

# Monomial ideals induced by permutations avoiding patterns

AJAY KUMAR<sup>1</sup> and CHANCHAL KUMAR<sup>2,\*</sup>

E-mail: ajaychhabra.msc@gmail.com; chanchal@iisermohali.ac.in

MS received 18 May 2017; revised 25 December 2017; accepted 4 January 2018; published online 18 December 2018

**Abstract.** Let S (or T) be the set of permutations of  $[n] = \{1, \ldots, n\}$  avoiding 123 and 132 patterns (or avoiding 123, 132 and 213 patterns). The monomial ideals  $I_S = \langle \mathbf{x}^{\sigma} = \prod_{i=1}^n x_i^{\sigma(i)} : \sigma \in S \rangle$  and  $I_T = \langle \mathbf{x}^{\sigma} : \sigma \in T \rangle$  in the polynomial ring  $R = k[x_1, \ldots, x_n]$  over a field k have many interesting properties. The Alexander dual  $I_S^{[\mathbf{n}]}$  of  $I_S$  with respect to  $\mathbf{n} = (n, \ldots, n)$  has the minimal cellular resolution supported on the order complex  $\Delta(\Sigma_n)$  of a poset  $\Sigma_n$ . The Alexander dual  $I_T^{[\mathbf{n}]}$  also has the minimal cellular resolution supported on the order complex  $\Delta(\tilde{\Sigma}_n)$  of a poset  $\tilde{\Sigma}_n$ . The number of standard monomials of the Artinian quotient  $\frac{R}{I_S^{[\mathbf{n}]}}$  is given by the number of irreducible (or indecomposable) permutations of [n+1], while the number of standard monomials of the Artinian quotient  $\frac{R}{I_T^{[\mathbf{n}]}}$  is given by the number of permutations of [n+1] having no substring  $\{l, l+1\}$ .

**Keywords.** Permutations avoiding patterns; cellular resolutions; standard monomials; parking functions.

**1991 Mathematics Subject Classification.** 05E40, 13D02.

#### 1. Introduction

Many classes of monomial ideals I in the polynomial ring  $R=k[x_1,\ldots,x_n]$  over a field k have the property that the number of standard monomials in the Artinian quotient  $\frac{R}{I}$  is given in terms of determinant of a square matrix. For many combinatorially defined monomial ideals I, the standard monomials in  $\frac{R}{I}$  correspond to suitable combinatorial objects. For an oriented graph (digraph) G on the vertex set  $\{0,1,\ldots,n\}$  rooted at 0, Postnikov and Shapiro [9] associated a monomial ideal  $\mathcal{M}_G$  in R such that the Artinian quotient  $\frac{R}{\mathcal{M}_G}$  has a standard monomial basis corresponding to G-parking functions and the number of G-parking functions equals the number of (oriented) spanning trees of G, i.e.,  $\dim_k(\frac{R}{\mathcal{M}_G}) = \det(L_G)$ , where  $L_G$  is the *truncated Laplace matrix* of G. More precisely, if  $A = [a_{ij}]_{0 \le i,j \le n}$  is the adjacency matrix of the oriented graph G, then the monomial ideal  $\mathcal{M}_G$  is given by

$$\mathcal{M}_G = \left\langle \prod_{i \in I} x_i^{d_I(i)} : I \in \Sigma \right\rangle,$$

<sup>&</sup>lt;sup>1</sup>DAV University, Jalandhar, Punjab 144 012, India

<sup>&</sup>lt;sup>2</sup>IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140 306, India \*Corresponding author.

where  $d_I(i) = \sum_{j \in \{0,1,\dots,n\}-I} a_{ij}$  is the number of (oriented) edges from the vertex i to a vertex outside of the subset I and  $\Sigma$  is the poset of all non-empty subsets of [n] (ordered

by inclusion). Also, 
$$L_G = [l_{ij}]_{1 \le i, j \le n}$$
 is given by  $l_{ij} = \begin{cases} d_{\{i\}}(i) & \text{if } i = j, \\ -a_{ij} & \text{if } i \ne j. \end{cases}$  The adjacency

matrix of a (non-oriented) graph is symmetric and therefore a graph can be identified with a unique oriented graph having the same (symmetric) adjacency matrix. Under this identification, oriented spanning trees correspond to usual spanning trees of the graph. Therefore, notion of G-parking functions also make sense for a graph G. An oriented graph G with adjacency matrix  $A = [a_{ij}]$  is called *saturated* if  $a_{ij} \geq 1$  for  $i \neq j$ . For a saturated graph G, the monomial ideal  $\mathcal{M}_G$  is an *order monomial ideal* (Definition 2.3) and its minimal resolution is the cellular resolution supported on the first barycentric subdivision  $\mathbf{Bd}(\Delta_{n-1})$  of an (n-1)-simplex  $\Delta_{n-1}$  (see Corollary 6.9 of [9]). If G is a complete graph  $K_{n+1}$ , the monomial ideal

$$\mathcal{M}_{K_{n+1}} = \left\langle \left( \prod_{i \in I} x_i \right)^{n-|I|+1} : I \in \Sigma \right\rangle$$

is called a *tree ideal*. Further, we see that a  $K_{n+1}$ -parking function is a (*ordinary*) parking function of length n, which is defined as a sequence  $\mathbf{p} = (p_1, \dots, p_n) \in \mathbb{N}^n$  with  $0 \le p_i < n$  such that the non-decreasing rearrangement  $q_1 \le \dots \le q_n$  of  $\mathbf{p}$  satisfies  $q_i < i$  (or equivalently,  $|\{j \in [n] : p_i < i\}| \ge i$ ,  $\forall i \in [n]$ ).

For  $\lambda=(\lambda_1,\ldots,\lambda_n)\in\mathbb{N}^n$  with  $\lambda_1\geq\lambda_2\geq\cdots\geq\lambda_n\geq 1$ , the monomial ideal  $I_\lambda=\langle(\prod_{i\in A}x_i)^{\lambda_{|A|}}:\emptyset\neq A\subseteq[n]\rangle$  in R has an Artinian quotient  $\frac{R}{I_\lambda}$  having a standard monomial basis corresponding to  $\lambda$ -parking functions. A sequence  $\mathbf{p}=(p_1,\ldots,p_n)\in\mathbb{N}^n$  is called a  $\lambda$ -parking function of length n if its non-decreasing rearrangement  $q_1\leq q_2\leq\cdots\leq q_n$  satisfies  $q_i<\lambda_{n-i+1},\ \forall i$ . The (ordinary) parking functions of length n correspond to  $\lambda=(n,n-1,\ldots,1)$ . Also, there is a Steck determinant formula for counting the number of  $\lambda$ -parking functions. Further, if  $\lambda_1>\lambda_2>\cdots>\lambda_n$ , then the minimal cellular resolution of  $I_\lambda$  is supported on  $\mathbf{Bd}(\Delta_{n-1})$  [9]. For more on  $\lambda$ -parking functions, we refer to [8,12]. The multigraded Betti numbers of  $I_\lambda$  for any  $\lambda$  are given in [4].

Let  $\mathfrak{S}_n$  be the set of all permutations of  $[n] = \{1, 2, \ldots, n\}$ . Let S be the subset of permutations  $\sigma \in \mathfrak{S}_n$  avoiding 123 and 132 patterns and let T be the subset of permutations  $\sigma \in \mathfrak{S}_n$  avoiding 123, 132 and 213 patterns. Then, it is shown in [10] that  $|S| = 2^{n-1}$  and  $|T| = F_{n+1}$ , where  $F_n$  is the n-th Fibonacci number (i.e.,  $F_0 = 0$ ,  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ ;  $n \ge 2$ ).

Now consider the monomial ideals  $I_S = \langle \mathbf{x}^{\sigma} : \sigma \in S \rangle$  and  $I_T = \langle \mathbf{x}^{\sigma} : \sigma \in T \rangle$  in  $R = k[x_1, \ldots, x_n]$  induced by subsets S and T, respectively. The minimal generators of the Alexander dual  $I_S^{[\mathbf{n}]}$  of  $I_S$  with respect to  $\mathbf{n} = (n, \ldots, n)$  are given by (Lemma 2.1)

$$I_S^{[\mathbf{n}]} = \left\langle x_l^{l+1}, \left( \prod_{j=m}^n x_j \right)^m : 1 \le l \le n-1, 1 \le m \le n \right\rangle.$$

Similarly, the minimal generators of the Alexander dual  $I_T^{[n]}$  are given by

$$I_T^{[\mathbf{n}]} = \left\langle x_l^{l+1}, \left( \prod_{j \in [m, m+1]} x_j \right)^m : 1 \le l \le n-1, \quad 1 \le m \le n \right\rangle,$$

where  $[m, m + 1] = \{m, m + 1\}$  for 1 < m < n - 1 and [n, n + 1] stands for  $\{n\}$ . The monomial ideal  $I_{\mathfrak{S}_n} = \langle \mathbf{x}^{\sigma} : \sigma \in \mathfrak{S}_n \rangle$  is called a *permutohedron ideal* and the Alexander

dual  $I_{\mathfrak{S}_n}^{[\mathbf{n}]} = \mathcal{M}_{K_{n+1}} = I_{\lambda}$  for  $\lambda = (n, n-1, \dots, 1)$ . Let  $\Sigma_n = \{\{l\} : 1 \le l \le n-1\} \bigcup \{[m, n] : 1 \le m \le n\}$ , where  $[a, b] = \{x \in \mathbb{N} : a \le n\}$ x < b denotes an integer interval for 1 < a < b < n. We define a partial ordering  $\prec$  on  $\Sigma_n$  as follows: for  $l, l' \in [n-1]$  and  $m, m' \in [n]$ ,  $\{l\} \leq \{l'\} \leq [m, n]$  if  $m \leq l' \leq l$  and  $[m, n] \leq [m', n] \leq \{l\}$  if  $l+1 < m' \leq m$ . Consider the order complex  $\Delta(\Sigma_n)$  of the poset  $(\Sigma_n, \preceq)$ . An r-dimensional face of  $\Delta(\Sigma_n)$  is a (strict) chain  $C_1 \prec C_2 \prec \cdots \prec C_{r+1}$  of length r in  $\Sigma$ . Let  $f_r(\Delta(\Sigma_n))$  be the number of r-dimensional faces of  $\Delta(\Sigma_n)$ . Then, we prove that (Theorem 2.7)

$$f_r(\Delta(\Sigma_n)) = \sum_{s=0}^{r+1} {n-1 \choose s} {n-s \choose r+1-s}, \quad (0 \le r \le n-1).$$

Let  $\tilde{\Sigma}_n = \{\{l\}: 1 \le l \le n-1\} \bigcup \{[m, m+1]: 1 \le m \le n\}, \text{ where } [m, m+1] = 1\}$  $\{m, m+1\}$  for  $1 \le m \le n-1$  and  $[n, n+1] = \{n\}$ . We define a partial ordering  $\le'$  on  $\Sigma_n$  as follows: for  $l, l' \in [n-1]$  and  $m, m' \in [n]$ ,  $[m, m+1] \prec' \{l\} \prec' \{l'\}$  if l'+1 < l < m-1and  $\{l\} \leq' [m, m+1] \leq' [m', m'+1]$  if  $m' \leq m \leq l$ . The order complex  $\Delta(\tilde{\Sigma}_n)$  of the poset  $(\tilde{\Sigma}_n, \leq')$  is a simplicial complex of dimension n-1. We prove that (Theorem 2.7) the number  $f_r(\Delta(\tilde{\Sigma}_n))$  of r-dimensional faces of  $\Delta(\tilde{\Sigma}_n)$  is given by

$$f_r(\Delta(\tilde{\Sigma}_n)) = \sum_{s=0}^{r+1} {n-s \choose s} {n-s \choose r+1-s}, \quad (0 \le r \le n-1).$$

We label the vertices  $\{l\}$  or [m, n] of  $\Delta(\Sigma_n)$  by monomials  $x_l^{l+1}$  or  $(\prod_{i \in [m, n]} x_i)^m$ , respectively. Similarly, the vertices  $\{l\}$  and [m, m+1] of  $\Delta(\tilde{\Sigma}_n)$  can be naturally labelled with monomials  $x_l^{l+1}$  or  $(\prod_{j \in [m,m+1]} x_j)^m$ , respectively. Now labelling the faces F by the LCM of monomial labels on the vertices of F, we see that the order complexes  $\Delta(\Sigma_n)$ and  $\Delta(\tilde{\Sigma}_n)$  are both labelled simplicial complexes. Both the ideals  $I_{\Sigma}^{[n]}$  and  $I_{T}^{[n]}$  are order monomial ideals (Proposition 2.5). In view of Theorem 2.4, the free complex associated to the labelled simplicial complexes  $\Delta(\Sigma_n)$  and  $\Delta(\tilde{\Sigma}_n)$  give the minimal cellular resolution of  $I_S^{[n]}$  and  $I_T^{[n]}$ , respectively. Thus Betti numbers of  $I_S^{[n]}$  and  $I_T^{[n]}$  are given by

$$\beta_i(I_S^{[\mathbf{n}]}) = f_i(\Delta(\Sigma_n))$$
 and  $\beta_i(I_T^{[\mathbf{n}]}) = f_i(\Delta(\tilde{\Sigma}_n)),$ 

for  $0 \le i \le n-1$ . For more on cellular resolutions, we refer to [1,2,6]. We show that the standard monomial basis of  $\frac{R}{I_s^{[\mathbf{n}]}}$  is given by  $\mathbf{x}^{\mathbf{p}}$ , where  $\mathbf{p} = (p_1, \dots, p_n)$ is a parking function of length n satisfying  $p_i \leq i$ ,  $\forall i$ . Such parking functions may be called Catalan parking functions. Let  $\Lambda_n$  be the set of all parking functions of length n. Then  $|\Lambda_n| = (n+1)^{n-1}$ . Let  $\Lambda_n^{\text{Cat}}$  be the set of Catalan parking functions of length n. We show that (Theorem 3.4)

$$|\Lambda_n^{\text{Cat}}| = \dim_k \left(\frac{R}{I_S^{[\mathbf{n}]}}\right) = (-1)^n \det([m_{ij}]_{(n+1)\times(n+1)}),$$

where  $m_{ij} = \begin{cases} (j-i+1)! & \text{if } i \leq j+1, \\ 0 & \text{if } i > j+1. \end{cases}$  Further, it is observed that the number of

Catalan parking functions of length n equals the number of irreducible (or indecomposable) permutations of [n + 1].

Since  $I_T \subseteq I_S$ , we have  $I_S^{[\mathbf{n}]} \subseteq I_T^{[\mathbf{n}]}$ . Thus a standard monomial  $\mathbf{x}^{\mathbf{p}}$  of  $\frac{R}{I_T^{[\mathbf{n}]}}$  is also a standard monomial of  $\frac{R}{I_S^{[\mathbf{n}]}}$ . We observe that  $\mathbf{x}^{\mathbf{p}}$  is a standard monomial of  $\frac{R}{I_T^{[\mathbf{n}]}}$  if and only if  $\mathbf{p} = (p_1, \ldots, p_n)$  is a Catalan parking function of length n such that for  $1 \le i \le n-1$ , if  $p_i = i$ , then  $p_{i+1} < i$ . A Catalan parking function  $\mathbf{p} = (p_1, \ldots, p_n)$  of length n such that either  $p_i < i$  or  $p_{i+1} < i$  for every  $i \in [n-1]$  is called a *restricted Catalan parking function* of length n. Let  $\tilde{\Lambda}_n^{\text{Cat}}$  be the set of all restricted Catalan parking functions of length n. We show that (Theorem 4.5)

$$|\tilde{\Lambda}_n^{\text{Cat}}| = \dim_k \left(\frac{R}{I_T^{[\mathbf{n}]}}\right) = \det([\tilde{m}_{ij}]_{n \times n}),$$

where  $\tilde{m}_{ij} = \begin{cases} j & \text{if } i = j \text{ or } i = j+1, \\ -1 & \text{if } j = i+1, \\ 0 & \text{otherwise.} \end{cases}$  The number of restricted Catalan parking

functions of length n equals the number of permutations of [n+1] having no substring  $\{l, l+1\}$ .

In the last section, we have discussed some generalizations.

# 2. Betti numbers of $I_S^{[n]}$ and $I_T^{[n]}$

Let  $t \leq n$  be positive integers and  $\tau$  be a fixed permutation of [t] called a *pattern*. A permutation  $\sigma \in \mathfrak{S}_n$  is said to *avoid the pattern*  $\tau$  if there does not exist integers  $1 \leq j_1 < \cdots < j_t \leq n$  such that for all  $1 \leq a < b \leq t$ , we have  $\tau(a) < \tau(b)$  if and only if  $\sigma(j_a) < \sigma(j_b)$ . Let S and T be the subsets of  $\mathfrak{S}_n$  as defined in the Introduction. In this section, we study Alexander duals  $I_S^{[\mathbf{n}]}$  and  $I_T^{[\mathbf{n}]}$  of the the monomial ideals  $I_S$  and  $I_T$ . The Alexander dual  $I_S^{[\mathbf{n}]}$  of  $I_S$  with respect to  $\mathbf{n} = (n, \dots, n)$  is a monomial ideal in R and a vector  $\mathbf{b} = (b_1, \dots, b_n) \leq \mathbf{n}$  (i.e.,  $b_i \leq n \ \forall i$ ) is maximal with  $\mathbf{x}^{\mathbf{b}} \notin I_S$  if and only if  $\mathbf{x}^{\mathbf{n}-\mathbf{b}} = \prod_{j=1}^n x_j^{n-b_j}$  is a minimal generator of  $I_S^{[\mathbf{n}]}$  [6,7].

Lemma 2.1. The minimal generators of  $I_s^{[n]}$  are given by

$$I_S^{[\mathbf{n}]} = \left\langle x_l^{l+1}, \left( \prod_{j \in [m,n]} x_j \right)^m : 1 \le l \le n-1 \text{ and } 1 \le m \le n \right\rangle.$$

*Proof.* For any  $l \in [n-1]$ , let  $\mathbf{b}_l = (n, \dots, n-l-1, \dots, n)$  (i.e. n-l-1 at the l-th place and elsewhere n). We claim that  $\mathbf{x}^{\mathbf{b}_l} \notin I_S$ . If not, then there is a  $\sigma \in S$  such that  $\mathbf{x}^{\sigma}$  divides  $\mathbf{x}^{\mathbf{b}_l}$ . Thus  $1 \leq \sigma(l) \leq n-l-1$ . This implies that  $l \leq n-2$ . Also, |[l+1,n]| = n-l and  $|\{a \in [n] : a < \sigma(l)\}| \leq n-l-2$  ensure that there exists  $i,j \in [l+1,n]$  such that  $\sigma(l) < \sigma(i) < \sigma(j)$ . But, then  $\sigma$  contains either 123 pattern or 132 pattern, a contradiction. Further, for any vector  $\mathbf{b}_l'$  with  $\mathbf{b}_l < \mathbf{b}_l' \leq \mathbf{n}$ ,  $\mathbf{x}^{\sigma'}$  divides  $\mathbf{x}^{\mathbf{b}_l'}$  for  $\sigma' = (n-1,n-2,\dots,1,n) \in S$ . This gives the minimal generators  $x_l^{l+1}$  for all  $l \in [n-1]$ . For [m,n], we take  $\mathbf{b}_{[m,n]} = (n,\dots,n,n-m,\dots,n-m)$  (i.e., the last n-m+1 co-ordinates are n-m, elsewhere n). Again,  $\mathbf{x}^{\mathbf{b}_{[m,n]}} \notin I_S$ , otherwise there is a  $\sigma \in S$  such that  $\mathbf{x}^{\sigma}$  divides  $\mathbf{x}^{\mathbf{b}_{[m,n]}}$ . Thus  $\sigma(i) \leq n-m \ \forall i \in [m,n]$ . Since |[m,n]| = n-m+1

and |[1, n-m]| = n-m, by the pigeon-hole principle, no such permutation  $\sigma$  exist. Also, if  $\mathbf{b}_{[m,n]} < \mathbf{b}'_{[m,n]} \leq \mathbf{n}$ , then we have  $\mathbf{x}^{\mathbf{b}'_{[m,n]}} \in I_S$ . This gives the minimal generator  $(\prod_{j\in[m,n]}x_j)^m$ .

As in Lemma 2.1, we compute the minimal generators of  $I_T^{[n]}$ .

*Lemma* 2.2. *The minimal generators of*  $I_T^{[n]}$  *are given by* 

$$I_T^{[\mathbf{n}]} = \left\langle x_l^{l+1}, \left( \prod_{j \in [m, m+1]} x_j \right)^m : 1 \le l \le n-1 \quad \text{and} \quad 1 \le m \le n \right\rangle,$$

where  $[m, m + 1] = \{m, m + 1\}$  for  $m \in [n - 1]$  and  $[n, n + 1] = \{n\}$ .

*Proof.* Proceeding as in the last lemma, we see that  $x_l^{l+1}$  is a minimal generator of  $I_T^{[n]}$  for all  $l \in [n-1]$ . For  $m \in [n-1]$ , we take  $\mathbf{b}_{[m,m+1]} = (n, \dots, n, n-m, n-m, \dots, n)$  (i.e. m-th and (m+1)-th co-ordinates are n-m, elsewhere n). Also,  $\mathbf{b}_{[n,n+1]}=(n,\ldots,n,0)$ (i.e., n-th co-ordinate is 0 and elsewhere n). We claim that  $\mathbf{x}^{\mathbf{b}_{[m,m+1]}} \notin I_T$ . Otherwise, there is a  $\sigma \in T$  such that  $\mathbf{x}^{\sigma}$  divides  $\mathbf{x}^{\mathbf{b}_{[m,m+1]}}$ . For m=n, we have  $\sigma(n) < 0$ , and for m=n-1, we must have  $\sigma(n-1) < 1$  and  $\sigma(n) < 1$ . Such a permutation  $\sigma$  is not possible. Also, for m=1, we have  $\sigma(1) \le n-1$  and  $\sigma(2) \le n-1$ . But for  $\sigma \in T$ , it can be checked that either  $\sigma(1) = n$  or  $\sigma(2) = n$ . Thus, we assume that  $2 \le m \le n - 2$ . Then  $\sigma(m) \le n - m$ and  $\sigma(m+1) < n-m$ . Since |[m,n]| = n-m+1 and |[1,n-m]| = n-m, by the pigeonhole principle, there exists  $l \in [m+2, n]$  such that  $n-m < \sigma(l)$ . If  $\sigma(m) < \sigma(m+1)$ , then permutation  $\sigma$  has a 123 pattern and if  $\sigma(m) > \sigma(m+1)$ , then it has a 213 pattern. Since  $\sigma \in T$ , this is not possible. Also, it is easy to verify that  $\mathbf{b}_{[m,m+1]} \leq \mathbf{n}$  is a maximal vector such that  $\mathbf{x}^{\mathbf{b}_{[m,m+1]}} \notin I_T$ . This gives the minimal generator  $(\prod_{i \in [m,m+1]} x_i)^m$ .  $\square$ 

We proceed to show that ideals  $I_S^{[n]}$  and  $I_T^{[n]}$  are both order monomial ideals. Order monomial ideals are introduced and studied in [9].

# **DEFINITION 2.3**

Let P be a finite poset. Let  $\{\omega_u : u \in P\}$  be a collection of monomials in  $k[x_1, \ldots, x_n]$ . The ideal  $I = \langle \omega_u : u \in P \rangle$  is called an *order monomial ideal* if for any pair  $u, v \in P$ , there is an upper bound  $w \in P$  of u and v such that  $\omega_w$  divides the least common multiple LCM( $\omega_u$ ,  $\omega_v$ ) of  $\omega_u$  and  $\omega_v$ .

Now we state a result of Postnikov and Shapiro (Theorem 6.1 of [9]) in terms of cellular resolution. Let  $\Delta$  be a labelled simplicial (or polyhedral) cell complex and  $\mathbb{F}_*(\Delta)$  be the free complex associated to  $\Delta$  (see [6]).

**Theorem 2.4** [9]. Let  $I = \langle \omega_u : u \in P \rangle$  be an order monomial ideal. Then the free complex  $\mathbb{F}_*(\Delta(P))$  supported on the order complex  $\Delta(P)$  is a cellular resolution of I. Further, the cellular resolution  $\mathbb{F}_*(\Delta(P))$  is minimal if the monomial label on any face of  $\Delta(P)$  is different from the monomial labels on its proper subfaces.

Let  $(\Sigma_n, \preceq)$  and  $(\tilde{\Sigma}_n, \preceq')$  be the posets defined in the Introduction. Let  $\Delta(\Sigma_n)$  and  $\Delta(\tilde{\Sigma}_n)$  be associated order (simplicial) complexes. If F is an i-1-dimensional face of  $\Delta(\Sigma_n)$  corresponding to a (strict) chain  $C_1 \prec \cdots \prec C_i$  of length i-1 in  $\Sigma_n$ , then the monomial label  $\mathbf{x}^{\nu(F)}$  on F is given by

$$\mathbf{x}^{\nu(F)} = \prod_{q=1}^{i} \left( \prod_{j \in C_q - C_{q-1}} x_j^{\nu_{j,C_q}} \right),$$

where  $C_0 = \emptyset$  and

$$v_{j,C_q} = \begin{cases} l+1 & \text{if } C_q = \{l\}, \\ m & \text{if } C_q = [m, n]. \end{cases}$$
 (2.1)

Similarly, if  $\tilde{F}$  is an i-1-dimensional face of  $\Delta(\tilde{\Sigma}_n)$  corresponding to a (strict) chain  $\tilde{C}_1 \prec' \cdots \prec' \tilde{C}_i$  of length i-1 in  $\tilde{\Sigma}_n$ , then the monomial label  $\mathbf{x}^{\mu(\tilde{F})}$  on  $\tilde{F}$  is given by

$$\mathbf{x}^{\mu(\tilde{F})} = \prod_{q=1}^{i} \left( \prod_{j \in \tilde{C}_q - \tilde{C}_{q-1}} x_j^{\mu_{j,\tilde{C}_q}} \right),$$

where  $\tilde{C}_0 = \emptyset$  and

$$\mu_{j,\tilde{C}_q} = \begin{cases} l+1 & \text{if } \tilde{C}_q = \{l\}, \\ m & \text{if } \tilde{C}_q = [m, m+1]. \end{cases}$$
 (2.2)

#### **PROPOSITION 2.5**

The ideals  $I_S^{[n]}$  and  $I_T^{[n]}$  are both order monomial ideals in R.

*Proof.* It is clear that  $I_S^{[\mathbf{n}]} = \langle \omega_u : u \in \Sigma_n \rangle$  and  $I_T^{[\mathbf{n}]} = \langle \omega_{\tilde{u}} : \tilde{u} \in \tilde{\Sigma}_n \rangle$ , where

$$\omega_{\{l\}} = x_l^{l+1}, \quad \omega_{[m,n]} = \left(\prod_{j \in [m,n]} x_j\right)^m \quad \text{and} \quad \omega_{[m,m+1]} = \left(\prod_{j \in [m,m+1]} x_j\right)^m.$$

Let u, v be a pair of elements of  $\Sigma_n$ . If u and v are comparable, then an upper bound w of u and v is given by  $w = \begin{cases} v & \text{if } u \leq v, \\ u & \text{if } v \leq u. \end{cases}$  Clearly,  $\omega_w$  divides LCM( $\omega_u, \omega_v$ ). If u and v are non-comparable, then  $\{u, v\} = \{\{i\}, [i+1, n]\}$  for some i < n. Clearly, w = [i, n] is an upper bound of u and v such that  $\omega_w$  divides LCM( $\omega_u, \omega_v$ ). Similarly, if we take a pair of non-comparable elements  $\tilde{u}, \tilde{v}$  in  $\tilde{\Sigma}_n$ , then  $\{\tilde{u}, \tilde{v}\} = \{\{i\}, \{i+1\}\}$  or  $\{\{i\}, [i+1, i+2]\}$  for some i < n. In either of the cases, we take an upper bound  $\tilde{w} = [i, i+1]$  of  $\tilde{u}$  and  $\tilde{v}$ , and see that  $\omega_{\tilde{w}}$  divides LCM( $\omega_{\tilde{u}}, \omega_{\tilde{v}}$ ). This completes the proof.

Example 2.6. For n=1 or 2, we have  $S=T=\mathfrak{S}_n$  and hence  $I_S^{[\mathbf{n}]}=I_T^{[\mathbf{n}]}=I_{\mathfrak{S}_n}^{[\mathbf{n}]}$ . Thus we consider these ideals for n=3. We have  $I_S^{[3]}=\langle x_1^2,x_2^3,x_3^3,x_1x_2x_3,x_2^2x_3^2\rangle$  and  $I_T^{[3]}=\langle x_1^2,x_2^3,x_3^3,x_1x_2,x_2^2x_3^2\rangle$ , while  $I_{\mathfrak{S}_3}^{[3]}$  is a tree ideal. The Hasse diagrams of posets  $(\Sigma_3,\preceq)$ ,  $(\tilde{\Sigma}_3,\preceq')$  and  $(\Sigma,\subseteq)$  are given in figure 1 and their order complexes with monomial vertex labels are indicated in figure 2. In figure 1, the vertices are subsets of  $\{1,2,3\}$ , which are represented by an array of elements.



**Figure 1.** Hasse diagrams of  $\Sigma_3$ ,  $\tilde{\Sigma}_3$  and  $\Sigma$ .



Figure 2. Order complexes with monomial labels on vertices.

In view of Theorem 2.4, the cellular resolution supported on  $\Delta(\Sigma_n)$  ( or  $\Delta(\tilde{\Sigma}_n)$ ) gives the minimal resolution of  $I_S^{[\mathbf{n}]}$  (respectively,  $I_T^{[\mathbf{n}]}$ ). Thus the i-th Betti numbers  $\beta_i(I_S^{[\mathbf{n}]}) =$  $f_i(\Delta(\Sigma_n))$  and  $\beta_i(I_T^{[\mathbf{n}]}) = f_i(\Delta(\tilde{\Sigma}_n))$ , where  $f_i(\Delta)$  denotes the number of *i*-dimensional faces of a simplicial complex  $\Delta$ .

**Theorem 2.7.** *For*  $0 \le r \le n-1$ ,

(a) 
$$\beta_r(I_S^{[\mathbf{n}]}) = f_r(\Delta(\Sigma_n)) = \sum_{s=0}^{r+1} {n-1 \choose s} {n-s \choose r+1-s}.$$
  
(b)  $\beta_r(I_T^{[\mathbf{n}]}) = f_r(\Delta(\tilde{\Sigma}_n)) = \sum_{s=0}^{r+1} {n-s \choose s} {n-s \choose r+1-s}.$ 

(b) 
$$\beta_r(I_T^{\mathbf{n}}) = f_r(\Delta(\Sigma_n)) = \sum_{s=0}^{r+1} {n-s \choose s} {n-s \choose r+1-s}$$

Proof.

(a) There are n-1 singletons  $\{l\}$  and n integer intervals [m,n] in the poset  $\Sigma_n$ . An r-dimensional face of  $\Delta(\Sigma_n)$  is a (strict) chain

$$C_1 \prec C_2 \prec \cdots \prec C_{r+1} \tag{2.3}$$

of length r in  $\Sigma_n$ . Suppose exactly s members in the chain (2.3) are singletons. Then any two singletons (or any two integer intervals) in  $\Sigma_n$  are comparable but a singleton  $\{l\}$  is comparable to an integer interval [m, n] if and only if  $m \neq l + 1$ . Also, for s singleton members in (2.3), exactly s integer intervals cannot occur in the chain. Now s singleton members in the chain (2.3) can be chosen in  $\binom{n-1}{s}$  ways, and for each such choice, the remaining r+1-s integer intervals in the chain can be chosen in  $\binom{n-s}{r+1-s}$  ways. Thus the total number of chains in  $\Sigma$  of length r having exactly s singleton members is  $\binom{n-1}{s}\binom{n-s}{r+1-s}$ . As s varies from 0 to r + 1, we get part(a).

(b) An r-dimensional face of  $\Delta(\tilde{\Sigma}_n)$  is a (strict) chain

$$\tilde{C}_1 \prec' \tilde{C}_2 \prec' \cdots \prec' \tilde{C}_{r+1}$$
 (2.4)

of length r in  $\tilde{\Sigma}_n$ . Suppose exactly s members in the chain (2.4) are singletons. Then any two non-consecutive singletons in  $\tilde{\Sigma}_n$  are comparable and s singletons in the chain form a s-subset of [n-1] having no consecutive elements. The number of such s-subsets is precisely  $\binom{n-s}{s}$ . Also, for s singleton members in the chain (2.4), exactly s integer intervals cannot occur in the chain. Now proceeding as in the part (a), we obtain part (b).

Miller et al. [5] defined generic and strongly generic monomial ideals. For more on generic ideals, we refer to [6]. We end this section with the following remarks.

#### Remark 2.8.

- (1) The tree ideal  $\mathcal{M}_{K_{n+1}} = I_{\mathfrak{S}_n}^{[\mathbf{n}]}$  is generic and therefore, a minimal resolution of the tree ideal is supported on its Scarf complex (see Theorem 6.13 of [6]). The Scarf complex of the tree ideal  $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$  is isomorphic to the first barycentric subdivision  $\mathbf{Bd}(\Delta_{n-1})$  of an (n-1)-simplex  $\Delta_{n-1}$ .
- (2) The ideals  $I_S^{[\mathbf{n}]}$  and  $I_T^{[\mathbf{n}]}$  are in fact strongly generic. Thus the Scarf complex of  $I_S^{[\mathbf{n}]}$  (or  $I_T^{[\mathbf{n}]}$ ) is isomorphic to the order complex  $\Delta(\Sigma_n)$  (respectively,  $\Delta(\tilde{\Sigma}_n)$ ) (see Lemma 6.5 of [9]).

### 3. Catalan parking functions

The standard monomials of  $\frac{R}{I_{\mathfrak{S}_n}^{[\mathbf{n}]}}$  are of the form  $\mathbf{x}^{\mathbf{p}}$ , where  $\mathbf{p}$  is an (ordinary) parking function of length n. Since  $I_S \subseteq I_{\mathfrak{S}_n}$ , we have  $I_{\mathfrak{S}_n}^{[\mathbf{n}]} \subseteq I_S^{[\mathbf{n}]}$ . Thus every standard monomial of  $\frac{R}{I_S^{[\mathbf{n}]}}$  is also a standard monomial of  $\frac{R}{I_{\mathfrak{S}_n}^{[\mathbf{n}]}}$ . We now characterize the standard monomials of  $\frac{R}{I_s^{[\mathbf{n}]}}$ .

Lemma 3.1. For a parking function  $\mathbf{p} = (p_1, \dots, p_n)$  of length  $n, \mathbf{x}^{\mathbf{p}} \notin I_S^{[\mathbf{n}]}$  if and only if  $p_i \leq i, \forall i \in [n]$ .

*Proof.* We see that  $\mathbf{x}^{\mathbf{p}} \in I_S^{[\mathbf{n}]}$  if and only if either  $p_l \ge l+1$  for some  $l \in [n-1]$  or there exists  $m \in [n]$  with  $p_j \ge m \ \forall j \in [m, n]$ . Therefore,

$$\mathbf{x}^{\mathbf{p}} \notin I_S^{[\mathbf{n}]} \Leftrightarrow \begin{cases} (\mathbf{i}) & p_l \le l \ \forall l \in [n-1], \text{ and} \\ (\mathbf{ii}) & \text{for any } m \in [n], \exists \ j \in [m,n] \text{ with } p_j < m. \end{cases}$$

As  $p_n < n$ , condition (i) is equivalent to  $p_i \le i$  for all i. Now we show that condition (ii) follows from condition (i). Let  $m \in [n]$ . If  $p_m < m$ , we can take j = m. So we assume that  $p_m = m$  and condition (ii) fails. Thus  $p_j \ge m$  for all  $j \in [m, n]$ . As  $p_i \le i$  for all i, we see that  $\{l \in [n] : p_l < m\} = [m-1]$ , a contradiction to  $|\{l \in [n] : p_l < m\}| \ge m$ . Hence (i) implies (ii).

Let  $\Lambda_n$  be the set of all parking functions of length n. Then  $|\Lambda_n| = (n+1)^{n-1}$ .

#### **DEFINITION 3.2**

A parking function  $\mathbf{p} = (p_1, \dots, p_n) \in \Lambda_n$  is called a Catalan parking function if  $p_i \leq i$ for all  $i \in [n]$ .

Let  $\Lambda_n^{\text{Cat}}$  be the set of all Catalan parking functions of length n. Then in view of Lemma 3.1,  $|\Lambda_n^{\text{Cat}}| = \dim_k \left(\frac{R}{I^{[n]}}\right)$ .

## **PROPOSITION 3.3**

The number of standard monomials of  $\frac{R}{I^{[n]}}$  is given by

$$\dim_k \left( \frac{R}{I_S^{[\mathbf{n}]}} \right) = n(n!) + \sum_{i=1}^n (-1)^i$$

$$\sum_{0 = j_0 < j_1 < \dots < j_i < n} (n - j_i)(n - j_i)! \left( \prod_{q=1}^i (j_q - j_{q-1})! \right).$$

*Proof.* This proposition follows from a general result of Postnikov and Shapiro (Proposition 8.4 of [9]). In fact.

$$\dim_k \left( \frac{R}{I_S^{[\mathbf{n}]}} \right) = \sum_{i=0}^n (-i)^i \sum_{C_1 \prec \dots \prec C_i} \left( \prod_{q=0}^i (\prod_{j \in C_q - C_{q-1}} (\nu_{j,\{j\}} - \nu_{j,C_q})) \right) \left( \prod_{l \notin C_i} \nu_{l,\{l\}} \right),$$

where  $C_0 = \emptyset$  and  $v_{j,C_q}$  as in (2.1). A term in the above expression corresponding to a (strict) chain  $C_1 \prec \cdots \prec C_i$  is zero if the chain has a singleton member. Thus the summation may be carried over chains of integer intervals of length i, which are determined by a sequence  $0 = j_0 < j_1 < \cdots < j_i < n$  of positive integers on setting  $C_t = [j_{i-t+1}, n]$ . This completes the proof.

**Theorem 3.4.** Let  $A_{n+1} = [m_{ij}]_{(n+1)\times(n+1)}$ , where  $m_{ij} = (j-i+1)!$  if  $i \leq j+1$  and  $m_{ij} = 0 \text{ if } i > j + 1. \text{ Then } \dim_k \left(\frac{R}{I_n^{[n]}}\right) = (-1)^n \det(A_{n+1}).$ 

*Proof.* Let B be the matrix obtained by applying the row-operation  $R_1 - R_2$  on  $A = A_{n+1}$ . Then det(B) = det(A). The r-th column vector  $\mathbf{v}_r$  of B is given by

$$\mathbf{v}_r = (r-1)(r-1)!e_1 + \sum_{s=1}^r (r-s)!e_{s+1}$$
 for  $1 \le r \le n+1$ ,

where  $\{e_1, \ldots, e_{n+1}\}$  is the standard basis of  $\mathbb{R}^{n+1}$  and  $e_{n+2} = 0$ . Since

$$\mathbf{v}_1 \wedge \mathbf{v}_2 \wedge \dots \wedge \mathbf{v}_{n+1} = \det(B)e_1 \wedge \dots \wedge e_{n+1} \tag{3.1}$$

by expanding the wedge product on the left-hand side, we get the desired result in view of Proposition 3.3. In fact, for a sequence  $0 = j_0 < j_1 < \cdots < j_i < n$ , let  $\mathbf{f}_r$  be a term from the vector  $\mathbf{v}_r$   $(1 \le r \le n+1)$  given by

$$\mathbf{f}_r = \begin{cases} (n - j_i)(n - j_i)!e_1 & \text{if } r = n + 1 - j_i, \\ (j_{t+1} - j_t)!e_{n - j_{t+1} + 2} & \text{if } r = n + 1 - j_t \ (t < i), \\ e_{r+1} & \text{if } r \neq n + 1 - j_t \ (0 \le t \le i). \end{cases}$$

Then  $\mathbf{f}_1 \wedge \cdots \wedge \mathbf{f}_{n+1}$  equals

$$\left( (n - j_i)(n - j_i)! \prod_{q=1}^{i} (j_q - j_{q-1})! \right) \\
\left( (-1)^{(n-j_i)} \prod_{q=1}^{i} (-1)^{j_q - j_{q-1} - 1} \right) e_1 \wedge \dots \wedge e_{n+1}.$$

Now we consider the integer sequence (A003319) in OEIS [11]. The n-th term  $a_n$  of this sequence is the number of irreducible (or indecomposable) permutations of  $[n] = \{1, 2, ..., n\}$ . A permutation  $\sigma \in \mathfrak{S}_n$  is *irreducible* if the restriction  $\sigma|_{[j]}$  of  $\sigma$  to [j] never induce a permutation of [j] for any  $1 \le j < n$ . It is easy to prove a recurrence relation  $a_n = n! - \sum_{j=1}^{n-1} (j!) a_{n-j}, n \ge 2$  with the initial condition  $a_1 = 1$ . As  $(-1)^{n-1} \det(A_n)$  also satisfies the same recurrence relation, we have  $a_n = (-1)^{n-1} \det(A_n)$ . This shows that  $|\Lambda_n^{\text{Cat}}| = (-1)^n \det(A_{n+1}) = a_{n+1}$ . As the number of Catalan parking functions of length n is the same as the number of irreducible permutations of [n+1], it would be an interesting problem to construct an explicit bijection between these objects.

#### 4. Restricted Catalan parking functions

In this section, we study standard monomials of  $\frac{R}{I_T^{[\mathbf{n}]}}$ . Since  $I_S^{[\mathbf{n}]} \subseteq I_T^{[\mathbf{n}]}$ , every standard monomial of  $\frac{R}{I_T^{[\mathbf{n}]}}$  is also a standard monomial of  $\frac{R}{I_S^{[\mathbf{n}]}}$ .

#### **DEFINITION 4.1**

A Catalan parking function  $\mathbf{p} = (p_1, \dots, p_n) \in \Lambda_n$  is called a *restricted Catalan parking function* if for  $i \in [n-1]$ , either  $p_i < i$  or  $p_{i+1} < i$ .

Let  $\tilde{\Lambda}_n^{\text{Cat}}$  be the set of all restricted Catalan parking functions of length n. As in Lemma 3.1, we see that the standard monomials of  $\frac{R}{I_T^{[\mathbf{n}]}}$  correspond bijectively to the restricted Catalan parking functions. Thus,  $|\tilde{\Lambda}_n^{\text{Cat}}| = \dim_k \left(\frac{R}{I_T^{[\mathbf{n}]}}\right)$ .

Using the minimal cellular resolution of  $\frac{R}{I^{[n]}}$  supported on the (labelled) order complex  $\Delta(\tilde{\Sigma})$ , the (fine) Hilbert series of  $H\left(\frac{R}{I_{\nu}^{[n]}},\mathbf{x}\right)$  of  $\frac{R}{I_{\nu}^{[n]}}$  is easily calculated (see [4]). We have

$$H\left(\frac{R}{I_T^{[\mathbf{n}]}}, \mathbf{x}\right) = \frac{\sum_{i=0}^n (-1)^i \sum_{(\tilde{C}_1, \dots, \tilde{C}_i) \in \tilde{\mathcal{F}}_{i-1}} \prod_{q=1}^i \left(\prod_{j \in \tilde{C}_q - \tilde{C}_{q-1}} x_j^{\mu_{j, \tilde{C}_q}}\right)}{(1 - x_1) \cdots (1 - x_n)},$$
(4.1)

where  $\tilde{\mathcal{F}}_{i-1}$  is the set of i-1-dimensional faces of  $\Delta(\tilde{\Sigma}_n)$ ,  $(\tilde{C}_1,\ldots,\tilde{C}_i)\in\tilde{\mathcal{F}}_{i-1}$  is a face represented by the (strict) chain  $\tilde{C}_1\prec'\cdots\prec'\tilde{C}_i$  of length i-1,  $\tilde{C}_0=\emptyset$  and  $\mu_{j,\tilde{C}_q}$  is as in (2.2). Also,  $H\left(\frac{R}{I_n^{[n]}}, \mathbf{x}\right) = \sum_{\mathbf{p} \in \tilde{\Lambda}_n^{\text{Cat}}} \mathbf{x}^{\mathbf{p}}$ .

#### **PROPOSITION 4.2**

The number of standard monomials of  $\frac{R}{I^{[n]}}$  is given by

$$\dim_k \left( \frac{R}{I_T^{[\mathbf{n}]}} \right) = \sum_{i=1}^n (-1)^{n-i} \sum_{\substack{(\tilde{C}_1, \dots, \tilde{C}_i) \in \tilde{\mathcal{F}}_{i-1} \\ \tilde{C}_1 \cup \dots \cup \tilde{C}_i = [n]}} \prod_{q=1}^i \left( \prod_{j \in \tilde{C}_q - \tilde{C}_{q-1}} \mu_{j, \tilde{C}_q} \right),$$

where summation is carried over all i-1-dimensional faces  $(\tilde{C}_1,\ldots,\tilde{C}_i)\in \tilde{\mathcal{F}}_{i-1}$  of  $\Delta(\tilde{\Sigma}_n)$  with  $\bigcup_{l=1}^i \tilde{C}_l = [n]$  and  $\tilde{C}_0 = \emptyset$ .

*Proof.* Clearly,  $\dim_k \left(\frac{R}{I_r^{[n]}}\right) = H\left(\frac{R}{I_r^{[n]}}, \mathbf{1}\right)$ , where  $\mathbf{1} = (1, \dots, 1)$ . On the other hand, letting  $\mathbf{x} \to \mathbf{1}$  in the rational function  $H\left(\frac{R}{I_r^{[\mathbf{n}]}}, \mathbf{x}\right) = \frac{Q(x)}{(1-x_1)...(1-x_n)}$  given by (4.1) and applying L'Hopital's rule, we get

$$H\left(\frac{R}{I_T^{[\mathbf{n}]}},\mathbf{1}\right) = \frac{1}{(-1)^n} \frac{\partial^n Q(x)}{\partial x_1 \dots \partial x_n} \Big|_{\mathbf{x}=\mathbf{1}}.$$

Now the term corresponding to a face  $(\tilde{C}_1,\ldots,\tilde{C}_i)\in \tilde{\mathcal{F}}_{i-1}$  is non-zero in the partial derivative  $\frac{\partial^n Q(x)}{\partial x_1...\partial x_n}$  only if  $\tilde{C}_1\cup\cdots\cup\tilde{C}_i=[n]$ . This completes the proof.

Remark 4.3.

(1) The (fine) Hilbert series of  $H\left(\frac{R}{I_c^{[n]}}, \mathbf{x}\right)$  of  $\frac{R}{I_c^{[n]}}$  is given by

$$H\left(\frac{R}{I_{s}^{[\mathbf{n}]}},\mathbf{x}\right) = \frac{\sum_{i=0}^{n} (-1)^{i} \sum_{(C_{1},\dots,C_{i})\in\mathcal{F}_{i-1}} \prod_{q=1}^{i} \left(\prod_{j\in C_{q}-C_{q-1}} x_{j}^{\nu_{j},C_{q}}\right)}{(1-x_{1})\cdots(1-x_{n})},$$

where  $\mathcal{F}_{i-1}$  is the set of i-1-dimensional faces of  $\Delta(\Sigma_n)$ ,  $(C_1,\ldots,C_i)\in\mathcal{F}_{i-1}$  is a face represented by the (strict) chain  $C_1 \prec \cdots \prec C_i$  of length i-1,  $C_0 = \emptyset$  and  $v_{j,C_q}$  is as in (2.1).

(2) Proceeding as in the proof of Proposition 4.2, we get

$$\dim_{k} \left( \frac{R}{I_{S}^{[\mathbf{n}]}} \right) = \sum_{i=1}^{n} (-1)^{n-i} \sum_{\substack{(C_{1}, \dots, C_{i}) \in \mathcal{F}_{i-1} \\ C_{1} \cup \dots \cup C_{i} = [n]}} \prod_{q=1}^{i} \left( \prod_{j \in C_{q} - C_{q-1}} v_{j, C_{q}} \right), \quad (4.2)$$

where summation is carried over all i-1-dimensional faces  $(C_1, \ldots, C_i) \in \mathcal{F}_{i-1}$  of  $\Delta(\Sigma_n)$  with  $\bigcup_{l=1}^i C_l = [n]$  and  $C_0 = \emptyset$ . Since Proposition 3.3 is not immediate from formula (4.2), we used a result of Postnikov and Shapiro in its proof.

Let 
$$b_n = |\tilde{\Lambda}_n^{\text{Cat}}| = \dim_k \left(\frac{R}{l_T^{[n]}}\right)$$
 for  $n \in \mathbb{N}$ . Then  $b_1 = 1$ ,  $b_2 = 3$  and  $b_3 = 11$ .

**Theorem 4.4.** The integer sequence  $\{b_n = |\tilde{\Lambda}_n^{\text{Cat}}|\}_{n=1}^{\infty}$  satisfies a second-order recurrence relation

$$b_n = nb_{n-1} + (n-1)b_{n-2}; \quad n \ge 3$$

with initial conditions  $b_1 = 1$ ,  $b_2 = 3$ .

*Proof.* From Proposition 4.2,  $b_n = \sum_{i=1}^n (-1)^{n-i} \left( \sum_{\tilde{F} \in \tilde{\mathcal{F}}_{i-1}, \ \cup \tilde{F} = [n]} \pi(\tilde{F}) \right)$ , where summation is carried over (i-1)-dimensional faces  $\tilde{F} = (\tilde{C}_1, \dots, \tilde{C}_i)$  of  $\Delta(\tilde{\Sigma}_n)$  with  $\cup \tilde{F} = \tilde{C}_1 \cup \dots \cup \tilde{C}_i = [n]$  and  $\pi(\tilde{F}) = \prod_{q=1}^i (\prod_{j \in \tilde{C}_q - \tilde{C}_{q-1}} \mu_{j,\tilde{C}_q})$ . For  $n \geq 3$ , we divide such faces  $\tilde{F}$  of  $\Delta(\tilde{\Sigma}_n)$  into three types:

- (1) A (i-1)-dimensional face  $\tilde{F}$  is said to be of Type I if the pair  $(\tilde{C}_1, \tilde{C}_2)$  has one of the three values; namely,  $(\{n-1\}, [n-1, n])$ ,  $([n, n+1], \{n-2\})$  or ([n, n+1], [n-2, n-1]). On deleting  $\tilde{C}_1$  from the (i-1)-dimensional face  $\tilde{F}$  of Type I, we get (i-2)-dimensional face  $\tilde{F}'$  of  $\Delta(\tilde{\Sigma}_{n-1})$  with  $\cup \tilde{F}' = [n-1]$ . Conversely, every such (i-2) dimensional face  $\tilde{F}'$  of  $\Delta(\tilde{\Sigma}_{n-1})$  extends uniquely to the (i-1)-dimensional face  $\tilde{F}$  of  $\Delta(\tilde{\Sigma}_n)$  of Type I. Also, for a Type I face, we have  $\pi(\tilde{F}) = n\pi(\tilde{F}')$ .
- (2) A (i-1)-dimensional face  $\tilde{F}$  is said to be of Type-II if  $\tilde{C}_1 = [n-1,n]$ . On deleting  $\tilde{C}_1$  from the (i-1)-dimensional face  $\tilde{F}$  of Type II, we get (i-2)-dimensional face  $\tilde{F}''$  of  $\Delta(\tilde{\Sigma}_{n-2})$  with  $\cup \tilde{F}'' = [n-2]$ . Again, every such (i-2) dimensional face  $\tilde{F}''$  of  $\Delta(\tilde{\Sigma}_{n-2})$  extends uniquely to the (i-1)-dimensional face  $\tilde{F}$  of  $\Delta(\tilde{\Sigma}_n)$  of Type II. Also, for a Type II face, we have  $\pi(\tilde{F}) = (n-1)^2 \pi(\tilde{F}'')$ .
- (3) A (i-1)-dimensional face  $\tilde{F}$  is said to be of Type-III if the pair  $(\tilde{C}_1,\tilde{C}_2)=([n,n+1],[n-1,n])$ . On deleting  $\tilde{C}_1$  and  $\tilde{C}_2$  from a (i-1)-dimensional face  $\tilde{F}$  of Type III, we get a (i-3)-dimensional face  $\tilde{F}'''$  of  $\Delta(\tilde{\Sigma}_{n-2})$  with  $\cup \tilde{F}'''=[n-2]$ . Again, every such (i-3) dimensional face  $\tilde{F}'''$  of  $\Delta(\tilde{\Sigma}_{n-2})$  extends uniquely to the (i-1)-dimensional face  $\tilde{F}$  of  $\Delta(\tilde{\Sigma}_n)$  of Type III. Also, for a Type III face, we have  $\pi(\tilde{F})=n(n-1)\pi(\tilde{F}''')$ .

Now dividing the summation in  $b_n$  according to the type of i-1-dimensional faces, we get

$$b_n = \sum_{i=1}^n (-1)^{n-i} \left[ \sum_{\tilde{F} \text{ (Type I)}} + \sum_{\tilde{F} \text{ (Type II)}} + \sum_{\tilde{F} \text{ (Type III)}} \right] \pi(\tilde{F}).$$

As 
$$n - i = (n - 1) - (i - 1) = (n - 2) - (i - 1) + 1 = (n - 2) - (i - 2)$$
, we clearly have  $b_n = nb_{n-1} + [-(n-1)^2 + n(n-1)]b_{n-2}$ .

We consider the integer sequence (A000255) in OEIS [11]. The n-th term  $\tilde{a}_n$  of this sequence counts permutations of [n+1] having no substring  $\{l, l+1\}$ . It is known that for  $n \geq 1$ ,  $\tilde{a}_n = \det\left([\tilde{m}_{ij}]_{n \times n}\right)$ , where  $\tilde{m}_{ii} = \tilde{m}_{i+1i} = i$ ,  $\tilde{m}_{ii+1} = -1$  and  $m_{ij} = 0$  if  $|i-j| \geq 2$ . It is straight forward to check that the integer sequence  $\{\tilde{a}_n\}_{n=1}^{\infty}$  satisfies the second-order recurrence relation  $\tilde{a}_n = n\tilde{a}_{n-1} + (n-1)\tilde{a}_{n-2}$ ;  $n \geq 3$  with initial conditions  $\tilde{a}_1 = 1$ ,  $\tilde{a}_2 = 3$ .

#### Theorem 4.5.

$$|\tilde{\Lambda}_n^{\text{Cat}}| = \dim_k \left( \frac{R}{I_T^{[\mathbf{n}]}} \right) = \det \left( [\tilde{m}_{ij}]_{n \times n} \right).$$

*Proof.* Since both integer sequences  $\{b_n = |\tilde{\Lambda}_n^{\text{Cat}}|\}_{n=1}^{\infty}$  and  $\{\tilde{a}_n = \det([\tilde{m}_{ij}]_{n \times n})\}_{n=1}^{\infty}$  satisfy the same second-order recurrence relation with the same initial conditions, we have  $b_n = \tilde{a}_n$ ,  $\forall n > 1$ .

#### 5. Some generalizations

All the results about monomial ideals  $I_S$ ,  $I_T$  and their Alexander duals can be extended to a slightly larger class of monomial ideals. In this section, we outline these generalizations. Let  $\mathbf{u} = (u_1, \ldots, u_n) \in \mathbb{N}^n$  with  $1 \leq u_1 < \cdots < u_n$  and for every  $\sigma \in \mathfrak{S}_n$ ,  $\mathbf{x}^{\sigma \mathbf{u}} = \prod_{i=1}^n x_i^{u_{\sigma(i)}}$  be the associated monomial. We consider the monomial ideals  $I_S(\mathbf{u}) = \langle \mathbf{x}^{\sigma \mathbf{u}} : \sigma \in S \rangle$  and  $I_T(\mathbf{u}) = \langle \mathbf{x}^{\sigma \mathbf{u}} : \sigma \in T \rangle$  in R. Clearly,  $I_S((1, 2, \ldots, n)) = I_S$  and  $I_T((1, 2, \ldots, n)) = I_T$ . The monomial ideal  $I(\mathbf{u}) = I_{\mathfrak{S}_n}(\mathbf{u}) = \langle \mathbf{x}^{\sigma \mathbf{u}} : \sigma \in \mathfrak{S}_n \rangle$  is again called a *permutohedron ideal*.

For an integer  $c \ge 1$ , set  $\mathbf{u_n} + \mathbf{c} - \mathbf{1} = (u_n + c - 1, \dots, u_n + c - 1) \in \mathbb{N}^n$ . We consider the Alexander dual  $I_S(\mathbf{u})^{[\mathbf{u_n} + \mathbf{c} - 1]}$  (or  $I_T(\mathbf{u})^{[\mathbf{u_n} + \mathbf{c} - 1]}$ ) of  $I_S(\mathbf{u})$  (or  $I_T(\mathbf{u})$ ) with respect to  $\mathbf{u_n} + \mathbf{c} - \mathbf{1}$ . Let  $\lambda = (\lambda_1, \dots, \lambda_n)$ , where  $\lambda_i = u_n - u_i + c$ .

Lemma 5.1. The minimal generators of the Alexander duals  $I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]}$  and  $I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]}$  are given by

$$I_{S}(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]} = \left\langle x_l^{\lambda_{n-l}}, \left( \prod_{j=m}^n x_j \right)^{\lambda_{n-m+1}} : 1 \le l \le n-1, 1 \le m \le n \right\rangle$$

and

$$I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]} = \left\langle x_l^{\lambda_{n-l}}, \left( \prod_{j \in [m,m+1]} x_j \right)^{\lambda_{n-m+1}} : 1 \le l \le n-1, 1 \le m \le n \right\rangle,$$

where  $[m, m + 1] = \{m, m + 1\}$  for  $m \in [n - 1]$  and  $[n, n + 1] = \{n\}$ .

*Proof.* Proceeding as in the proof of Lemmas 2.1 and 2.2, we get the minimal generators on taking  $\mathbf{b}_l(\mathbf{u}) = (u_n + c - 1, \dots, u_{n-l} - 1, \dots, u_n + c - 1)$ ,  $\mathbf{b}_{[m,n]}(\mathbf{u}) = (u_n + c - 1, \dots, u_n + c - 1, \dots, u_{n-m+1} - 1)$  and  $\mathbf{b}_{[m,m+1]}(\mathbf{u}) = (u_n + c - 1, \dots, u_{n-m+1} - 1, \dots, u_{n-m+1} - 1, \dots, u_n + c - 1)$ , in place of  $\mathbf{b}_l$ ,  $\mathbf{b}_{[m,n]}$  and  $\mathbf{b}_{[m,m+1]}$ , respectively.

Remark 5.2. Since we are interested in the Alexander duals  $I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$  and  $I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$  such that their respective quotients  $\frac{R}{I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}}$  and  $\frac{R}{I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}}$  are Artinian, we have assumed that  $u_1 \geq 1$ . However, both the ideals  $I_S(\mathbf{u})$  and  $I_T(\mathbf{u})$  are also defined for  $\mathbf{u} = (u_1, \dots, u_n) \in \mathbb{N}^n$  with  $u_1 = 0$ .

We label the order complexes  $\Delta(\Sigma_n)$  and  $\Delta(\tilde{\Sigma}_n)$  so that the monomial ideals generated by vertex labels are  $I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$  and  $I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$ , respectively. If F is an i-1-dimensional face of  $\Delta(\Sigma_n)$  corresponding to a (strict) chain  $C_1 \prec \cdots \prec C_i$  of length i-1 in  $\Sigma_n$ , then the monomial label  $\mathbf{x}^{\nu^{\mathbf{u}}(F)}$  on F is given by

$$\mathbf{x}^{\mathbf{v}^{\mathbf{u}}(F)} = \prod_{q=1}^{i} \left( \prod_{j \in C_q - C_{q-1}} x_j^{\mathbf{v}^{\mathbf{u}}_{j,C_q}} \right),$$

where  $C_0 = \emptyset$  and

$$v_{j,C_q}^{\mathbf{u}} = \begin{cases} \lambda_{n-l} & \text{if } C_q = \{l\}, \\ \lambda_{n-m+1} & \text{if } C_q = [m, n]. \end{cases}$$
 (5.1)

Similarly, if  $\tilde{F}$  is an i-1-dimensional face of  $\Delta(\tilde{\Sigma}_n)$  corresponding to a (strict) chain  $\tilde{C}_1 \prec' \cdots \prec' \tilde{C}_i$  of length i-1 in  $\tilde{\Sigma}_n$ , then the monomial label  $\mathbf{x}^{\mu^{\mathbf{u}}(\tilde{F})}$  on  $\tilde{F}$  is given by

$$\mathbf{x}^{\mu^{\mathbf{u}}(\tilde{F})} = \prod_{q=1}^{i} \left( \prod_{j \in \tilde{C}_q - \tilde{C}_{q-1}} x_j^{\mu^{\mathbf{u}}_{j,\tilde{C}_q}} \right),$$

where  $\tilde{C}_0 = \emptyset$  and

$$\mu_{j,\tilde{C}_{q}}^{\mathbf{u}} = \begin{cases} \lambda_{n-l} & \text{if } \tilde{C}_{q} = \{l\}, \\ \lambda_{n-m+1} & \text{if } \tilde{C}_{q} = [m, m+1]. \end{cases}$$
 (5.2)

Now we have the following generalization of Theorem 2.7.

# **PROPOSITION 5.3**

For 0 < r < n - 1,

$$\beta_r(I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}) = f_r(\Delta(\Sigma_n))$$
 and  $\beta_r(I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}) = f_r(\Delta(\tilde{\Sigma}_n)).$ 

*Proof.* Both  $I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$  and  $I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$  are order monomial ideals, thus the cellular resolution supported on the order complexes  $\Delta(\Sigma_n)$  and  $\Delta(\tilde{\Sigma}_n)$  give their minimal resolutions, respectively.

Remark 5.4.

- (1)  $I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$  and  $I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$  are both strongly generic ideals.
- (2) The LCM-lattices of  $I_S^{[n]}$  and  $I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$  (or  $I_T^{[n]}$  and  $I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}$ ) are isomorphic by an isomorphism induced by 'relabeling' [3]. This also establishes the equality of Betti numbers

$$\beta_r(I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}) = \beta_r(I_S^{[\mathbf{n}]}) \text{ and } \beta_r(I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}) = \beta_r(I_T^{[\mathbf{n}]}).$$

We recall that the standard monomials of  $\frac{R}{I(\mathbf{u})^{[\mathbf{u}_{\mathbf{n}}+\mathbf{c}-\mathbf{1}]}}$  are of the form  $\mathbf{x}^{\mathbf{p}}$ , where  $\mathbf{p}$  is a  $\lambda$ -parking function of length n for  $\lambda = (\lambda_1, \ldots, \lambda_n)$ ;  $\lambda_i = u_n - u_i + c$ . Now the standard monomials of  $\frac{R}{I_S(\mathbf{u})^{[\mathbf{u}\mathbf{u}+\mathbf{c}-1]}}$  and  $\frac{R}{I_T(\mathbf{u})^{[\mathbf{u}\mathbf{u}+\mathbf{c}-1]}}$  are given as follows.

Lemma 5.5. Let  $\mathbf{p} = (p_1, \dots, p_n)$  be a  $\lambda$ -parking function of length n. Then

- (a)  $\mathbf{x}^{\mathbf{p}} \notin I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]} \Leftrightarrow p_j < \lambda_{n-j} \ \forall j \in [n-1].$ (b)  $\mathbf{x}^{\mathbf{p}} \notin I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]} \Leftrightarrow p_j < \lambda_{n-j} \ \forall j \in [n-1] \ and \ either \ p_j < \lambda_{n-j+1} \ or$  $p_{i+1} < \lambda_{n-i+1}$ .

*Proof.* These conditions are verified as in the proof of Lemma 3.1. 

#### **DEFINITION 5.6**

A  $\lambda$ -parking function  $\mathbf{p} = (p_1, \dots, p_n)$  of length n is said to be a Catalan  $\lambda$ -parking function if  $p_i < \lambda_{n-i} \ \forall j \in [n-1]$ . Also, a Catalan  $\lambda$ -parking function  $\mathbf{p} = (p_1, \dots, p_n)$ is said to be a restricted Catalan  $\lambda$ -parking function if in addition, either  $p_i < \lambda_{n-j+1}$  or  $p_{i+1} < \lambda_{n-i+1} \ \forall j \in [n-1].$ 

Henceforth, we take  $\mathbf{u} = (u_1, \dots, u_n)$  such that  $u_1 \ge 1$  and  $u_i = u_1 + (i-1)b$  for some integer  $b \ge 1$ . In other words, the sequence  $\{u_i\}$  is an arithmetic progression. The sequence  $\{\lambda_i\}$  with  $\lambda_i = u_n - u_i + c = c + (n-i)b \ \forall i \in [n]$  is also an arithmetic progression. Sometimes, we put  $\lambda_0 = c + nb$ . To emphasize that  $\lambda$  depends only on b and c, we write  $\lambda = \lambda(c, b)$ . Let  $\Lambda_n(\lambda(c, b))$  be the set of  $\lambda(c, b)$ -parking functions of length n and its subset consisting of Catalan  $\lambda(c,b)$ -parking functions (or restricted Catalan  $\lambda(c,b)$ -parking functions) be denoted by  $\Lambda_n^{\text{Cat}}(\lambda(c,b))$  (or  $\tilde{\Lambda}_n^{\text{Cat}}(\lambda(c,b))$ ). Then  $|\Lambda_n(\lambda(c,b))| = c(c+nb)^{n-1}$  (see [8,9]). In view of Lemma 5.5, we have  $|\Lambda_n^{\text{Cat}}(\lambda(c,b))| = c(c+nb)^{n-1}$  $\dim_k \left( \frac{R}{I_S(\mathbf{u})^{[\mathbf{u}\mathbf{n}+\mathbf{c}-\mathbf{1}]}} \right) \text{ and } |\tilde{\Lambda}_n^{\mathrm{Cat}}(\lambda(c,b))| = \dim_k \left( \frac{R}{I_T(\mathbf{u})^{[\mathbf{u}\mathbf{n}+\mathbf{c}-\mathbf{1}]}} \right).$ 

**Theorem 5.7.** Let  $\mathbf{u} = (u_1, ..., u_n)$  with  $u_1 \ge 1$  and  $u_i = u_1 + (i-1)b \ \forall i \in [n]$ .

(1) The number of standard monomials of  $\frac{R}{I_S(\mathbf{u})[\mathbf{u}_n+\mathbf{c}-\mathbf{1}]}$  is given by

$$\dim_{k} \left( \frac{R}{I_{S}(\mathbf{u})^{[\mathbf{u_{n}+c-1}]}} \right) = \lambda_{1} \prod_{t=1}^{n-1} \lambda_{t}$$

$$+ \sum_{i=1}^{n} (-1)^{n-i} \sum_{0=j_{0} < j_{1} < \dots < j_{i} < n} \Theta(j_{1}, \dots, j_{i}),$$

where summation runs over all sequences  $0 < j_1 < \cdots < j_i < n$  and

$$\Theta(j_1, \dots, j_i) = b^{n-j_i+1}(n-j_i)(n-j_i)!$$

$$\left(\prod_{q=2}^i b^{j_q-j_{q-1}}(j_q-j_{q-1})!\right) \prod_{s=n-j_1+1}^{n-1} \lambda_s.$$

(2) Let  $A_{n+1}^{\lambda} = [m_{ij}^{\lambda}]_{(n+1)\times(n+1)}$  be a matrix such that

$$m_{ij}^{\lambda} = \begin{cases} b^{j-i+1}(j-i+1)! & \text{if } i \leq j+1; \ j < n+1, \\ 0 & \text{if } i > j+1; \ j < n+1, \\ \prod_{s=i-1}^{n-1} \lambda_s & \text{if } j = n+1. \end{cases}$$

Then 
$$|\Lambda_n^{\operatorname{Cat}}(\lambda(c,b))| = \dim_k \left(\frac{R}{I_S(\mathbf{u})[\mathbf{u_n}+\mathbf{c}-1]}\right) = (-1)^n \det \left(A_{n+1}^{\lambda}\right).$$

*Proof.* Proceeding as in the proof of Proposition 3.3, we get an expression for  $\dim_k\left(\frac{R}{I_S(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-1]}}\right)$  exactly similar to that of  $\dim_k\left(\frac{R}{I_S^{[\mathbf{n}]}}\right)$ , with  $v_{j,C_q}^{\mathbf{u}}$  in place of  $v_{j,C_q}$ . Now a straightforward calculation verifies the first part. On applying the row operation  $R_1-bR_2$  on the matrix  $A_{n+1}^{\lambda}$ , and expanding the determinant of the resulting matrix along the (n+1)-th column, we also get the second part.

The (fine) Hilbert series  $H\left(\frac{R}{I_T(\mathbf{u})[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]},\mathbf{x}\right)$  of  $\frac{R}{I_T(\mathbf{u})[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]}$  is obtained from (4.1) by simply replacing  $\mu_{j,\tilde{C}_q}$  with  $\mu_{j,\tilde{C}_q}^{\mathbf{u}}$  (as in (5.2)). Thus

$$H\left(\frac{R}{I_T(\mathbf{u})^{[\mathbf{u_n}+\mathbf{c}-\mathbf{1}]}},\mathbf{x}\right)$$

$$=\frac{\sum_{i=0}^n(-1)^i\sum_{(\tilde{C}_1,\ldots,\tilde{C}_i)\in\tilde{\mathcal{F}}_{i-1}}\prod_{q=1}^i\left(\prod_{j\in\tilde{C}_q-\tilde{C}_{q-1}}x_j^{\mu_{j,\tilde{C}_q}^{\mathbf{u}}}\right)}{(1-x_1)\cdots(1-x_n)}.$$

#### **PROPOSITION 5.8**

The number of standard monomials of  $\frac{R}{I_T(\mathbf{u})[\mathbf{u}_\mathbf{n}+\mathbf{c}-\mathbf{1}]}$  is given by

$$\dim_{k}\left(\frac{R}{I_{T}(\mathbf{u})^{[\mathbf{u_{n}+c-1}]}}\right) = \sum_{i=1}^{n} (-1)^{n-i} \sum_{\substack{(\tilde{C}_{1},...,\tilde{C}_{i}) \in \tilde{\mathcal{F}}_{i-1} \\ \tilde{C}_{1} \cup \cdots \cup \tilde{C}_{i} = [n]}} \prod_{q=1}^{i} \left(\prod_{j \in \tilde{C}_{q} - \tilde{C}_{q-1}} \mu_{j,\tilde{C}_{q}}^{\mathbf{u}}\right),$$

where summation is carried over all i-1-dimensional faces  $(\tilde{C}_1,\ldots,\tilde{C}_i)\in \tilde{\mathcal{F}}_{i-1}$  of  $\Delta(\tilde{\Sigma}_n)$  with  $\bigcup_{l=1}^i \tilde{C}_l = [n]$  and  $\tilde{C}_0 = \emptyset$ .

*Proof.* Proceed as in the proof of Proposition 4.2.

For an integer  $n \ge 1$ , let  $b_n^{\lambda} = |\tilde{\Lambda}_n^{\text{Cat}}(\lambda(c,b))| = \dim_k \left(\frac{R}{|T_r(\mathbf{u})|^{[\mathbf{u}_n + \mathbf{c} - 1]}}\right)$ . Then  $b_1^{\lambda} = c$  and  $b_2^{\lambda} = c(c+2b).$ 

**Theorem 5.9.** The integer sequence  $\{b_n^{\lambda} = |\tilde{\Lambda}_n^{\text{Cat}}(\lambda(c,b))|\}_{n=1}^{\infty}$  satisfies a second-order recurrence relation

$$b_n^{\lambda} = ((n-1)b+c)b_{n-1}^{\lambda} + ((n-2)b^2+bc)b_{n-2}^{\lambda}; \quad n \ge 3$$

with initial conditions  $b_1^{\lambda} = c, b_2^{\lambda} = c(c+2b)$ .

*Proof.* From Proposition 5.8,  $b_n^{\lambda} = \sum_{i=1}^n (-1)^{n-i} (\sum_{\tilde{F} \in \mathcal{F}_{i-1}, \ \cup \tilde{F} = [n]} \pi^{\mathbf{u}}(\tilde{F}))$ , where summation is carried over (i-1)-dimensional faces  $\tilde{F} = (\tilde{C}_1, \dots, \tilde{C}_i)$  of  $\Delta(\tilde{\Sigma}_n)$  with  $\cup \tilde{F} = \tilde{C}_1 \cup \dots \cup \tilde{C}_i = [n]$  and  $\pi^{\mathbf{u}}(\tilde{F}) = \prod_{q=1}^i \left(\prod_{j \in \tilde{C}_q - \tilde{C}_{q-1}} \mu_{i,\tilde{C}_q}^{\mathbf{u}}\right)$ . For  $n \geq 3$ , we divide such faces  $\tilde{F}$  of  $\Delta(\tilde{\Sigma}_n)$  into three types as in the proof of Theorem 4.4.

Let  $\tilde{F}$  be an (i-1)-dimensional face of  $\Delta(\hat{\Sigma}_n)$ . If  $\tilde{F}$  is of Type I, then there is a unique (i-2)-dimensional face  $\tilde{F}'$  of  $\Delta(\tilde{\Sigma}_{n-1})$  with  $\cup \tilde{F}' = [n-1]$  and  $\pi^{\mathbf{u}}(\tilde{F}) = \lambda_1 \pi^{\mathbf{u}}(\tilde{F}')$ . If  $\tilde{F}$  is of Type II, then there is a unique (i-2)-dimensional face  $\tilde{F}''$  of  $\Delta(\widetilde{\Sigma}_{n-2})$  with  $\cup \tilde{F}'' = [n-2]$  and  $\pi^{\mathbf{u}}(\tilde{F}) = (\lambda_2)^2 \pi^{\mathbf{u}}(\tilde{F}'')$ . Again, if  $\tilde{F}$  is of Type III, then there is a unique (i-3)-dimensional face  $\tilde{F}'''$  of  $\Delta(\tilde{\Sigma}_{n-2})$  with  $\cup \tilde{F}''' = [n-2]$  and  $\pi^{\mathbf{u}}(\tilde{F}) = \lambda_1 \lambda_2 \pi^{\mathbf{u}}(\tilde{F}''')$ . Now rearranging terms in  $b_n^{\lambda}$ , we get

$$b_n^{\lambda} = \sum_{i=1}^n (-1)^{n-i} \left[ \sum_{\tilde{F} \text{ (Type I)}} + \sum_{\tilde{F} \text{ (Type II)}} + \sum_{\tilde{F} \text{ (Type III)}} \right] \pi^{\mathbf{u}}(\tilde{F}).$$

As n-i=(n-1)-(i-1)=(n-2)-(i-1)+1=(n-2)-(i-2), we clearly have  $b_n^{\lambda}=\lambda_1b_{n-1}^{\lambda}+[-(\lambda_2)^2+\lambda_1\lambda_2]b_{n-2}^{\lambda}$ .

Let  $\lambda = \lambda(c, b)$  and let  $\left[\tilde{n}_{ij}^{\lambda}\right]_{n \times n}$  be a tridiagonal matrix such that

$$\tilde{m}_{ij}^{\lambda} = \begin{cases} c + (i-1)b & \text{if } i = j \text{ or } i = j+1, \\ -b & \text{if } j = i+1, \\ 0 & \text{if } |i-j| \ge 2. \end{cases}$$

Theorem 5.10.

$$|\tilde{\Lambda}_n^{\operatorname{Cat}}(\lambda(c,b))| = \dim_k \left( \frac{R}{I_T(\mathbf{u})^{[\mathbf{u_n} + \mathbf{c} - \mathbf{1}]}} \right) = \det([\tilde{m}_{ij}^{\lambda}]_{n \times n}).$$

*Proof.* Since integer sequences  $\{b_n^{\lambda} = |\tilde{\Lambda}_n^{\text{Cat}}(\lambda(c,b))|\}_{n=1}^{\infty}$  and  $\{\det\left([\tilde{m}_{ij}^{\lambda}]_{n \times n}\right)\}_{n=1}^{\infty}$  satisfy the same second-order recurrence relation with the same initial conditions, they must be identical. 

# Acknowledgements

Thanks are due to the anonymous referee for many valuable suggestions that improved the overall presentation of the paper.

#### References

- [1] Bayer D, Peeva I and Sturmfels B, Monomial resolutions, Math. Res. Lett. 5 (1998) 31–46
- [2] Bayer D and Sturmfels B, Cellular resolution of monomial modules, *J. für die Reine und Angewandte Mathematik* **502** (1998) 123–140
- [3] Gasharov V, Peeva I and Welker V, The LCM-lattice in monomial resolutions, *Math. Res. Lett.* **5–6** (1999) 521–532
- [4] Kumar A and Kumar C, Alexander Alexander duals of multipermutohedron ideals, *Proc. Indian Acad. Sci.(Math. Sci.)* **124(1)** (2014) 1–15
- [5] Miller E, Sturmfels B and Yanagawa K, Generic and cogeneric monomial ideals, J. Symbolic Comput. 29 (2000) 691–708
- [6] Miller E and Sturmfels B, Combinatorial commutative algebra, Graduate Texts in Mathematics 227 (2004) (Springer)
- [7] Miller E, Alexander duality for monomial ideals and their resolutions, *Rejecta Mathematica* **1(1)** (2009) 18–57
- [8] Pitman J and Stanley R, A polytope related to empirical distribution, plane trees, parking functions and the associahedron, *Discrete and Computational Geometry* **27** (2002) 603–634
- [9] Postnikov A and Shapiro B, Trees, parking functions, syzygies, and deformation of monomial ideals, *Trans. Amer. Math. Soc.* **356** (2004) 3109–3142
- [10] Simion R and Schmidt F W, Restricted permutations, Europ. J. Combinatorics 6 (1985) 383– 406
- [11] Sloane N J A, Online encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/
- [12] Yan C H, On the enumeration of generalized parking functions, Proceedings of the 31st Southeastern International Conference on Combinatorics, Graph Theory and Computing (2000) (FL: Boca Raton), Congressus Numerantium **147** (2000) 201–209

COMMUNICATING EDITOR: B Sury