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1. Introduction and main results

In 1926, Nevanlinna [11] proved his famous five-value theorem:

For two nonconstant meromorphic functions f and g on the complex plane C, if they
have the same inverse images (ignoring multiplicities) for f ive distinct values, then
f (z) ≡ g(z).

After this very work, the uniqueness theory of meromorphic functions in C attracted
many investigations (for references, see [13]). For the uniqueness of meromorphic func-
tions in the unit disc, refer to [4]. For the uniqueness of meromorphic function in one
angular domain, refer to [14]. However, all the above cases are in simple connected
domains. Thus it is very interesting to consider the uniqueness theory of meromorphic
functions in multiply connected domains.

Here we shall mainly study the uniqueness of meromorphic functions in doubly con-
nected domains of complex plane C. By the doubly connected mapping theorem [1] each
doubly connected domain is conformally equivalent to the annulus {z : r < |z| < R},
0 ≤ r < R ≤ +∞. We consider only two cases: r = 0, R = +∞ simultaneously and
0 < r < R < +∞. In the latter case, the homothety z �→ z√

r R
reduces the given domain

to the annulus {z : 1
R0

< |z| < R0}, where R0 =
√

R
r . Thus, in two cases every annu-

lus is invariant with respect to the inversion z �→ 1
z . Hence in this paper, we consider the

uniqueness of meromorphic functions in the annulus A = {z : 1
R0

< |z| < R0}, where

1 < R0 ≤ +∞. We denote by S the subset of distinct elements in C̄ = C ∪ {∞}. For a
function f meromorphic in A, we define

E(S, f ) =
⋃
a∈S

{z ∈ A : f (z) − a = 0, counting multiplicity},
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Ē(S, f ) =
⋃
a∈S

{z ∈ A : f (z) − a = 0, ignoring multiplicity}.

The Nevanlinna characteristic T0(r, f ) of a meromorphic function f on the annulus A

shall be introduced in the next section.

DEFINITION 1.1 [2]

Let f be a nonconstant meromorphic function on the annulus A. The function f is called
admissible on the annulus A provided that

lim sup
r→∞

T0(r, f )

log r
= ∞, 1 ≤ r < R0 = +∞

or

lim sup
r→R0

T0(r, f )

− log(R0 − r)
= ∞, 1 ≤ r < R0 < +∞.

Cao, Yi and Xu [2] proved a generalized theorem on the multiple values and uniqueness
of meromorphic functions in the annulus A, from which an analog of Nevanlinna’s five-
value theorem was obtained by making use of the annulus version of Nevanlinna theory
(see §2). For the special case R0 = +∞, the assertion was proved by Kondratyuk and
Laine [8].

Theorem 1.1 [2]. Let f and g be two admissible meromorphic functions on the annu-
lus A. Let a j ( j = 1, 2, 3, 4, 5) be 5 distinct complex numbers in C̄. If Ē({a j }, f ) =
Ē({a j }, g) for j = 1, 2, 3, 4, 5, then f (z) ≡ g(z).

Recently, Cao and Yi [3] considered meromorphic functions sharing sets, and obtained
two general uniqueness theorems from which uniqueness results of [2] are extended. In
this paper, we continue to deal with the uniqueness problem for meromorphic functions
in the annulus A. Considering the uniqueness of two meromorphic functions in A sharing
three finite sets, we obtain the first main theorem which is an analog of a result on C due
to Lin and Yi [9].

Theorem 1.2. Let f and g be two admissible meromorphic function in the annulus A.

Put S1 = {0}, S2 = {∞} and S3 = {w : P(w) = 0}, where

P(w) = awn − n(n − 1)w2 + 2n(n − 2)bw − (n − 1)(n − 2)b2,

n ≥ 5 is an integer, and a and b are two nonzero complex numbers satisfying abn−2 
=
1, 2. If Ē(S2, f ) = Ē(S2, g) and E(S j , f ) = E(S j , g) for j = 1, 3, then f (z) ≡ g(z).

We denote by �S the cardinality of a set S. From Theorem 1.2, we get immediately the
corollary below.

COROLLARY 1.1

There exist three f inite sets S1, S2 and S3 with �S1 = �S2 = 1 and �S3 = 5, such that any
two admissible meromorphic functions f and g must be identical if E(S j , f ) = E(S j , g)

for j = 1, 2, 3 in the annulus A.
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Considering the case where two meromorphic functions in A share two finite sets, we
get the second main result which is an analog of a result on C due to Yi [12].

Theorem 1.3. Let f and g be two admissible meromorphic function in the annulus A.

Put S1 = {∞} and S2 = {w : P(w) = 0}, where

P(w) = awn − n(n − 1)w2 + 2n(n − 2)bw − (n − 1)(n − 2)b2,

n ≥ 8 is an integer, and a and b are two nonzero complex numbers satisfying abn−2 
= 2.

If Ē(S1, f ) = Ē(S1, g) and E(S2, f ) = E(S2, g), then f (z) ≡ g(z).

From Theorem 1.3, we get immediately the corollary below.

COROLLARY 1.2

There exist two f inite sets S1 and S2 with �S1 = 1, �S2 = 8, such that any two admissible
meromorphic functions f and g must be identical if E(S j , f ) = E(S j , g) for j = 1, 2 in
the annulus A.

2. Preliminaries and some lemmas

Recently, Khrystiyanyn and Kondratyuk [6,7] proposed Nevanlinna theory for meromor-
phic functions on annuli, see also an important paper [8]. Let f be a meromorphic function
on the annulus A = {z : 1

R0
< |z| < R0}, where 1 ≤ r < R0 ≤ +∞. Denote

m(r, f ) := 1

2π

∫ 2π

0
log+ | f (reiθ )|dθ,

where log+ x = max{log x, 0} for x ∈ R. Put

N1(r, f ) =
∫ 1

1
r

n1(t, f )

t
dt, N2(r, f ) =

∫ r

1

n2(t, f )

t
dt,

m0(r, f ) := m(r, f ) + m

(
1

r
, f

)
− 2m(1, f ),

N0(r, f ) := N1(r, f ) + N2(r, f ),

where n1(t, f ) and n2(t, f ) are the counting functions of poles of the function f in
{z : t < |z| ≤ 1} and {z : 1 < |z| ≤ t}, respectively. Set

N̄0(r,
1

f − a
) = N̄1

(
r,

1

f − a

)
+ N̄2

(
r,

1

f − a

)

=
∫ 1

1
r

n̄1(t,
1

f −a )

t
dt +

∫ r

1

n̄2(t,
1

f −a )

t
dt

in which each zero of the function f − a is counted only once. The Nevanlinna
characteristic of f on the annulus A is defined by

T0(r, f ) = m0(r, f ) + N0(r, f ).
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Throughout, we denote by S(r, ∗) quantities satisfying

(i) in the case R0 = +∞,

S(r, ∗) = O(log(rT0(r, ∗)))

for r ∈ (1,+∞) except for the set �r such that
∫
�r

rλ−1dr < +∞;
(ii) if R0 < +∞, then

S(r, ∗) = O

(
log

(
T0(r, ∗)

R0 − r

))

for r ∈ (1, R0) except for the set �′
r such that

∫
�′

r

dr
(R0−r)λ−1 < +∞.

Thus for an admissible meromorphic function on the annulus A, S(r, f ) = o(T0(r, f ))

holds for all 1 ≤ r < R0 except for the set �r or the set �′
r mentioned above, respectively.

Lemma 2.1 [6,8]. Let f be a nonconstant meromorphic function on the annulus A = {z :
1

R0
< |z| < R0}, where 1 ≤ r < R0 ≤ +∞. Then

(i) T0(r, f ) = T0(r,
1
f ),

(ii) max{T0(r, f1 · f2), T0(r,
f1
f2

), T0(r, f1 + f2)} ≤ T0(r, f1) + T0(r, f2) + O(1).

By Lemma 2.1, the first fundamental theorem on the annulus A is immediately
obtained.

Lemma 2.2 [6,8] (The f irst fundamental theorem). Let f be a nonconstant meromorphic
function on the annulus A = {z : 1

R0
< |z| < R0}, where 1 ≤ r < R0 ≤ +∞. Then

T0

(
r,

1

f − a

)
= T0(r, f ) + O(1)

for every f ixed a ∈ C.

Khrystiyanyn and Kondratyuk also obtained the second fundamental theorem on the
the annulus A. We show here the reduced form due to Cao, Yi and Xu.

Lemma 2.3 [2] (The second fundamental theorem). Let f be a nonconstant meromorphic
function on the annulus A = {z : 1

R0
< |z| < R0}, where 1 ≤ r < R0 ≤ +∞. Let a1, a2,

. . . , ap be p distinct complex numbers in C̄ and λ ≥ 0. Then

(q − 2)T0(r, f ) <

q∑
j=1

N̄0

(
r,

1

f − a j

)
+ S(r, f ).

Lemma 2.4 [7,8] (The lemma of the logarithmic derivative). Let f be a nonconstant
meromorphic function on the annulus A = {z : 1

R0
< |z| < R0}, where 1 ≤ r < R0 ≤

+∞. Then m0(r,
f (k)

f ) ≤ S(r, f ) for every k ∈ N.
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Let f be a nonconstant meromorphic function on the annulus A, and let a ∈ C̄. We say
that a is a Picard exceptional value of f in A if f (z) − a has no zero in A.

Lemma 2.5 [8] (Picard theorem for annuli). Let f be an admissible meromorphic function
on the annulus A. Then f has at most two Picard exceptional values in A.

Lemma 2.6. Let f be a nonconstant meromorphic function on the annulus A = {z : 1
R0

<

|z| < R0}, where 1 ≤ r < R0 ≤ +∞. Let P( f ) = a0 f p + a1 f p−1 + · · · + a1 f + ap

(a0 
= 0) be a polynomial of f with degree p, where the coef f icients a j ( j = 0, 1, . . . , p)

are constants, and let b j ( j = 1, 2, . . . , q) be q (q ≥ p + 1) distinct f inite complex
numbers. Then

m0

(
r,

P( f ) f ′

( f − b1)( f − b2) · · · ( f − bq)

)
= S(r, f ).

Proof. It is easy to see that

P( f )

( f − b1)( f − b2) · · · ( f − bq)
=

q∑
j=1

A j

f − b j
,

where A j are non-zero constants. Hence, by Lemma 2.4 we obtain

m0

(
r,

P( f ) f ′

( f − b1)( f − b2) · · · ( f − bq)

)

= m0

(
r,

A j f ′

f − b j

)

≤
q∑

j=1

m0

(
r,

f ′

f − b j

)
+

q∑
j=1

m0(r, A j ) + O(1)

= S(r, f ).

�
Let h be meromorphic in A. We denote by N (1)

0 (r, f ) the counting function of simple

poles of h in A, and by N̄ (2)
0 (r, h) the counting function of multiple poles of h in A, where

each pole is counted only once irrespective of its multiplicity.

Lemma 2.7. Let

H =
(

F ′′

F ′ − 2F ′

F − 1

)
−

(
G ′′

G ′ − 2G ′

G − 1

)
,

where F and G are two nonconstant meromorphic functions in A. If E({1}, F) =
E({1}, G) and H(z) 
≡ 0, then

N (1)
0

(
r,

1

F − 1

)
≤ N0(r, H) + S(r, F) + S(r, G).
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Proof. By Lemma 2.4, we have m0(r, H) = S(r, F) + S(r, G). By E({1}, F) =
E({1}, G), if z0 ∈ A is a simple zero of F − 1, then it must be a zero of H. Thus by
Lemma 2.2 we have

N (1)
0

(
r,

1

F − 1

)
≤ N0

(
r,

1

H

)
≤ T0(r, H) + O(1)

≤ N0(r, H) + S(r, F) + S(r, G).

�

By simple computation, one can get the following lemma.

Lemma 2.8. Let

U = F ′′

F ′ − 2F ′

F − 1
,

where F is a nonconstant meromorphic function in A. If z0 ∈ A is a simple pole of F,

then U is holomorphic at z0.

Lemma 2.9. Let

F = a f n

n(n − 1)( f − α1)( f − α2)
, G = agn

n(n − 1)(g − α1)(g − α2)
,

where f and g are nonconstant meromorphic functions in A, n ≥ 4 is an integer, and α1
and α2 are distinct f inite complex numbers. Put

V =
(

F ′

F − 1
− F ′

F

)
−

(
G ′

G − 1
− G ′

G

)
.

If V (z) ≡ 0 and Ē({∞}, f ) = Ē({∞}, g) 
= ∅, then F(z) ≡ G(z).

Proof. By the assumption V ≡ 0, we have

F ′

F − 1
− F ′

F
≡ G ′

G − 1
− G ′

G
.

By integration,

1 − 1

F
≡ C

(
1 − 1

G

)
,

where C is a nonzero constant. Since Ē({∞}, f ) = Ē({∞}, g) 
= ∅, there exists a point
z0 ∈ A such that z0 is a pole of both f and g. From the definitions of F and G, z0 must
be a pole of both F and G. Hence C = 1, and thus, F(z) ≡ G(z). �

Lemma 2.10. Let F and G be def ined as in Lemma 2.9, and H be def ined as in Lemma
2.7. If E({0}, F) = E({0}, G), E({1}, F) = E({1}, G), Ē({∞}, f ) = Ē({∞}, g) and
H(z) 
≡ 0, then

N̄0(r, f ) = N̄0(r, g) = S(r, F) + S(r, G).
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Proof. Suppose that Ē({∞}, f ) = ∅, then the conclusion of this lemma holds obviously.
Now we only assume that Ē({∞}, f ) 
= ∅. Define V as in Lemma 2.9. Since H(z) 
≡ 0
and Ē({∞}, f ) = Ē({∞}, g) 
= ∅, we can deduce from Lemma 2.9 that V (z) 
≡ 0. By
the definition of V we obtain

V = F ′

F(F − 1)
− G ′

G(G − 1)
. (1)

By (1) and Ē({∞}, f ) = Ē({∞}, g) 
= ∅, there exists a point z0 ∈ A which is a pole of
both f and g with multiplicity p and q respectively. Then z0 must be a pole of both F
and G with multiplicity (n − 2)p and (n − 2)q respectively. Thus z0 is a zero of V with
multiplicity ≥ n − 3. Hence we obtain

(n − 3)N̄0(r, f ) ≤ N0

(
r,

1

V

)
≤ T0(r, V ) + O(1).

By the definition of V and Lemmas 2.1, 2.2 and 2.6, we have m0(r, V ) = S(r, F) +
S(r, G). Note that E({0}, F) = E({0}, G) and E({1}, F) = E({1}, G). Again by the
definition of V we obtain N0(r, V ) = S(r, F) + S(r, G). Thus we have

T0(r, V ) = S(r, F) + S(r, G).

Hence we obtain

(n − 3)N̄0(r, f ) ≤ S(r, F) + S(r, G).

Noting n ≥ 4, the conclusion of this lemma holds. �

Lemma 2.11 (Page 192 in [5]). Let

Q(w) = (n − 1)2(wn − 1)(wn−2 − 1) − n(n − 2)(wn−1 − 1)2

be a polynomial of degree 2n − 2 (n ≥ 3). Then

Q(w) = (w − 1)4(w − β1)(w − β2) · · · (w − β2n−6),

where β j ∈ C \ {0, 1} ( j = 1, 2, . . . , 2n − 6), which are distinct respectively.

Lemma 2.12. Let f1 and f2 be two nonconstant meromorphic function in the annulus A,

and let c1, c2 and c3 be three nonzero constant. If c1 f1 + c2 f2 ≡ c3, then

T0(r, f1) < N̄0

(
r,

1

f1

)
+ N̄0

(
r,

1

f2

)
+ N̄0(r, f1) + S(r, f1).

Proof. By Lemma 2.3 we have

T0(r, f1) < N̄0

(
r,

1

f1

)
+ N̄0(r, f1) + N̄0

(
r,

1

f1 − c3
c1

)
+ S(r, f1).
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Note that the zeros of f1 − c3
c1

are just the zeros of f2. Hence we obtain the conclusion

T0(r, f1) < N̄0

(
r,

1

f1

)
+ N̄0

(
r,

1

f2

)
+ N̄0(r, f1) + S(r, f1).

�

By a similar discussion as in [10], one can obtain a stand and Valiron-Mohon’ko type
result in A as follows:

Lemma 2.13. Let f be a nonconstant meromorphic function in A, P1( f ) and P2( f ) be
two mutually prime polynomials in f with degree m and n respectively. Then

T0

(
r,

P1( f )

P2( f )

)
= max{m, n}T0(r, f ) + S(r, f ).

3. Proofs of Theorems 1.2

Let

P(w) = awn − n(n − 1)w2 + 2n(n − 2)bw − (n − 1)(n − 2)b2,

where n ≥ 5 is an integer, and a and b are two nonzero complex numbers satisfying

c := abn−2

2 
= 1. Let

R(w) = awn

n(n − 1)(w − α1)(w − α2)
, (2)

where α1 and α2 are two distinct roots of the equation

n(n − 1)w2 − 2n(n − 2)bw + (n − 1)(n − 2)b2 = 0.

Then by page 319 in [9], we get that

R(w) − 1 = P(w)

n(n − 1)(w − α1)(w − α2)
, (3)

R(w) − c = a(w − b3)Qn−3(w)

n(n − 1)(w − α1)(w − α2)
, (4)

where Qn−3(w) is a polynomial of degree n − 3. Further, P(w) has only simple zeros.
Let F = R( f ) and G = R(g). Since E(S j , f ) = E(S j , g) for j = 1, 3, it is not

difficult to get that E({1}, F) = E({1}, G) and E({0}, F) = E({0}, G). By Lemma 2.13
and (2),

T0(r, f ) = 1

n
T0(r, F) + S(r, F), T0(r, g) = 1

n
T0(r, G) + S(r, G). (5)

Let H be as mentioned in Lemma 2.7 and suppose H(z) 
≡ 0. Noting that Ē(S2, f ) =
E(S2, g), we deduce from Lemma 2.10 that

N̄0(r, f ) = N̄0(r, g) = S(r, F) + S(r, G). (6)



Uniqueness of meromorphic functions on annuli 211

By (6) and the definitions of F and G, we have

N̄0(r, F) =
2∑

j=1

N̄0

(
1

f − α j

)
+ S(r, F) + S(r, G), (7)

N̄0(r, G) =
2∑

j=1

N̄0

(
1

f − α j

)
+ S(r, F) + S(r, G). (8)

From Lemmas 2.7, 2.8 and (6) we deduce that

N (1)
0

(
r,

1

F − 1

)
≤

2∑
j=1

N̄ (2)
0

(
1

f − α j

)
+

2∑
j=1

N̄ (2)
0

(
1

g − α j

)

+ N̄ (2)
0

(
1

F − c

)
+ N̄ (2)

0

(
1

G − c

)
+ N∗

0

(
r,

1

F ′

)

+ N∗
0

(
r,

1

G ′

)
+ S(r, F) + S(r, G),

where N∗
0 (r, 1

F ′ ) (or N∗
0 (r, 1

G ′ )) means the counting function of zeros of F ′ (or G ′) but

not zeros of F(F − c)(F − 1) (or G(G − c)(G − 1)). Note that

N̄0

(
r,

1

F − 1

)
+ N̄0

(
1

G − 1

)
− N (1)

0

(
r,

1

F − 1

)
≤ T0(r, G) + S(r, G).

Together with Lemma 2.3, we have

2(T0(r, F) + T0(r, G))

≤
4∑

j=1

N̄0

(
r

1

F − a j

)
+

4∑
j=1

N̄0

(
r

1

G − a j

)

− N∗
0

(
r,

1

F ′

)
− N∗

0

(
r,

1

G ′

)
+ S(r, F) + S(r, G)

≤ N̄0

(
r

1

F

)
+ N̄0

(
r

1

G

)
+ N̄0

(
r

1

F − c

)
+ N̄0

(
r

1

G − c

)

+ N̄0

(
r

1

f − α1

)
+ N̄0

(
r

1

g − α1

)

+ N̄0

(
r

1

f − α2

)
+ N̄0

(
r

1

g − α2

)
+ N̄ (2)

0

(
r,

1

F − c

)

+ N̄ (2)
0

(
r,

1

G − c

)
+ T0(r, G) + S(r, F) + S(r, G),
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where {a1, a2, a3, a4} = {0, 1, c,∞}. It is not difficult to get that

N̄0

(
r,

1

F

)
≤ N̄0

(
r,

1

f

)
≤ 1

n
T0(r, F) + S(r, F),

N̄0

(
r,

1

F − c

)
+ N̄ (2)

0

(
r,

1

F − c

)

≤ 2N̄0

(
r,

1

F − b

)
+ N0

(
r,

1

Qn−3( f )

)

≤ n − 1

n
T0(r, F) + S(r, F),

N̄0

(
r,

1

f − α1

)
+ N̄0

(
r,

1

f − α2

)
≤ 2

n
T0(r, F) + S(r, F),

N̄0

(
r,

1

G

)
≤ N̄0

(
r,

1

g

)
≤ 1

n
T0(r, G) + S(r, G),

N̄0

(
r,

1

G − c

)
+ N̄ (2)

0

(
r,

1

G − c

)

≤ 2N̄0

(
r,

1

G − b

)
+ N0

(
r,

1

Qn−3(g)

)

≤ n − 1

n
T0(r, G) + S(r, G),

and

N̄0

(
r,

1

g − α1

)
+ N̄0

(
r,

1

g − α2

)
≤ 2

n
T0(r, G) + S(r, G).

Then we have
(

1 − 2

n

)
T0(r, F) − 2

n
T0(r, G) ≤ S(r, F) + S(r, G).

Exchanging F and G in the above discussion, we also have
(

1 − 2

n

)
T0(r, G) − 2

n
T0(r, F) ≤ S(r, F) + S(r, G).

Hence we obtain
(

1 − 4

n

)
(T0(r, F) + T0(r, G)) ≤ S(r, F) + S(r, G).

This implies n ≤ 4, which contradicts the assumption n ≥ 5. Hence, H(z) ≡ 0, and thus

F ′′

F ′ − 2F ′

F − 1
≡ F ′′

F ′ − 2F ′

F − 1
.

By integration, the above equality implies that

1

G − 1
≡ A

F − 1
+ B, (9)
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where A 
= 0, B are constants. By (9) we have

G ≡ (B + 1)F + (A − B − 1)

B F + (A − B)
(10)

and

T0(r, G) = T0(r, F) + O(1). (11)

We next consider three cases.

Case 1. B 
= 0,−1. By the assumption Ē({∞}, f ) = Ē({∞}, g) and (10) we get that
∞ is a Picard exceptional value of f and g in A. Thus

N̄0(r, F) = N̄0

(
r,

1

f − α1

)
+ N̄0

(
r,

1

f − α2

)
, (12)

N̄0(r, G) = N̄0

(
r,

1

g − α1

)
+ N̄0

(
r,

1

g − α2

)
. (13)

Assume that A − B − 1 
= 0. Then by Lemma 2.3, (5), (10), (11) and (12), we have

nT0(r, f ) = T0(r, F) + S(r, F)

≤ N̄0(r, F) + N̄0

(
r,

1

F

)
+ N̄0

(
r,

1

F + A−B−1
B+1

)
+ S(r, F)

≤ N̄0

(
r,

1

f − α1

)
+ N̄0

(
r,

1

f − α2

)

+N̄0

(
r,

1

F

)
+ N̄0

(
r,

1

G

)
+ S(r, F)

≤ N̄0

(
r,

1

f − α1

)
+ N̄0

(
r,

1

f − α2

)

+N̄0

(
r,

1

f

)
+ N̄0

(
r,

1

g

)
+ S(r, f )

≤ 4T0(r, f ) + S(r, f ),

which implies n ≤ 4, a contradiction. Hence, A − B − 1 = 0. Then we rewrite (10) as

G ≡ (B + 1)F

B F + 1
. (14)

By (13) and (14) we have

N̄0

(
r

1

F + 1
B

)
= N̄0(r, G) = N̄0

(
r,

1

g − α1

)
+ N̄0

(
r,

1

g − α2

)
. (15)

Assume that c = abn−2

2 
= −1
B . By (4), (5), Lemma 2.2 and the definition of F, we

obtain

N̄0

(
r,

1

F − c

)
≤ n − 2

n
T0(r, F)+S(r, F) ≤ (n−2)T0(r, f )+S(r, f ). (16)
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By Lemmas 2.1, 2.2, 2.3, (5), (11), (12), (15) and (16), we get that

2nT0(r, f ) = 2T0(r, F) + S(r, F)

≤ N̄0(r, F) + N̄0

(
r,

1

F

)

+N̄0

(
r,

1

F + 1
B

)
+ N̄0

(
r,

1

F − c

)
+ S(r, F)

≤ N̄0

(
r,

1

f − α1

)
+ N̄0

(
r,

1

f − α2

)

+N̄0

(
r,

1

g − α1

)
+ N̄0

(
r,

1

g − α2

)

+N̄0

(
r,

1

f

)
+ (n − 2)T0(r, f ) + S(r, f )

≤ (n + 3)T0(r, f ) + S(r, f ).

This contradicts the assumption n ≥ 5.

Assume that c = −1
B . Then we get from (14) that

F ≡ cG

G − (1 − c)
. (17)

From (12) and (17), we get

N̄0

(
r

1

G − (1 − c)

)
= N̄0(r, F) = N̄0

(
r,

1

f − α1

)
+ N̄0

(
r,

1

f − α2

)
.

(18)

By (4), (5), Lemma 2.2 and the definition of G, we obtain

N̄0

(
r,

1

G − c

)
≤ n − 2

n
T0(r, G)+S(r, G) ≤ (n−2)T0(r, g)+S(r, g). (19)

By the assumption 2c = abn−2 
= 1, 2, we have 1 − c 
= c. By Lemmas 2.1, 2.2, 2.3, (5),
(11), (13), (18) and (19), we get that

2nT0(r, g) = 2T0(r, G) + S(r, G)

≤ N̄0(r, G) + N̄0

(
r,

1

G

)

+N̄0

(
r,

1

G − (1 − c)

)
+ N̄0

(
r,

1

G − c

)
+ S(r, G)

≤ N̄0

(
r,

1

g − α1

)
+ N̄0

(
r,

1

g − α2

)

+N̄0

(
r,

1

g − α1

)
+ N̄0

(
r,

1

g − α2

)

+N̄0

(
r,

1

g

)
+ (n − 2)T0(r, g) + S(r, g)

≤ (n + 3)T0(r, g) + S(r, g).



Uniqueness of meromorphic functions on annuli 215

This contradicts the assumption n ≥ 5.

Case 2. B = −1. We rewrite (10) as

G ≡ A

(A + 1) − F
. (20)

Assume that A + 1 
= 0. Note that A 
= 0 and E({0}, F) = E({0}, G). Then by (20)
we get that 0 and A

A+1 are Picard exceptional values of G in A. By (5), Lemma 2.3 and
the definition of G, we have

nT0(r, g) = T0(r, G) + S(r, G)

≤ N̄0(r, G) + N̄0

(
r,

1

G

)
+ N̄0

(
r,

1

G − A
A+1

)
+ S(r, G)

≤ N̄0(r, g) + N̄0

(
r,

1

g − α1

)
+ N̄0

(
r,

1

g − α2

)
+ S(r, g)

≤ 3T0(r, g) + S(r, g).

This contradicts the assumption n ≥ 5.

Assume that A + 1 = 0. Then F(z)G(z) ≡ 1. Thus

f ngn

( f − α1)( f − α2)(g − α1)(g − α2)
≡ n2(n − 1)2

a2
. (21)

Note that E({0}, f ) = E({0}, g) and Ē({∞}, f ) = Ē({∞}, g). We get from (21)
that 0,∞, α1 and α2 are Picard exceptional values of f. By Lemma 2.5 we have a
contradiction.

Case 3. B = 0. We rewrite (10) as

G ≡ F + (A − 1)

A
. (22)

Assume that A 
= 1. Note that E({0}, F) = E({0}, G). Then by (22) we get that 0 and
1 − A are Picard exceptional values of F in A. By (5), Lemma 2.3 and the definition of
F, we have

nT0(r, f ) = T0(r, F) + S(r, F)

≤ N̄0(r, F) + N̄0

(
r,

1

F

)
+ N̄0

(
r,

1

F − (1 − A)

)
+ S(r, F)

≤ N̄0(r, f ) + N̄0

(
r,

1

f − α1

)
+ N̄0

(
r,

1

f − α2

)
+ S(r, f )

≤ 3T0(r, f ) + S(r, f ).

This contradicts the assumption n ≥ 5.

Assume that A = 1. Thus F(z) ≡ G(z). Together with Ē({∞}, f ) = Ē({∞}, g), we
have E({∞}, f ) = E({∞}, g). Further, together with (2), we get

n(n − 1) f 2g2( f n−2 − gn−2) − 2bn(n − 2) f g( f n−1 − gn−1)

+ b2(n − 1)(n − 2)( f n − gn) ≡ 0. (23)
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Set h = f
g . Noting that E({∞}, f ) = E({∞}, g) and E({0}, f ) = E({0}, g), we get that

h is holomorphic in A. Substituting f = hg into (23),

n(n − 1)h2g2(hn−2 − 1) − 2bn(n − 2)hg(hn−1 − 1)

+ b2(n − 1)(n − 2)(hn − 1) ≡ 0,

and thus

n2(n − 1)2h2g2(hn−2 − 1)2 − 2bn2(n − 1)(n − 2)hg(hn−1 − 1)(hn−2 − 1)

≡ −b2n(n − 1)2(n − 2)(hn − 1)(hn−2 − 1).

From this equality and Lemma 2.11 and we can deduce that

(n(n − 1)h(hn−2 − 1)g − n(n − 2)b(hn−1 − 1))2 ≡ −b2n(n − 2)Q(h),

(24)

where Q(h) = (h − 1)4(h − β1)(h − β2) · · · (h − β2n−6), β j ∈ C\{0, 1} ( j =
1, 2, . . . , 2n − 6), which are pairwise distinct. If h is not a constant, then by (24) we get
that the multiplicity of every zero of h−β j ( j = 1, 2, . . . , 2n−6) is at least 2. By Lemma
2.3 we can get that

(2n − 7)T0(r, h) <

2n−6∑
j=1

N̄0

(
r,

1

h − β j

)
+ N̄0(r, h) + S(r, h)

≤ 1

2

2n−6∑
j=1

N0

(
r,

1

h − β j

)
+ S(r, h)

≤ 2n − 6

2
T0(r, h) + S(r, h).

This contradicts the assumption n ≥ 5. Therefore, h is a constant. Thus hn − 1 = 0,

hn−1 − 1 = 0 and hn−2 − 1 = 0. This implies h = 1, and so f (z) ≡ g(z).

4. Proof of Theorem 1.3

Let F = R( f ) and G = R(g). By a similar argument as in the proof of Theorem 1.2, we
also have E({1}, F) = E({1}, G) and (2)–(5).

Let H be mentioned in Lemma 2.7 and suppose H(z) 
≡ 0. By Lemma 2 we have

N (1)
0

(
r,

1

F − 1

)
≤ N0(r, H) + S(r, F) + S(r, G). (25)

By the definitions of F and G, we get

F ′ = (n − 2)a f n−1( f − b)2 f ′

n(n − 1)( f − α1)2( f − α2)2
,

G ′ = (n − 2)agn−1(g − b)2g′

n(n − 1)(g − α1)2(g − α2)2
. (26)
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It is obvious that any simple zero of f − α1, f − α2 in A is a simple pole of F in A,

that any multiple zero of f − α1, f − α2 in A is a zero of f ′ in A, any simple zero of
g − α1, g − α2 in A is a simple pole of G in A, and that any multiple zero of g − α1,

g − α2 in A is a zero of g′ in A. Noting Ē(S2, f ) = E(S2, g), we deduce from Lemma
2.8, E({1}, F) = E({1}, G), (26) and the definitions of F, G and H that

N0(r, H) ≤ N̄0

(
r,

1

f

)
+ N̄0

(
r,

1

f − b

)
+ N̄0

(
r,

1

g

)

+ N̄0

(
r,

1

g − b

)
+ N∗

0

(
r,

1

f ′

)
+ N∗

0

(
r,

1

g′

)
, (27)

where N∗
0 (r, 1

f ′ ) (or N∗
0 (r, 1

g′ )) means the counting function of zeros of f ′ (or g′) but not
zeros of f ( f − b) (or g(g − b)) and F − 1 (or G − 1). Then by Lemma 2, (25), (27), (5),
E({1}, F) = E({1}, G) and Ē(S2, f ) = Ē(S2, g), we can deduce that

(n + 1)(T0(r, f ) + T0(r, g))

≤ N̄0

(
r,

1

F − 1

)
+ N̄0

(
r,

1

f

)
+ N̄0

(
r,

1

f − b

)
+ N̄0(r, f )

+N̄0

(
r,

1

G − 1

)
+ N̄0

(
r,

1

g

)
+ N̄0

(
r,

1

g − b

)
+ N̄0(r, g)

−N∗
0

(
r,

1

f ′

)
− N∗

0

(
r,

1

g′

)
+ S(r, f ) + S(r, g)

≤ 2N̄0

(
r,

1

f

)
+ 2N̄0

(
r,

1

f − b

)
+ 3N̄0(r, f ) + 2N̄0

(
r,

1

g

)

+2N̄0

(
r,

1

g − b

)
+ N̄0

(
r,

1

F − 1

)
+ N̄0

(
r,

1

G − 1

)

−N̄ (1)
0

(
r,

1

F − 1

)
+ S(r, f ) + S(r, g)

≤ 4T0(r, f ) + 4T0(r, g) + 1

2
N0

(
r,

1

F − 1

)
+ 1

2
N0

(
r,

1

G − 1

)

+3N̄0(r, f ) + S(r, f ) + S(r, g),

and thus

(n − 6)(T0(r, f ) + T0(r, g)) ≤ 6N̄0(r, f ) + S(r, f ) + S(r, g). (28)

Let V be defined as in Lemma 2.9. If V (z) 
≡ 0, then we can deduce that

1

F
− A

G
≡ 1 − A,

where A 
= 0 is a constant. Together with (5), we have T0(r, f ) = T0(r, g) + S(r, f ). Set
f1 = 1

F and f2 = −A
G . Then we get f1 + f2 ≡ 1 − A. Suppose that A 
= 1. Then by

Lemma 2.12 and (5) we have

nT0(r, f ) ≤
3∑

j=1

N̄0

(
1

f − a j

)
+

3∑
j=1

N̄0

(
1

g − a j

)
+ N̄0

(
1

f

)
+ S(r, f )

≤ 7 T0(r, f ) + S(r, f ),



218 Ting-Bin Cao and Zhong-Shu Deng

where {a1, a2, a3} = {∞, α1, α2}. This contradicts the assumption n ≥ 8. Hence A = 1,

and thus F(z) ≡ G(z). This implies H(z) ≡ 0, a contradiction. Therefore, V (z) 
≡ 0. By
the definition of V and Lemmas 2.1, 2.2 or 2.6, we have (1) and

m0(r, V ) = S(r, F) + S(r, G).

From (1), we get that any pole of F and G is not a pole of V . Noting that E({1}, F) =
E({1}, G), by the definition of V we get that any zero of F − 1 and G − 1 is not a pole
of V . Thus by (5), we have

N0(r, V ) ≤ N̄0

(
1

F

)
+ N̄0

(
1

G

)
= N̄0

(
1

f

)
+ N̄0

(
1

g

)

≤ T0(r, f ) + T0(r, g) + O(1).

Hence we get

T0(r, V ) ≤ T0(r, f ) + T0(r, g) + S(r, f ) + S(r, g).

If z1 ∈ A is a pole of both f and g with multiplicity p and q respectively, then by the
definitions of F and G, we get that z1 must be a pole of both F and G with multiplicity
(n − 2)p and (n − 2)q respectively. Thus z1 is a zero of V with multiplicity ≥ n − 3.

Hence we obtain

(n − 3)N̄0(r, f ) ≤ N0

(
r,

1

V

)
≤ T0(r, V ) + O(1)

≤ T0(r, f ) + T0(r, g) + S(r, f ) + S(r, g). (29)

By (28) and (29), we have
(

n − 6 − 6

n − 3

)
(T0(r, f ) + T0(r, g)) ≤ S(r, f ) + S(r, g).

This contradicts the assumption n ≥ 8. Therefore, H(z) ≡ 0, and thus (9)–(11) hold. We
next consider three cases similarly as in the proof of Theorem 1.2.

Case 1. B 
= 0,−1. By the same argument as in the proof of Theorem 1.2, we obtain a
contradiction.

Case 2. B = −1. Then (20) holds.
Assume that A + 1 
= 0. Then N̄0(r,

1
F−(A+1)

) = N̄0(r, G). By Lemma 2.3 and (5),
(11) and the definitions of F and G, we have

T0(r, F) ≤ N̄0

(
r,

1

F

)
+ N̄0

(
r,

1

F − (A + 1)

)
+ N̄0(r, F) + S(r, F)

= N̄0

(
r,

1

F

)
+ N̄0(r, F) + N̄0(r, G) + S(r, F)

≤ 7

n
T0(r, F) + S(r, F).

This contradicts the assumption n ≥ 8.
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Assume that A + 1 = 0. Then F(z)G(z) ≡ 1, and thus (21) holds. Noting that
Ē({∞}, f ) = Ē({∞}, g), by (21) we get that ∞ is a Picard exceptional value of f and g
in A, and that the multiplicity of f − α j ( j = 1, 2) is at least n. By Lemma 2.3 we have

T0(r, f ) ≤ N̄0(r, f ) + N̄0

(
r,

1

f − α1

)
+ N̄0

(
r,

1

f − α2

)
+ S(r, f )

≤ 1

n
N0

(
r,

1

f − α1

)
+ N0

(
r,

1

f − α2

)
+ S(r, f )

≤ 2

n
T0(r, f ) + S(r, f ).

This contradicts the assumption n ≥ 8.

Case 3. B = 0. Then (22) holds.
Assume that A 
= 1. Then N̄0(r,

1
F+(A−1)

) = N̄0(r,
1
G ). By Lemma 2.3, (5), (11) and

the definitions of F and G, we have

T0(r, F) ≤ N̄0

(
r,

1

F

)
+ N̄0

(
r,

1

F + (A − 1)

)
+ N̄0(r, F) + S(r, F)

= N̄0

(
r,

1

F

)
+ N̄0(r, F) + N̄0

(
r,

1

G

)
+ S(r, F)

≤ 5

n
T0(r, F) + S(r, F).

This contradicts the assumption n ≥ 8.

Assume that A = 1. Thus F(z) ≡ G(z). Set h = f
g . Then (23) and (24) hold. If

h is not a constant, then by (24) we get that the multiplicity of every zero of h − β j

( j = 1, 2, . . . , 2n − 6) is at least 2. By Lemma 2.3 we can get that

(2n − 8)T0(r, h) <

2n−6∑
j=1

N̄0

(
r,

1

h − β j

)
+ S(r, h)

≤ 1

2

2n−6∑
j=1

N0

(
r,

1

h − β j

)
+ S(r, h)

≤ (n − 3)T0(r, h) + S(r, h).

This contradicts the assumption n ≥ 8. Therefore, h is a constant. Thus hn − 1 = 0,

hn−1 − 1 = 0 and hn−2 − 1 = 0. This implies h = 1, and so f (z) ≡ g(z).
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