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1. Introduction

In the past 30 years, and particularly during the last decade, there has been a growing

interest in the use of probability in finite groups. In the current article we shall consider

one aspect of the way in which probability has been applied to problems in group theory.

That is, the probability that a randomly chosen element has an n-th root, for a positive

integer n, in some well-known classes of finite groups.

An element g of a finite group G is said to have an n-th root if there exists an element

h ∈ G such that g = hn (n is a positive integer). Note that g may have at least an n-th root,

or it may have none.

Let Gn be the set of all elements of G which have at least one n-th root, i.e.

Gn = {g ∈ G | ∃ h ∈ G s.t g = hn}

or simply Gn = {gn | g ∈ G}. Then Pn(G) =
|Gn|
|G|

is the probability that a randomly

chosen element in G has an n-th root.

The properties of P2(Sn), where Sn denotes the symmetric group on n letters have

been studied by some authors in [2, 3, 9]. Recently, the basic properties of P2(G) for an

arbitrary finite group G have been studied (for example, see [5, 8]). Moreover, P2(G), in

the case in which G is a simple group of Lie type of rank 1 or when G is an alternating

group have been calculated by the authors of those articles. Already, in [1], we generalized

the probability to p-th root (p > 2 is a prime number) and gave some bounds for it. We

showed that the set X = {Pp(G) | G is a finite group} is a dense subset of the closed

interval [0, 1]. Also, in [10], the n-th roots of the elements of the dihedral groups and the

generalized quaternion groups have been calculated by Sadeghieh and Doostie.
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The polyhedral groups (ℓ,m, n) for ℓ,m, n > 1 are defined by the presentation

〈x, y, z | xℓ = ym = zn = xyz = 1〉, (1)

or equivalently by the presentation

〈x, y | xℓ = ym = (xy)n = 1〉 (2)

and are classic in group theory. They are important both in algebra and geometry. It is

known that the polyhedral group (ℓ,m, n) is finite if and only if 1
ℓ

+ 1
m

+ 1
n

> 1, and in

this case the order of it is obtained by the formula

2ℓmn

mn + nℓ + ℓm − ℓmn
.

Also, if ℓ,m, n are arbitrary integers, then the group presented by (1) is called von-Dyck

group and it can be easily shown by Tietze transformations that it is independent of the

signs and orders of ℓ, m and n in (ℓ,m, n). For more details, see [4, 7].

Threlfall (1932) considered the larger group 〈ℓ,m, n〉 defined by the presentation:

〈x, y, z | xℓ = ym = zn = xyz〉. (3)

Since (l,m, n) occurs as a factor group, 〈ℓ,m, n〉 is infinite when 1
ℓ

+ 1
m

+ 1
n
� 1. If

1
ℓ
+ 1

m
+ 1

n
> 1, it can be shown that the order of t = xyz is 2 and the order of 〈ℓ,m, n〉 is

twice that of (ℓ,m, n), namely 4ℓmn
mn+nℓ+ℓm−ℓmn

. In this case, these groups have been called

binary polyhedral groups. For more information on these groups, see [4].

Also, if in 〈ℓ,m, n〉 we have ℓ,m, n ∈ Z, then the groups presented by (3) and this

general condition have been called centro-polyhedral group. One can show, in all finite

cases that

〈−ℓ,m, n〉 ∼= 〈ℓ,m, n〉 × Zr ,

where r = 2mn
mn+nℓ+ℓm−ℓmn

− 1 and Zr is the cyclic group of order r . So, for example,

|(2, 2, n)| = 2n and |〈2, 2, n〉| = 4n, but |〈−2, 2, n〉| = 4n(n − 1), where (n > 0). For

more information on these groups, see [4].

In this paper we are going to calculate the n-th roots of elements of polyhedral and

centro-polyhedral groups and related Pn(G) in all finite cases.

2. Some properties of n-th roots in finite groups

In this section, we give some elementary results about Gn, where G is a finite group. We

use (m, n) to denote the highest common factor of the positive integers m and n.

PROPOSITION 2.1

Let G be a finite group with order m. Let n be a positive integer. Then Gn = Gr, where r

is the remainder of division of n by m (n = mq + r; 0 � r < m).

Proof. We have

Gn = {gn | g ∈ G} = {gmq+r | g ∈ G} = {gr | g ∈ G} = Gr . �



n-th Roots in finite polyhedral and centro-polyhedral groups 489

Remark 2.2. By the above Proposition, in computing the n-th roots of a finite group G

of order m (respectively, computing Pn(G)), it suffices to compute the r-th roots only for

0 � r < m.

We also have the following result:

PROPOSITION 2.3

Let G be a finite group with order m. Let n be a positive integer. If d = (m, n), then

Gn = Gd . In particular, n and m are coprime if and only if Gn = G (and so Pn(G) = 1).

Proof. By assumption, there are some integers u and v such that um + vn = d and so,

Gvn = {gvn | g ∈ G} = {gd−um | g ∈ G} = {gd | g ∈ G} = Gd .

Now, Gvn ⊆ Gn. Therefore, Gd ⊆ Gn. On the other hand, since d
∣

∣n then Gn ⊆ Gd , and

the equality holds. In particular, if n and m are coprime then Gn = G.

Conversely, suppose Gn = G. Let (n,m) = d > 1. Then, there is a prime p such

that p
∣

∣d. So, p
∣

∣n and therefore Gn ⊆ Gp ⊆ G. Hence Gp = G. This means that every

element in G has a p-th root. If P is a Sylow p-subgroup of G, let pt be the exponent of P

and y an element of P of order pt . Let y = xp for some x ∈ G, then, |x| = p ·|y| = pt+1,

contradicting the fact that exp(P ) = pt . So (|G|, p) = 1, a contradiction. �

COROLLARY 2.4

For every prime p,

Pn(Zp) =

{

1
p
, if p

∣

∣n,

1, if p ∤ n,

and, in general,

Pn(Zpk ) =

{

1
ps , if s = min{t, k}, where pt

∣

∣n and pt+1 ∤ n,

1, if p ∤ n.

�

We use the notation exp(G) for the exponent of a finite group G (the least common

multiple of the orders of elements of G). The next propositions reduce the computations

of Gn to Gr , where 0 ≤ r < exp(G) (cf. with the above results).

PROPOSITION 2.5

Let G be a finite group with exponent exp(G) = e. Let n be a positive integer. Then

Gn = Gr , where r is the remainder of division of n by e (n = eq + r; 0 ≤ r < e).

Proof. We have

Gn = {gn | g ∈ G} = {geq+r | g ∈ G} = {gr | g ∈ G} = Gr . �
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PROPOSITION 2.6

Let G be a finite group with exponent exp(G) = e. Let n be a positive integer. If d = (e, n),

then Gn = Gd . In particular, if n and e be coprime then Gn = G (and so Pn(G) = 1).

Proof. It is similar to the proof of Proposition 2.3. �

Remark 2.7. By the above propositions, in computing the n-th roots of a finite group G of

order m and exponent e (respectively, computing Pn(G)), it suffices to compute the r-th

roots only for 0 ≤ r < e (instead of 0 ≤ r < m).

The next result shows that the mapping Pn preserves the direct product of groups.

PROPOSITION 2.8

Let G and H be two finite groups. Then for every positive integer n,

Pn(G × H) = Pn(G) · Pn(H).

Proof. Let G and H be two finite groups and (x, y) ∈ G × H is an arbitrary element.

Then (x, y) is an n-th root of an element of G × H if and only if x and y are n-th roots of

some elements of G and H , respectively. So,

Pn(G × H) = Pn(G) · Pn(H). �

3. Probability of having n-th roots in finite polyhedral and centro-polyhedral groups

We start this section with a lemma about the form of elements of the group 〈m, 2,−2〉.

Lemma 3.1. Let G = 〈m, 2,−2〉 = 〈x, y, z|xm = y2 = z−2 = xyz〉. Then,

(i) every element of G may be presented by xiyj , where i = 0, 1, . . . , 2m(m − 1) and

j = 0, 1;

(ii) (xiy)2k = x(2i+1)km and (xiy)2k+1 = xi(2km+1)+kmy, where k ≥ 0 is an integer.

Proof.

(i) From y2 = xyz, we have z = (xy)−1y2. So, since z2 = y−2 and xm = y2, it follows

that xy = yx2m−1 and xiy = yxi(2m−1) (i ≥ 0). Then we easily get x2m(m−1) = 1

and see that |x| = 2m(m − 1). On the other hand, we can obtain from the relations that

yx = x3m−1y−1, and also

y2 = xm ⇒ xiyj =

{

xix
1
2 mj , if j even,

xix
j−1

2 my, if j odd.

Now, from the above, we get that for every g ∈ G, g = xi yj , where i = 0, 1, . . . , 2m(m−1)

and j = 0, 1.

(ii) Let i ≥ 0 be an integer, then by using (i), we have

(xiy)2 = xiyxiy = xiy2xi(2m−1) = xixmxi(2m−1) = x(2i+1)m.

Thus we get (xiy)2k =x(2i+1)km and so (xiy)2k+1 =x(2i+1)kmxiy =xi(2km+1)+kmy. �
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By Tietze transformations, we show in the following proposition that 〈ℓ,m, n〉 is inde-

pendent of the orders of ℓ, m and n. But, unlike polyhedral groups (von-Dyck groups), it

depends on the signs of ℓ, m and n.

PROPOSITION 3.2

For all ℓ,m, n ∈ Z,

〈ℓ,m, n〉 ∼= 〈ℓ, n,m〉 ∼= 〈m, ℓ, n〉 ∼= 〈m, n, ℓ〉 ∼= 〈n,m, ℓ〉 ∼= 〈n, ℓ,m〉.

Proof. Using the Tietze transformations, we have the following isomorphisms:

〈ℓ,m, n〉 = 〈x, y, z | xℓ = ym = zn = xyz〉
∼= 〈x, y, z | xℓ = ym = zn, xℓ−1 = yz〉
∼= 〈x, y, z | x−ℓ = y−m = z−n, xℓ = yzx〉
∼= 〈x, y, z | x−ℓ = y−m = z−n = x−1z−1y−1〉
∼= 〈a, b, c | aℓ = bn = cm = abc〉 (x−1 = a, z−1 = b, y−1 =c)

= 〈ℓ, n,m〉.

〈ℓ,m, n〉 = 〈x, y, z | xℓ = ym = zn = xyz〉
∼= 〈x, y, z | x−ℓ = y−m = z−n = z−1y−1x−1〉
∼= 〈x, y, z, a, b, c | x−ℓ = y−m = z−n = z−1y−1x−1,

x−1 = c, y−1 = b, z−1 = a〉
∼= 〈a, b, c | an = bm = cℓ = abc〉

= 〈n,m, ℓ〉.

Other isomorphisms hold similarly. �

PROPOSITION 3.3

The following isomorphisms hold:

〈−2, 3, 3〉 ∼= 〈2, 3, 3〉 × Z5
〈2,−3, l − 3〉 ∼= 〈2, 3, 3〉 × Z7
〈−2,−3,−3〉 ∼= 〈2, 3, 3〉 × Z13
〈2, 3,−4〉 ∼= 〈2, 3, 4〉 × Z5
〈2,−3, 4〉 ∼= 〈2, 3, 4〉 × Z7
〈−2, 3, 4〉 ∼= 〈2, 3, 4〉 × Z11
〈2,−3,−4〉 ∼= 〈2, 3, 4〉 × Z13
〈−2, 3,−4〉 ∼= 〈2, 3, 4〉 × Z17
〈−2,−3, 4〉 ∼= 〈2, 3, 4〉 × Z19
〈−2,−3,−4〉 ∼= 〈2, 3, 4〉 × Z25
〈2, 3,−5〉 ∼= 〈2, 3, 5〉 × Z11
〈2,−3, 5〉 ∼= 〈2, 3, 5〉 × Z19
〈−2, 3, 5〉 ∼= 〈2, 3, 5〉 × Z29
〈2,−3,−5〉 ∼= 〈2, 3, 5〉 × Z31
〈−2, 3,−5〉 ∼= 〈2, 3, 5〉 × Z41
〈−2,−3, 5〉 ∼= 〈2, 3, 5〉 × Z49
〈−2,−3,−5〉 ∼= 〈2, 3, 5〉 × Z61
〈−2, 2,m〉 ∼= 〈2, 2,m〉 × Zm−1
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Table 1. Finite cases of polyhedral and centro-polyhedral groups.

〈n,m, ℓ〉 |〈n,m, ℓ〉| 〈n, m, ℓ〉 |〈n, m, ℓ〉|

〈2, 3, 3〉 24 〈−2, 3, 3〉 120

〈2,−3, 3〉 72 〈−2,−3, 3〉 216

〈2,−3, −3〉 168 〈−2, −3, −3〉 312

〈2, 3, 4〉 48 〈2, −3, 4〉 336

〈−2, 3, 4〉 528 〈2, 3, −4〉 240

〈2,−3, −4〉 624 〈−2,−3, 4〉 912

〈−2, 3, −4〉 816 〈−2, −3, −4〉 1200

〈2, 3, 5〉 120 〈2, −3, 5〉 2280

〈−2, 3, 5〉 3480 〈2, 3, −5〉 1320

〈2,−3, −5〉 3720 〈−2,−3, 5〉 5880

〈−2, 3, −5〉 4920 〈−2, −3, −5〉 7320

Table 2. (m � 2).

Group Order Group Order

〈2, 2, m〉 4m 〈2, −2, m〉 4m(m − 1)

〈2, 2, −m〉 4m 〈−2,−2, m〉 4m(2m − 1)

〈−2,−2, −m〉 4m(2m + 1) 〈2,−2, −m〉 4m(m + 1)

Proof. See pages 67–70 of [4]. �

Also, we get the following propositon about order of some finite cases:

PROPOSITION 3.4

For every positive integer m,

|〈2,−2,m〉| = 4m(m − 1),

|〈−2, 2,−m〉| = |〈−2, 2,m + 1〉| = 4m(m + 1).

Proof. Again, see pages 67–70 of [4]. �

Since the finite cases of polyhedral groups are only (2, 2,m), (2, 3, 3), (2, 3, 4) and

(2, 3, 5) (except trivial cases), we can write down all of the corresponding finite cases of

centro-polyhedral groups (according to the Introduction and the above results). In tables 1

and 2, we give all finite cases of polyhedral and centro-polyhedral groups (except trivial

cases).

In the next two theorems, we give the Pn(G) for all finite cases of (ℓ,m, n).

Theorem 3.5. Probabilities of all n-th roots in (2, 3, 3), (2, 3, 4) and (2, 3, 5) are as in

tables 3–5
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Table 3. G = (2, 3, 3) with exp(G) = 6.

n 1 2 3 4 5 6

Pn(G) 1 3
4

1
3

3
4

1 1
12

Table 4. G = (2, 3, 4) with exp(G) = 12.

n 1 2 3 4 5 6 7 8 9 10 11 12

Pn(G) 1 1
2

2
3

3
8

1 1
6

1 3
8

2
3

1
2

1 1
24

Table 5. G = (2, 3, 5) with exp(G) = 30.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pn(G) 1 3
4

2
3

3
4

3
5

5
12

1 3
4

2
3

7
20

1 5
12

1 3
4

4
15

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pn(G) 3
4

1 5
12

1 7
20

2
3

3
4

1 5
12

3
5

3
4

2
3

3
4

1 1
60

Proof. We have calculated these tables using GAP codes [6], by considering the proposi-

tions and remarks of §2. �

Theorem 3.6. Let m be an integer, m ≥ 2. Also, let G = (2, 2,m) and (|G|, n) = d.

Then

Pn(G) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d+1
2d

, if d is odd,

1
2d

+ 1
4m

, if m is odd, 2
∣

∣d and 4 ∤ d,

1
2d

, if m, d are even, and 2
∣

∣

|G|
d

,
1
d
, otherwise.

Proof. We may assume that G = (m, 2, 2). Note that every element of G may be pre-

sented by xiyj , where i = 0, 1, . . . , 2m − 1 and j = 0, 1. Also, |x| = 2m and

(xy)2k+1 = xy2k+1.

Consider the sets A = {xi | i = 0, 1, . . . , 2m − 1}, B = {xiy | i = 0, 1, . . . , 2m − 1}.

It is clear that G = A ∪ B, A ∩ B = ∅ and Gn = An ∪ Bn. Let d = (4m, n) and m are

odd, then n is odd and d = (m, n). There exist integers t and s such that m = td and

n = sd, where t and s are coprime. We show that An = {xin | i = 0, 1, . . . , 2t − 1}. We

have An = {xin | i = 0, 1, . . . , 2m − 1}, but for every integer k, where 2t ≤ k ≤ 2m − 1,

there are positive integers l and r such that k = 2t l + r and 0 ≤ r < 2t . So,

xkn = x(2t l+r)n = x2t lsdxrn = (x2m)lsxrn.

Thus, An = {xin | i = 0, 1, . . . , 2t − 1}. If xin = xjn for some i and j , where 0 ≤ i <

j ≤ 2t − 1, then x(j−i)n = 1, so 2m
∣

∣(j − i)n or 2t
∣

∣(j − i)s. But (t, s) = 1 and s is odd

and therefore, 2t
∣

∣(j − i). This is impossible and we get |An| = 2m/d. On the other hand,

since (xiy)n = xiyn, we observe that

y2k+1 =

{

y, k even,

y3, k odd,
and xiy2k+1 =

{

xi, k even,

xm+i, k odd,
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where k ≥ 0 is an integer. We show that Bn = B. For this, if n = 2k + 1 for some

integer k, then Bn = B2k+1 = {(xiy)2k+1 | i = 0, 1, . . . , 2m − 1} = {xiy2k+1 | i =

0, 1, . . . , 2m − 1}, so

Bn =

{

{xiy | i = 0, 1, . . . , 2m − 1}, if k is even,

{xm+iy | i = 0, 1, . . . , 2m − 1}, if k is odd.

If xm+i = xm+jy for some integers i and j , where 0 ≤ i < j ≤ 2m − 1, then xj−i = 1

and we get that 2m|(j − i). However 0 < j − i < 2m. Hence, in each case, |Bn| = 2m

and since Bn ∩ A = ∅, thus Bn = B. Consequently,

Pn(G) =
|Gn|

|G|
=

|An| + |Bn|

4m
=

2m/d + 2m

4m
=

d + 1

2d
.

The proof of the case that m is even, is similar. So, the first part of the theorem is proved.

Now, let m be odd, (4m, n) = d, 2
∣

∣d and 4 ∤ d. Then (m, n) = d/2, m = td/2 and

n = sd/2 for some integers t > 0 and s > 0, where (t, s) = 1, t is odd and s is even. We

get An = {xin | i = 0, 1, . . . , 2m − 1}. But for every integer k, where t ≤ k ≤ 2m − 1,

there are integers l and r such that k = t l + r with 0 ≤ r < t , and so

xkn = x(tl+r)n = xt lsd/2xrn = (x2m)ls/2xrn.

Therefore, An = {xin | i = 0, 1, . . . , t −1}. Also, if xin = xjn, where 0 ≤ i < j ≤ t −1,

then x(j−i)n = 1. Thus, 2m|(j − i)n yields t |(j − i), however, 0 < j − i < t . This implies

that i = j and therefore |An| = t . On the other hand, we obtain (xiy)n = (xiy)sd/2 =

((xiy)s)d/2 = (ys)d/2, therefore, Bn = {yn} and since 4 ∤ n, we get Bn ∩An = ∅. Hence,

|Gn| = |An| + |Bn| and consequently,

Pn(G) =
|An| + |Bn|

4m
=

t + 1

4m
=

1

2d
+

1

4m
.

Now, we prove the third part. Let m and d be even and 2
∣

∣|G|/d. Since (4m, n) = d,

there exist integers t > 0 and s > 0 such that 4m = td and n = sd, where (t, s) = 1.

Note that 2
∣

∣

4m
d

= t . Now, for every integer k, where t/2 ≤ k ≤ 2m − 1, there exist

integers l > 0 and r such that k = t
2
l + r , where 0 ≤ r < t/2. We get

xkn = (x
t
2 l+r)n = x

t
2 lnxrn = xlsd t

2 xrn = (x2m)slxrn.

Hence, An = {xin | i = 0, 1, . . . , t/2 − 1}. On the other hand, for every i and j where

0 ≤ i < j ≤ t/2 − 1, we obtain xin �= xjn, as above. Therefore, |An| = t/2. Now, for

every i, where 0 ≤ i ≤ 2m − 1, we get (xiy)n = xmsd/2 ∈ An, so Bn ⊆ An. Therefore,

Pn(G) =
|Gn|

|G|
=

|An|

4m
=

t
2

4m
=

1

2d
.

For the proof of the fourth part, we must consider two cases:

(i) m is odd and 4|d,

(ii) m, d are even and 2 ∤ |G|
d

.

We prove only the case (i), because the proof of the case (ii) is similar. Let m be odd

and 4
∣

∣d. Then (m, n) = d/4 and so m = td/4, n = sd/4, where t and s are positive
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Table 6. G = 〈2, 3, 3〉 with exp(G) = 12.

n 1 2 3 4 5 6 7 8 9 10 11 12

Pn(G) 1 5
12

1
3

3
8

1 1
12

1 3
8

1
3

5
12

1 1
24

Table 7. G = 〈2, 3, 4〉 with exp(G) = 24.

n 1 2 3 4 5 6 7 8 9 10 11 12

Pn(G) 1 1
3

2
3

5
24

1 1
6

1 3
16

2
3

1
3

1 1
24

n 13 14 15 16 17 18 19 20 21 22 23 24

Pn(G) 1 1
3

2
3

3
16

1 1
6

1 5
24

2
3

1
3

1 1
48

Table 8. G = 〈2, 3, 5〉 with exp(G) = 60.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pn(G) 1 23
60

2
3

3
8

3
5

13
60

1 3
8

2
3

11
60

1 5
24

1 23
60

4
15

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pn(G) 3
8

1 13
60

1 7
40

2
3

23
60

1 5
24

3
5

23
60

2
3

3
8

1 1
60

n 31 3 2 33 34 35 36 37 38 39 40 41 42 43 44 45

Pn(G) 1 3
8

2
3

23
60

3
5

5
24

1 23
60

2
3

7
40

1 13
60

1 3
8

4
15

n 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Pn(G) 23
60

1 5
24

1 11
60

2
3

3
8

1 13
60

3
5

3
8

2
3

23
60

1 1
120

integers such that (t, s) = 1. We get An = {xin | i = 0, 1, . . . , 2m − 1} = {xin | i =

0, 1, . . . , t − 1}, because, if t ≤ k ≤ 2m − 1, then there are integers l > 0 and r such that

k = t l + r , where 0 ≤ r < t , then

xkn = (xt l+r)n = xt lnxrn = xt l sd
4 xrn = (x2m)

ls
2 xrn.

So An = {xin | i = 0, 1, . . . , t − 1}. Now, xin �= xjn for every i and j , where 0 ≤ i <

j ≤ t − 1, as above. Hence |An| = t . On the other hand, (xiy)n = ((xiy)4)s/4)(d/4) = 1,

and so Bn = {1} yields Gn = An. Consequently,

Pn(G) =
|An|

4m
=

t

td
=

1

d
. �

Finally, in the following theorems, we give Pn(G) for all finite cases of 〈ℓ,m, n〉.

Theorem 3.7. Probabilities of all n-th roots in 〈2, 3, 3〉, 〈2, 3, 4〉 and 〈2, 3, 5〉 are as in

tables 6–8

Proof. We have calculated these tables using GAP [6] codes, by considering the proposi-

tions and remarks of §2. �

Now, one may use the propositions in the previous section and table 1 to compute

Pn(G) for all finite cases of 〈ℓ,m, n〉, where ℓ = ±2,m = ±3 and n = ±3,±4,±5.
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Theorem 3.8. Let m be an integer, m � 2 and G be one of the groups 〈2, 2,m〉,

〈2, 2,−m〉, 〈2,−2,m〉, 〈2,−2,−m〉, 〈−2,−2,m〉 or 〈−2,−2,−m〉 and also (|G|, n) =

d. Then

Pn(G) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
2d

, m even, d even and 2
∣

∣

|G|
d

,
(m,d)+1

2d
, d odd and (m, d) �= 1,

1
2d

+ 1
2dm

, m odd, d even and 2m
∣

∣

|G|
d

,

1
d

+ 1
4m(m−1)

, m odd, 2m ∤ |G|
d

, m
∣

∣

|G|
d

and m �=
|G|
d

,

1
2d

+ 1

2d(m,
|G|
d

)
, m odd, d even, (m,

|G|
d

) �= m and 2
∣

∣

|G|
d

,

2
d
, m odd, d even, (m,

|G|
d

) = 1 and 2 ∤ |G|
d

,
1
d
, otherwise.

Proof. We prove the theorem only for the case G = 〈m, 2,−2〉. The proofs of the other

cases are similar.

By assumption, there exist positive integers s and t such that 4m(m − 1) = sd and

n = td, where s and t are coprime. Consider the sets

A={xi | i =0, 1, . . . , 2m(m−1)−1}, B ={xiy | i = 0, 1, . . . , 2m(m−1)−1}.

It is clear that G = A ∪ B,A ∩ B = ∅ and Gn = An ∪ Bn. Let m and d be even, and

2
∣

∣

|G|
d

. We have An = {xin | i = 0, 1, . . . , 2m(m − 1) − 1}. But for every integer k where

s/2 ≤ k ≤ 2m(m − 1) − 1, there are integers l > 0 and r such that k = s
2
l + r and

0 ≤ r < s/2. So

xkn = x( s
2 l+r)n = x

s
2 ltdxrn = (x2m(m−1))ltxrn = xrn.

Thus An = {xin | i = 0, 1, . . . , s/2 − 1}. If xin = xjn for some i and j where 0 ≤

i < j ≤ s/2 − 1, then x(j−i)n = 1, and we get s/2
∣

∣(j − i), but this is impossible and

we obtain |An| = s/2. On the other hand, by Lemma 3.1, (xiy)n = x(2i+1) n
2 m, where

i = 0, 1, . . . , 2m(m − 1). Since m is even, x(2i+1)m/2 ∈ A and so x(2i+1) n
2 m ∈ An, hence

Bn ⊆ An. Therefore,

Pn(G) =
|Gn|

|G|
=

|An|

4m(m − 1)
=

s/2

sd
=

1

2d
.

This completes the proof of the first part.

Let m be even, d be odd and (m, d) �= 1. Let (m, d) = q, then there exist integers

u and v such that m = uq and d = vq, where (u, v) = 1. Since 2m
∣

∣

s
2
d, thus 2u

∣

∣

s
2
v.

But (u, v) = 1 and v is odd, so u
∣

∣s/4. We show that An = {xin | 0 ≤ i ≤ s/2 −

1}. We have An = {xin | i = 0, 1, . . . , 2m(m − 1)}, but for every integer k where

s/2 ≤ k ≤ 2m(m − 1), there are integers l > 0 and r such that k = s
2
l + r and

0 ≤ r < s/2. So

xkn = x
s
2 ltdxrn = (x2m(m−1))ltxrn = xrn.

Also, for every i and j , where 0 ≤ i < j ≤ s/2 − 1, xin �= xjn, just as above.

Hence |An| = s/2. On the other hand, Bn ={(xiy)n | i =0, 1, . . . , 2m(m−1)−1}. But for
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every integer k, where s
2
q ≤ k ≤ 2m(m − 1) − 1, there are integers l > 0 and r such that

k = s
2
ql + r and 0 ≤ r ≤ s

2
q. Therefore, by Lemma 3.1,

(xky)n = x( s
2 ql+r)((n−1)m+1)+ n−1

2 my

= x
s
2 qlnmx− s

2 ql(m−1)xr((n−1)m+1)+ n−1
2 my

= x
s
2 qltdm(x2uq(m−1))−

s
4u

lxr((n−1)m+1)+ n−1
2 my

= (x2m(2m−1))qltm(x2m(m−1))−
s

4u
lxr((n−1)m+1)+ n−1

2 my

= xr((n−1)m+1)+ n−1
2 my.

So Bn = {(xiy)n|i = 0, 1, . . . , s
2
q − 1}. Now, if (xiy)n = (xjy)n for some i and j ,

where 0 ≤ i < j ≤ s
2
q − 1, then we get a contradiction. Consequently, |Bn| = s

2
q. It is

clear that An ∩ Bn = ∅. Therefore,

Pn(G) =
|An| + |Bn|

4m(m − 1)
=

s
2

+ s
2
q

sd
=

(m, d) + 1

2d
.

Now, we start to prove the third part and let m be odd, d be even and 2m
∣

∣

|G|
d

. Then

2m
∣

∣s, and s is even. We have An = {xin | i = 0, 1, . . . , 2m(m − 1) − 1}, but for every

integer k, where s/2 ≤ k ≤ 2m(m − 1) − 1, there exist integers l > 0 and r such that

k = s
2
l + r and 0 ≤ r < s/2, so

xkn = x( s
2 l+r)n = x

s
2 ltdxrn = (x2m(m−1))ltxrn = xrn.

Also, as before, xin �= xjn for every i and j , where 0 ≤ i < j ≤ s/2 − 1. Hence

|An| = s/2. On the other hand, Bn = {(xiy)n | 0 ≤ i ≤ 2m(m − 1) − 1}. But for every

integer k, where s
2m

≤ k ≤ 2m(m − 1) − 1, there are integers l > 0 and r such that

k = s
2m

l + r and 0 ≤ r < s
2m

. So, by Lemma 3.1 (note that n is even),

(xky)n = (x
s

2m
l+ry)n = x(2( s

2m
l+r)+1) n

2 m = x
s
2 lnx(2r+1) n

2 m

= x
s
2 ltdx(2r+1) n

2 m = (x2m(m−1))lt (xry)n = (xry)n.

Thus Bn = {(xiy)n | 0 ≤ i ≤ s
2m

− 1}. If (xiy)n = (xjy)n, for some i and j where

0 ≤ i < j ≤ s
2m

− 1, then we again get a contradiction. Consequently, |Bn| = s
2m

. We

get An ∩ Bn = ∅ (for, if (xiy)n = xjn for some integers i and j where 0 ≤ i ≤ s
2m

− 1

and 0 ≤ j ≤ s/2, then x(2i+1) n
2 m = xjn ⇒ x(2j−2im−m)n/2 = 1 ⇒ 2m(m − 1)

∣

∣(2j −

2im − m)n/2 ⇒ s
2
d
∣

∣(2j − 2im − m)td/2 ⇒ s
∣

∣(2j − 2im − m)t , since (s, t) = 1, thus

s
∣

∣(2j − 2im − m). This is impossible and hence,

Pn(G) =
|Gn|

|G|
=

|An| + |Bn|

4m(m − 1)
=

s
2

+ s
2m

sd
=

1

2d
+

1

2dm
.

Now, let m is odd, 2m ∤ |G|
d

, m
∣

∣

|G|
d

and m �=
|G|
d

. Since 2m ∤ s and m
∣

∣s, thus s is odd

(m is odd) and d is even. We have An = {xin | 0 ≤ i ≤ 2m(m − 1) − 1}. But for every

integer k, where s ≤ k ≤ 2m(m− 1), there exist integers l > 0 and r such that k = sl + r

and 0 ≤ r < s, so

xkn = xsltdxrn = (x2m(m−1))2ltxrn = xrn.
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Again, xin �= xjn for all i and j where 0 ≤ i < j ≤ s − 1. Hence |An| = s. On the other

hand, for every i, where 0 ≤ i ≤ 2m(m−1)−1, we get (xiy)n = x(2i+1) n
2 m = x(2i+1) td

2 m.

If i ≥ 1, then 2m(m−1)|(2i+1)n
2
m and so (xiy)n = 1 and if i = 0, then (xiy)n = xn/2m,

which does not belong to An. Therefore, |Bn| = 2 and 1 ∈ Bn, so |An ∩ Bn| = 1, thus

|An ∪ Bn| = |An| + 1. Consequently,

Pn(G) =
|An| + 1

4m(m − 1)
=

s + 1

sd
=

1

d
+

1

4m(m − 1)
.

For the next part, suppose that m is odd, d is even, (m, |G|/d) �= m, 1, and 2
∣

∣|G|/d.

Let (m, s) = u �= 1, then there exist integers k1 and k2 such that s = k1u, m = k2u

and (k1, k2) = 1, so (s/u, k2) = 1. It is easy that see that |An| = s/2. On the other

hand, Bn = {(xiy)n | i = 0, 1, . . . , 2m(m − 1) − 1}. But for every integer k, where
s

2u
≤ k ≤ 2m(m − 1) (note that 2

∣

∣s and u is odd, so 2u
∣

∣s), there are integers l > 0 and r

such that k = s
2u

l + r and 0 ≤ r < s
2u

. So,

(xky)n = (x
s

2u
l+ry)n = x(2( s

2u
l+r)+1) n

2 m = x
s

2u
lnmx(2r+1) n

2 m

= x
s
2 tdl m

u x(2r+1) n
2 m = (x2m(m−1))t l

m
u (xry)n = (xry)n.

Hence Bn = {(xiy)n|0 ≤ i ≤ s
2u

−1}. Again, one can easily see that (xiy)n �= (xjy)n for

all i and j , where 0 ≤ i < j ≤ s
2u

−1. Hence |Bn| = s
2u

. We get An ∩Bn = ∅, therefore,

Pn(G) =
|An| + |Bn|

4m(m − 1)
=

s
2

+ s
2u

sd
=

u + 1

2ud
=

1

2d
+

1

2d(m, |G|/d)
.

For the proof of the last part, we must consider the five cases:

(i) m, d are even and 2 ∤ s,

(ii) m is even, d is odd and (m, d) = 1,

(iii) m, d are odd and (m, d) = 1,

(iv) m is odd, d is even and m = |G|/d,

(v) m is odd, d is even, (m, |G|/d) = 1 and 2
∣

∣|G|/d.

We prove only part (i) for, the proof of the other cases are similar. Let

m, d are even and 2 ∤ s. Then An = {xin|i = 0, 1, . . . , s − 1}, because for every integer

k, where s ≤ k ≤ 2m(m − 1), there are integers l > 0 and r such that k = sl + r and

0 ≤ r < s. So,

xkn = xsltdxrn = (x2m(m−1))2ltxrn = xrn.

Again, for all i and j where 0 ≤ i < j ≤ s −1 we get xin �= xjn. Hence |An| = s. On the

other hand, Bn ⊆ An (its proof is similar to the proof of that in the first part). Therefore,

Pn(G) =
|An|

4m(m − 1)
=

s

sd
=

1

d
. �
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