [m − 1], a contradiction to |{l ∈ [n] : pl < m}| ≥ m.
Hence (i) implies (ii). �

Let �n be the set of all parking functions of length n. Then |�n| = (n + 1)n−1.
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DEFINITION 3.2

A parking function p = (p1, . . . , pn) ∈ �n is called a Catalan parking function if pi ≤ i
for all i ∈ [n].

Let �Cat
n be the set of all Catalan parking functions of length n. Then in view of

Lemma 3.1, |�Cat
n | = dimk

(
R
I [n]
S

)

.

PROPOSITION 3.3

The number of standard monomials of R
I [n]
S

is given by

dimk

(
R

I [n]
S

)

= n(n!) +
n∑

i=1

(−1)i

∑

0= j0< j1<···< ji<n

(n − ji )(n − ji )!
⎛

⎝
i∏

q=1

( jq − jq−1)!
⎞

⎠ .

Proof. This proposition follows from a general result of Postnikov and Shapiro (Proposi-
tion 8.4 of [9]). In fact,

dimk

(
R

I [n]
S

)

=
n∑

i=0

(−i)i
∑

C1≺···≺Ci
⎛

⎝
i∏

q=0

(
∏

j∈Cq−Cq−1

(ν j,{ j} − ν j,Cq ))

⎞

⎠

⎛

⎝
∏

l /∈Ci

νl,{l}

⎞

⎠ ,

where C0 = ∅ and ν j,Cq as in (2.1). A term in the above expression corresponding to
a (strict) chain C1 ≺ · · · ≺ Ci is zero if the chain has a singleton member. Thus the
summation may be carried over chains of integer intervals of length i , which are determined
by a sequence 0 = j0 < j1 < · · · < ji < n of positive integers on settingCt = [ ji−t+1, n].
This completes the proof. �

Theorem 3.4. Let An+1 = [mi j ](n+1)×(n+1), where mi j = ( j − i + 1)! if i ≤ j + 1 and

mi j = 0 if i > j + 1. Then dimk

(
R
I [n]
S

)

= (−1)n det(An+1).

Proof. Let B be the matrix obtained by applying the row-operation R1 −R2 on A = An+1.
Then det(B) = det(A). The r -th column vector vr of B is given by

vr = (r − 1)(r − 1)!e1 +
r∑

s=1

(r − s)!es+1 for 1 ≤ r ≤ n + 1,

where {e1, . . . , en+1} is the standard basis of Rn+1 and en+2 = 0. Since

v1 ∧ v2 ∧ · · · ∧ vn+1 = det(B)e1 ∧ · · · ∧ en+1 (3.1)
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by expanding the wedge product on the left-hand side, we get the desired result in view
of Proposition 3.3. In fact, for a sequence 0 = j0 < j1 < · · · < ji < n, let fr be a term
from the vector vr (1 ≤ r ≤ n + 1) given by

fr =

⎧
⎪⎨

⎪⎩

(n − ji )(n − ji )!e1 if r = n + 1 − ji ,

( jt+1 − jt )!en− jt+1+2 if r = n + 1 − jt (t < i),

er+1 if r �= n + 1 − jt (0 ≤ t ≤ i).

Then f1 ∧ · · · ∧ fn+1 equals

⎛

⎝(n − ji )(n − ji )!
i∏

q=1

( jq − jq−1)!
⎞

⎠

⎛

⎝(−1)(n− ji )
i∏

q=1

(−1) jq− jq−1−1

⎞

⎠ e1 ∧ · · · ∧ en+1.

�

Now we consider the integer sequence (A003319) in OEIS [11]. The n-th term an of
this sequence is the number of irreducible (or indecomposable) permutations of [n] =
{1, 2, . . . , n}. A permutation σ ∈ Sn is irreducible if the restriction σ |[ j] of σ to [ j] never
induce a permutation of [ j] for any 1 ≤ j < n. It is easy to prove a recurrence relation
an = n! −∑n−1

j=1( j !)an− j , n ≥ 2 with the initial condition a1 = 1. As (−1)n−1 det(An)

also satisfies the same recurrence relation, we have an = (−1)n−1 det(An). This shows
that |�Cat

n | = (−1)n det(An+1) = an+1. As the number of Catalan parking functions of
length n is the same as the number of irreducible permutations of [n + 1], it would be an
interesting problem to construct an explicit bijection between these objects.

4. Restricted Catalan parking functions

In this section, we study standard monomials of R
I [n]
T

. Since I [n]
S ⊆ I [n]

T , every standard

monomial of R
I [n]
T

is also a standard monomial of R
I [n]
S

.

DEFINITION 4.1

A Catalan parking function p = (p1, . . . , pn) ∈ �n is called a restricted Catalan parking
function if for i ∈ [n − 1], either pi < i or pi+1 < i .

Let �̃Cat
n be the set of all restricted Catalan parking functions of length n. As in

Lemma 3.1, we see that the standard monomials of R
I [n]
T

correspond bijectively to the

restricted Catalan parking functions. Thus, |�̃Cat
n | = dimk

(
R
I [n]
T

)

.
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Using the minimal cellular resolution of R
I [n]
T

supported on the (labelled) order complex

�(�̃), the (fine) Hilbert series of H

(
R
I [n]
T

, x
)

of R
I [n]
T

is easily calculated (see [4]). We have

H

(
R

I [n]
T

, x

)

=
∑n

i=0(−1)i
∑

(C̃1,...,C̃i )∈F̃i−1

∏i
q=1

(∏
j∈C̃q−C̃q−1

x
μ j,C̃q
j

)

(1 − x1) · · · (1 − xn)
,

(4.1)

where F̃i−1 is the set of i − 1-dimensional faces of �(�̃n), (C̃1, . . . , C̃i ) ∈ F̃i−1 is a face
represented by the (strict) chain C̃1 ≺′ · · · ≺′ C̃i of length i − 1, C̃0 = ∅ and μ j,C̃q

is as

in (2.2). Also, H

(
R
I [n]
T

, x
)

= ∑
p∈�̃Cat

n
xp.

PROPOSITION 4.2

The number of standard monomials of R
I [n]
T

is given by

dimk

(
R

I [n]
T

)

=
n∑

i=1

(−1)n−i
∑

(C̃1,...,C̃i )∈F̃i−1

C̃1∪...∪C̃i=[n]

i∏

q=1

⎛

⎜
⎝

∏

j∈C̃q−C̃q−1

μ j,C̃q

⎞

⎟
⎠ ,

where summation is carried over all i − 1-dimensional faces (C̃1, . . . , C̃i ) ∈ F̃i−1 of
�(�̃n) with

⋃i
l=1 C̃l = [n] and C̃0 = ∅.

Proof. Clearly, dimk

(
R
I [n]
T

)

= H

(
R
I [n]
T

, 1
)

, where 1 = (1, . . . , 1). On the other hand,

letting x → 1 in the rational function H

(
R
I [n]
T

, x
)

= Q(x)
(1−x1)...(1−xn)

given by (4.1) and

applying L’Hopital’s rule, we get

H

(
R

I [n]
T

, 1

)

= 1

(−1)n

∂nQ(x)

∂x1 . . . ∂xn

∣
∣
∣
x=1

.

Now the term corresponding to a face (C̃1, . . . , C̃i ) ∈ F̃i−1 is non-zero in the partial
derivative ∂n Q(x)

∂x1...∂xn
only if C̃1 ∪ · · · ∪ C̃i = [n]. This completes the proof. �

Remark 4.3.

(1) The (fine) Hilbert series of H

(
R
I [n]
S

, x
)

of R
I [n]
S

is given by

H

(
R

I [n]
S

, x

)

=
∑n

i=0(−1)i
∑

(C1,...,Ci )∈Fi−1

∏i
q=1

(∏
j∈Cq−Cq−1

x
ν j,Cq
j

)

(1 − x1) · · · (1 − xn)
,

where Fi−1 is the set of i − 1-dimensional faces of �(�n), (C1, . . . ,Ci ) ∈ Fi−1 is a face
represented by the (strict) chain C1 ≺ · · · ≺ Ci of length i − 1, C0 = ∅ and ν j,Cq is as in
(2.1).
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(2) Proceeding as in the proof of Proposition 4.2, we get

dimk

(
R

I [n]
S

)

=
n∑

i=1

(−1)n−i
∑

(C1,...,Ci )∈Fi−1
C1∪···∪Ci=[n]

i∏

q=1

⎛

⎝
∏

j∈Cq−Cq−1

ν j,Cq

⎞

⎠ , (4.2)

where summation is carried over all i − 1-dimensional faces (C1, . . . ,Ci ) ∈ Fi−1 of
�(�n) with

⋃i
l=1 Cl = [n] and C0 = ∅. Since Proposition 3.3 is not immediate from

formula (4.2), we used a result of Postnikov and Shapiro in its proof.

Let bn = |�̃Cat
n | = dimk

(
R
I [n]
T

)

for n ∈ N. Then b1 = 1, b2 = 3 and b3 = 11.

Theorem 4.4. The integer sequence {bn = |�̃Cat
n |}∞n=1 satisfies a second-order recurrence

relation

bn = nbn−1 + (n − 1)bn−2; n ≥ 3

with initial conditions b1 = 1, b2 = 3.

Proof. From Proposition 4.2, bn = ∑n
i=1(−1)n−i

(∑
F̃∈F̃i−1, ∪F̃=[n] π(F̃)

)
, where sum-

mation is carried over (i − 1)-dimensional faces F̃ = (C̃1, . . . , C̃i ) of �(�̃n) with
∪F̃ = C̃1 ∪ · · · ∪ C̃i = [n] and π(F̃) = ∏i

q=1(
∏

j∈C̃q−C̃q−1
μ j,C̃q

). For n ≥ 3, we

divide such faces F̃ of �(�̃n) into three types:

(1) A (i − 1)-dimensional face F̃ is said to be of Type I if the pair (C̃1, C̃2) has one of the
three values; namely, ({n−1}, [n−1, n]), ([n, n+1], {n−2}) or ([n, n+1], [n−2, n−1].
On deleting C̃1 from the (i − 1)-dimensional face F̃ of Type I, we get (i − 2)-dimensional
face F̃ ′ of �(�̃n−1) with ∪F̃ ′ = [n − 1]. Conversely, every such (i − 2) dimensional face
F̃ ′ of �(�̃n−1) extends uniquely to the (i − 1)-dimensional face F̃ of �(�̃n) of Type I.
Also, for a Type I face, we have π(F̃) = nπ(F̃ ′).
(2) A (i − 1)-dimensional face F̃ is said to be of Type-II if C̃1 = [n − 1, n]. On deleting
C̃1 from the (i − 1)-dimensional face F̃ of Type II, we get (i − 2)-dimensional face F̃ ′′ of
�(�̃n−2) with ∪F̃ ′′ = [n−2]. Again, every such (i−2) dimensional face F̃ ′′ of �(�̃n−2)

extends uniquely to the (i − 1)-dimensional face F̃ of �(�̃n) of Type II. Also, for a Type
II face, we have π(F̃) = (n − 1)2π(F̃ ′′).
(3) A (i − 1)-dimensional face F̃ is said to be of Type-III if the pair (C̃1, C̃2) = ([n, n +
1], [n − 1, n]). On deleting C̃1 and C̃2 from a (i − 1)-dimensional face F̃ of Type III, we
get a (i − 3)-dimensional face F̃ ′′′ of �(�̃n−2) with ∪F̃ ′′′ = [n − 2]. Again, every such
(i −3) dimensional face F̃ ′′′ of �(�̃n−2) extends uniquely to the (i −1)-dimensional face
F̃ of �(�̃n) of Type III. Also, for a Type III face, we have π(F̃) = n(n − 1)π(F̃ ′′′).

Now dividing the summation in bn according to the type of i − 1-dimensional faces, we
get

bn =
n∑

i=1

(−1)n−i

⎡

⎣
∑

F̃ (Type I)

+
∑

F̃ (Type II)

+
∑

F̃ (Type III)

⎤

⎦π(F̃).
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As n − i = (n − 1) − (i − 1) = (n − 2) − (i − 1) + 1 = (n − 2) − (i − 2), we clearly
have bn = nbn−1 + [−(n − 1)2 + n(n − 1)]bn−2. �

We consider the integer sequence (A000255) in OEIS [11]. The n-th term ãn of this
sequence counts permutations of [n + 1] having no substring {l, l + 1}. It is known that
for n ≥ 1, ãn = det

([m̃i j ]n×n
)
, where m̃ii = m̃i+1i = i, m̃ii+1 = −1 and mi j = 0 if

|i − j | ≥ 2. It is straight forward to check that the integer sequence {ãn}∞n=1 satisfies the
second-order recurrence relation ãn = nãn−1 + (n−1)ãn−2; n ≥ 3 with initial conditions
ã1 = 1, ã2 = 3.

Theorem 4.5.

|�̃Cat
n | = dimk

(
R

I [n]
T

)

= det
([m̃i j ]n×n

)
.

Proof. Since both integer sequences {bn = |�̃Cat
n |}∞n=1 and {ãn = det

([m̃i j ]n×n
)}∞n=1

satisfy the same second-order recurrence relation with the same initial conditions, we have
bn = ãn, ∀n ≥ 1. �

5. Some generalizations

All the results about monomial ideals IS, IT and their Alexander duals can be extended to a
slightly larger class of monomial ideals. In this section, we outline these generalizations. Let
u = (u1, . . . , un) ∈ N

n with 1 ≤ u1 < · · · < un and for every σ ∈ Sn , xσu = ∏n
i=1 x

uσ(i)
i

be the associated monomial. We consider the monomial ideals IS(u) = 〈xσu : σ ∈ S〉 and
IT (u) = 〈xσu : σ ∈ T 〉 in R. Clearly, IS((1, 2, . . . , n)) = IS and IT ((1, 2, . . . , n)) = IT .
The monomial ideal I (u) = ISn (u) = 〈xσu : σ ∈ Sn〉 is again called a permutohedron
ideal.

For an integer c ≥ 1, set un + c − 1 = (un + c−1, . . . , un + c−1) ∈ N
n . We consider

the Alexander dual IS(u)[un+c−1] (or IT (u)[un+c−1]) of IS(u) (or IT (u)) with respect to
un + c − 1. Let λ = (λ1, . . . , λn), where λi = un − ui + c.

Lemma 5.1. The minimal generators of the Alexander duals IS(u)[un+c−1] and
IT (u)[un+c−1] are given by

IS(u)[un+c−1] =
〈

xλn−l
l ,

⎛

⎝
n∏

j=m

x j

⎞

⎠

λn−m+1

: 1 ≤ l ≤ n − 1, 1 ≤ m ≤ n

〉

and

IT (u)[un+c−1] =
〈

xλn−l
l ,

⎛

⎝
∏

j∈[m,m+1]
x j

⎞

⎠

λn−m+1

: 1 ≤ l ≤ n − 1, 1 ≤ m ≤ n

〉

,

where [m,m + 1] = {m,m + 1} for m ∈ [n − 1] and [n, n + 1] = {n}.
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Proof. Proceeding as in the proof of Lemmas 2.1 and 2.2, we get the minimal generators on
takingbl(u) = (un+c−1, . . . , un−l−1, . . . , un+c−1),b[m,n](u) = (un+c−1, . . . un+
c − 1, un−m+1 − 1, . . . , un−m+1 − 1) and b[m,m+1](u) = (un + c − 1, . . . , un−m+1 −
1, un−m+1 − 1, . . . , un + c − 1), in place of bl ,b[m,n] and b[m,m+1], respectively.

�

Remark 5.2. Since we are interested in the Alexander duals IS(u)[un+c−1] and
IT (u)[un+c−1] such that their respective quotients R

IS(u)[un+c−1] and R
IT (u)[un+c−1] are Artinian,

we have assumed that u1 ≥ 1. However, both the ideals IS(u) and IT (u) are also defined
for u = (u1, . . . , un) ∈ N

n with u1 = 0.

We label the order complexes �(�n) and �(�̃n) so that the monomial ideals gener-
ated by vertex labels are IS(u)[un+c−1] and IT (u)[un+c−1], respectively. If F is an i − 1-
dimensional face of �(�n) corresponding to a (strict) chain C1 ≺ · · · ≺ Ci of length i −1
in �n , then the monomial label xνu(F) on F is given by

xνu(F) =
i∏

q=1

⎛

⎝
∏

j∈Cq−Cq−1

x
νuj,Cq
j

⎞

⎠ ,

where C0 = ∅ and

νuj,Cq
=
{

λn−l if Cq = {l},
λn−m+1 if Cq = [m, n]. (5.1)

Similarly, if F̃ is an i − 1-dimensional face of �(�̃n) corresponding to a (strict) chain
C̃1 ≺′ · · · ≺′ C̃i of length i − 1 in �̃n , then the monomial label xμu(F̃) on F̃ is given by

xμu(F̃) =
i∏

q=1

⎛

⎜
⎝

∏

j∈C̃q−C̃q−1

x
μu

j,C̃q
j

⎞

⎟
⎠ ,

where C̃0 = ∅ and

μu
j,C̃q

=
{

λn−l if C̃q = {l},
λn−m+1 if C̃q = [m,m + 1]. (5.2)

Now we have the following generalization of Theorem 2.7.

PROPOSITION 5.3

For 0 ≤ r ≤ n − 1,

βr (IS(u)[un+c−1]) = fr (�(�n)) and βr (IT (u)[un+c−1]) = fr (�(�̃n)).

Proof. Both IS(u)[un+c−1] and IT (u)[un+c−1] are order monomial ideals, thus the cellu-
lar resolution supported on the order complexes �(�n) and �(�̃n) give their minimal
resolutions, respectively. �
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Remark 5.4.

(1) IS(u)[un+c−1] and IT (u)[un+c−1] are both strongly generic ideals.
(2) The LCM-lattices of I [n]

S and IS(u)[un+c−1] (or I [n]
T and IT (u)[un+c−1]) are isomorphic

by an isomorphism induced by ‘relabeling’ [3]. This also establishes the equality of Betti
numbers

βr (IS(u)[un+c−1]) = βr (I
[n]
S ) and βr (IT (u)[un+c−1]) = βr (I

[n]
T ).

We recall that the standard monomials of R
I (u)[un+c−1] are of the form xp, where p is a

λ-parking function of length n for λ = (λ1, . . . , λn); λi = un − ui + c. Now the standard
monomials of R

IS(u)[un+c−1] and R
IT (u)[un+c−1] are given as follows.

Lemma 5.5. Let p = (p1, . . . , pn) be a λ-parking function of length n. Then

(a) xp /∈ IS(u)[un+c−1] ⇔ p j < λn− j ∀ j ∈ [n − 1].
(b) xp /∈ IT (u)[un+c−1] ⇔ p j < λn− j ∀ j ∈ [n − 1] and either p j < λn− j+1 or

p j+1 < λn− j+1.

Proof. These conditions are verified as in the proof of Lemma 3.1. �

DEFINITION 5.6

A λ-parking function p = (p1, . . . , pn) of length n is said to be a Catalan λ-parking
function if p j < λn− j ∀ j ∈ [n− 1]. Also, a Catalan λ-parking function p = (p1, . . . , pn)
is said to be a restricted Catalan λ-parking function if in addition, either p j < λn− j+1 or
p j+1 < λn− j+1 ∀ j ∈ [n − 1].

Henceforth, we take u = (u1, . . . , un) such that u1 ≥ 1 and ui = u1 + (i − 1)b for
some integer b ≥ 1. In other words, the sequence {ui } is an arithmetic progression. The
sequence {λi } with λi = un − ui + c = c + (n − i)b ∀i ∈ [n] is also an arithmetic
progression. Sometimes, we put λ0 = c + nb. To emphasize that λ depends only on
b and c, we write λ = λ(c, b). Let �n(λ(c, b)) be the set of λ(c, b)-parking functions
of length n and its subset consisting of Catalan λ(c, b)-parking functions (or restricted
Catalan λ(c, b)-parking functions) be denoted by �Cat

n (λ(c, b)) (or �̃Cat
n (λ(c, b))). Then

|�n(λ(c, b))| = c(c+nb)n−1 (see [8,9]). In view of Lemma 5.5, we have |�Cat
n (λ(c, b))| =

dimk

(
R

IS(u)[un+c−1]
)

and |�̃Cat
n (λ(c, b))| = dimk

(
R

IT (u)[un+c−1]
)

.

Theorem 5.7. Let u = (u1, . . . , un) with u1 ≥ 1 and ui = u1 + (i − 1)b ∀i ∈ [n].
(1) The number of standard monomials of R

IS(u)[un+c−1] is given by

dimk

(
R

IS(u)[un+c−1]

)

= λ1

n−1∏

t=1

λt

+
n∑

i=1

(−1)n−i
∑

0= j0< j1<···< ji<n
( j1, . . . , ji ),
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where summation runs over all sequences 0 < j1 < · · · < ji < n and

( j1, . . . , ji ) = bn− ji+1(n − ji )(n − ji )!⎛

⎝
i∏

q=2

b jq− jq−1( jq − jq−1)!
⎞

⎠
n−1∏

s=n− j1+1

λs .

(2) Let Aλ
n+1 = [

mλ
i j

]
(n+1)×(n+1)

be a matrix such that

mλ
i j =

⎧
⎪⎨

⎪⎩

b j−i+1( j − i + 1)! if i ≤ j + 1; j < n + 1,

0 if i > j + 1; j < n + 1,
∏n−1

s=i−1 λs if j = n + 1.

Then |�Cat
n (λ(c, b))| = dimk

(
R

IS(u)[un+c−1]
)

= (−1)n det
(
Aλ
n+1

)
.

Proof. Proceeding as in the proof of Proposition 3.3, we get an expression for

dimk

(
R

IS(u)[un+c−1]
)

exactly similar to that of dimk

(
R
I [n]
S

)

, with νuj,Cq
in place of ν j,Cq .

Now a straightforward calculation verifies the first part. On applying the row operation
R1 −bR2 on the matrix Aλ

n+1, and expanding the determinant of the resulting matrix along
the (n + 1)-th column, we also get the second part. �

The (fine) Hilbert series H
(

R
IT (u)[un+c−1] , x

)
of R

IT (u)[un+c−1] is obtained from (4.1) by

simply replacing μ j,C̃q
with μu

j,C̃q
(as in (5.2)). Thus

H

(
R

IT (u)[un+c−1] , x
)

=
∑n

i=0(−1)i
∑

(C̃1,...,C̃i )∈F̃i−1

∏i
q=1

(
∏

j∈C̃q−C̃q−1
x

μu
j,C̃q

j

)

(1 − x1) · · · (1 − xn)
.

PROPOSITION 5.8

The number of standard monomials of R
IT (u)[un+c−1] is given by

dimk

(
R

IT (u)[un+c−1]

)

=
n∑

i=1

(−1)n−i
∑

(C̃1,...,C̃i )∈F̃i−1

C̃1∪···∪C̃i=[n]

i∏

q=1

⎛

⎜
⎝

∏

j∈C̃q−C̃q−1

μu
j,C̃q

⎞

⎟
⎠ ,

where summation is carried over all i − 1-dimensional faces (C̃1, . . . , C̃i ) ∈ F̃i−1 of
�(�̃n) with

⋃i
l=1 C̃l = [n] and C̃0 = ∅.

Proof. Proceed as in the proof of Proposition 4.2. �
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For an integer n ≥ 1, let bλ
n = |�̃Cat

n (λ(c, b))| = dimk

(
R

IT (u)[un+c−1]
)

. Then bλ
1 = c and

bλ
2 = c(c + 2b).

Theorem 5.9. The integer sequence {bλ
n = |�̃Cat

n (λ(c, b))|}∞n=1 satisfies a second-order
recurrence relation

bλ
n = ((n − 1)b + c) bλ

n−1 + ((n − 2)b2 + bc)bλ
n−2; n ≥ 3

with initial conditions bλ
1 = c, bλ

2 = c(c + 2b).

Proof. From Proposition 5.8, bλ
n = ∑n

i=1(−1)n−i (
∑

F̃∈Fi−1, ∪F̃=[n] π
u(F̃)), where sum-

mation is carried over (i − 1)-dimensional faces F̃ = (C̃1, . . . , C̃i ) of �(�̃n) with
∪F̃ = C̃1 ∪ · · · ∪ C̃i = [n] and πu(F̃) = ∏i

q=1

(∏
j∈C̃q−C̃q−1

μu
j,C̃q

)
. For n ≥ 3,

we divide such faces F̃ of �(�̃n) into three types as in the proof of Theorem 4.4.
Let F̃ be an (i − 1)-dimensional face of �(�̃n). If F̃ is of Type I, then there is a unique

(i − 2)-dimensional face F̃ ′ of �(�̃n−1) with ∪F̃ ′ = [n − 1] and πu(F̃) = λ1π
u(F̃ ′).

If F̃ is of Type II, then there is a unique (i − 2)-dimensional face F̃ ′′ of �(�̃n−2) with
∪F̃ ′′ = [n−2] and πu(F̃) = (λ2)

2πu(F̃ ′′). Again, if F̃ is of Type III, then there is a unique
(i−3)-dimensional face F̃ ′′′ of �(�̃n−2) with ∪F̃ ′′′ = [n−2] and πu(F̃) = λ1λ2π

u(F̃ ′′′).
Now rearranging terms in bλ

n , we get

bλ
n =

n∑

i=1

(−1)n−i

⎡

⎣
∑

F̃ (Type I)

+
∑

F̃ (Type II)

+
∑

F̃ (Type III)

⎤

⎦πu(F̃).

As n − i = (n − 1) − (i − 1) = (n − 2) − (i − 1) + 1 = (n − 2) − (i − 2), we clearly
have bλ

n = λ1bλ
n−1 + [−(λ2)

2 + λ1λ2]bλ
n−2. �

Let λ = λ(c, b) and let
[
m̃λ

i j

]
n×n be a tridiagonal matrix such that

m̃λ
i j =

⎧
⎪⎨

⎪⎩

c + (i − 1)b if i = j or i = j + 1,

−b if j = i + 1,

0 if |i − j | ≥ 2.

Theorem 5.10.

|�̃Cat
n (λ(c, b))| = dimk

(
R

IT (u)[un+c−1]

)

= det([m̃λ
i j ]n×n).

Proof. Since integer sequences {bλ
n = |�̃Cat

n (λ(c, b))|}∞n=1 and {det
([m̃λ

i j ]n×n
)}∞n=1 satisfy

the same second-order recurrence relation with the same initial conditions, they must be
identical. �
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