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1. Introduction

The stochastic integral representations of quantum martingales have been studied by many
authors (see [2,6,7,10,11,14,15,18,19], etc). In [18], Parthasarathy and Sinha established a
stochastic integral representation of a regular bounded quantum martingale on Fock space
with respect to the basic martingales, namely the annihilation, creation and conservation
processes. A new proof of the Parthasarathy and Sinha representation theorem has been
discussed in [15] with the special form of the coefficient of the conservation process. In
[9], by using the framework of Gaussian (white noise) analysis (see [5,16]), the author
extended the Hudson and Parthasarathy quantum stochastic calculus and generalized the
notion of regular martingale in the context of a certain triple of weights [3,12] and then
the integral representation theorem for a regular (unbounded) quantum martingale was
proved.

In this paper, we extend the results obtained in [9,18] for the representation of a regular
martingale to the case of multiple Fock space with an initial Hilbert space. For our purpose,
we first extend the quantum stochastic integral studied in [8,19] (see also [17]) to our
setting.

The paper is organized as follows. In §2 we construct a rigging of multiple Fock space
and briefly recall the basic quantum stochastic processes. In §3 we extend the quan-
tum stochastic integral studied in [19] to a wider class of adapted quantum stochastic
processes in our setting. In §4 we prove the main result (Theorem 4.5) for a stochastic
integral representation of a (unbounded) regular quantum martingale on multiple Fock
space.

We expect that the integral representation of quantum martingales have applications in
Markovian cocycles [1,4,13]. Further study is now in progress.
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490 Un Cig Ji

Notations. Let X and Y be locally convex spaces.
X ⊗Y: the Hilbert space tensor product when X and Y are Hilbert spaces.
L(D,X): the space of all linear operators in X with domain D.
L(X,Y): the space of continuous linear operators from X into Y equipped with the topol-
ogy of bounded convergence, see [16].

2. Multiple Fock space and basic processes

Let H = L2(R+,K) ∼= L2(R+)⊗K be the Hilbert space of K-valued square integrable
functions on R+ and B a selfadjoint operator inK with dense domain Dom (B) satisfying
inf Spec (B) ≥ 1, where R+ = [0,∞) andK is a separable Hilbert space called the multi-
plicity space. In fact, we take B of the form

∑
i≥1 ρi |ei〉〈ei |, where {ei} is an orthonormal

basis for K and {ρi} a sequence of real numbers greater than or equal to 1.
For each p ∈ R+, put

Hp = Dom (I ⊗ Bp) ⊂ H
and let H−p be the completion of H with respect to the norm |I ⊗ B−p·|0, where | · |0 is
the norm on H . Then we have

H∞ = proj lim
p→∞

Hp ⊂ H ∼= H ∗ ⊂ H ∗∞ ∼= H−∞ = ind lim
p→∞ H−p,

where H ∗∞ is the strong dual space of H∞ with respect to H .
The (Boson) Fock space overH is denoted by H = �(H). Then by definition, H is the

space of sequences φ = (fn)∞n=0, where fn ∈ H ⊗̂n (n-fold symmetric tensor power of the
Hilbert space H ) such that

‖φ ‖20 =
∞∑
n=0

n!|fn|20 <∞,

where | · |0 is the norm on H ⊗̂n for any n ∈ N.
Let I be a separable Hilbert space which is called the initial Hilbert space and A a

selfadjoint operator in I with dense domain Dom (A) satisfying inf Spec (A) ≥ 1. To
lighten the notation, the operator A⊗ �(eI ⊗ B) in I ⊗H is denoted by A and

Ap = Ap1 ⊗ �(ep2I ⊗ Bp3), p = (p1, p2, p3) ∈ R3,

where �(C) is the second quantization of the operator C (see [17]). Then by standard
arguments we may construct a triplet:

G∞ ⊂ G ⊂ G−∞
from G = I ⊗H and A = A⊗ �(eI ⊗ B). More precisely, for each p ∈ R3+, put

Gp = Dom (Ap) ⊂ G ≡ I ⊗H
and then Gp becomes a Hilbert space with norm ||| · |||p = |||Ap· |||0, where ||| · |||0 is the norm
on I⊗H. Let G−p be the completion of I⊗H with respect to the norm ||| · |||−p = |||A−p·|||0,
and

G∞ = proj lim
p1,p2,p3→∞

G(p1,p2,p3), G−∞ = ind lim
p1,p2,p3→∞

G(−p1,−p2,−p3).
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Note that G−∞ is topologically isomorphic to the strong dual space G∗∞ of G∞ with respect
to I ⊗H.

For each p = (p2, p3) ∈ R2+, put

Hp = Dom (�(ep2I ⊗ Bp3))

and let H−p be the completion of H with respect to the norm ‖ · ‖−p = ‖�(e−p2I⊗
B−p3) · ‖0, and

H∞ = proj lim
p2,p3→∞

H(p2,p3), H−∞ = ind lim
p2,p3→∞

H(−p2,−p3).

For each interval [a, b] ⊂ R+, we write H[a,b] = L2([a, b],K) and then

H = Hs] ⊕H[s,t] ⊕H[t , 0 < s < t <∞
with abbreviations Hs] and H[t when [a, b] = [0, s] and [a, b] = [t,∞], respectively.
Therefore, we have the identification

G = Gs] ⊗H[s,t] ⊗H[t , Gs] = I ⊗Hs],

where

Hs] = �(Hs]), H[s,t] = �(H[s,t]), H[t = �(H[t ).

Moreover, for any p = (p1, p2, p3) ∈ R3+ ∪ R3− (R− = (−∞, 0]) and 0 < s < t < ∞,
we have

Gp = Gp;s] ⊗Hp′;[s,t] ⊗Hp′;[t ,

where p′ = (p2, p3) and

Gp;s] = Gp ∩ Gs], Hp′;[s,t] = Hp′ ∩H[s,t], Hp′;[t = Hp′ ∩H[t

(closures when p ∈ R3−).
For each g, h ∈ H∞ and T ∈ L(H∞, H∞), the annihilation, creation and conservation

operators are defined on H∞ as follows:

a(g)φ = (ng⊗̂1
fn)
∞
n=1,

a∗(h)φ = (S1+n(h⊗ fn))∞n=0,

λ(T )φ = ((n+ 1)S1+n(T ⊗ I⊗n)fn+1)
∞
n=0,

respectively, for any φ = (fn)∞n=0 ∈ H∞, where g⊗̂1
fn is the left 1-contraction of g and

fn [16], and Sl+m stands for the symmetrizing operator. Then we can easily show that
a(g), a∗(h) and λ(T ) are continuous linear operators acting on H∞. The operators a(g)
and a∗(g) are adjoint to each other and λ(T ∗) = (λ(T ))∗.

The three basic (quantum stochastic) processes called annihilation, creation and con-
servation processes are defined by

Ai(t) = I ⊗ a(1[0,t] ⊗ ei),
A∗i (t) = I ⊗ a∗(1[0,t] ⊗ ei),
�ij (t) = I ⊗ λ(1[0,t] ⊗ Pij ),
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respectively, where I is the identity operator on I and 1[0,t] the indicator function. In the
definition of Ai(t) and A∗i (t) the indicator function 1[0,t] is a vector in L2(R+) while it is
considered as a multiplication operator in L2(R+) in the definition of �ij (t).

For each f ∈ H , a vector of the form:

φf =
(

1, f,
f⊗2

2!
, . . . ,

f⊗n

n!
, . . .

)

is called an exponential vector or a coherent vector. Note that φf belongs to H∞ (resp.
H−∞) if and only iff belongs toH∞ (resp.H−∞). The exponential vectors {φf ; f ∈ H∞}
span a dense subspace of H∞, hence of Hp for all p ∈ R2+ and of H−∞. We denote E(D)
the linear subspace generated by {φf ; f ∈ D} for D ⊂ H . Then for any f, g ∈ H∞ and
t ∈ R+ we have

〈〈Ai(t)u⊗ φf , v ⊗ φg〉〉 = 〈u, v〉
(∫ t

0
fi(s)ds

)
e〈f, g〉,

〈〈A∗i (t)u⊗ φf , v ⊗ φg〉〉 = 〈u, v〉
(∫ t

0
gi(s)ds

)
e〈f, g〉,

〈〈�ij (t)u⊗ φf , v ⊗ φg〉〉 = 〈u, v〉
(∫ t

0
fj (s)gi(s)ds

)
e〈f, g〉,

where 〈〈·, ·〉〉 is the C-bilinear form on G−∞ × G∞ and hi(s) = 〈h(s), ei〉 for h ∈ H .
The quantum Ito’s formula established in [8] is summarized by the following table:

dt dAk dA∗k d�kl

dt 0 0 0 0

dAi 0 0 δikdt δikdAl

dA∗i 0 0 0 0

d�ij 0 0 δjkdA∗i δjkd�il

. (2.1)

3. Quantum stochastic integral

Let D0 andM be dense linear subspaces of I∞ andH∞, respectively, such that 1[0,t]f ∈ M
for any t ∈ R+ and f ∈ M , and let

Mt] = {1[0,t]f ; f ∈ M}, M[t = {1[t,∞)f ; f ∈ M}.

We put Ẽ = D0 ⊗al E(M) ⊂ G∞, where ⊗al is the algebraic tensor product, and put

Ẽt] = D0 ⊗al E(Mt]), E[t = E(M[t ) and then Ẽ = Ẽt] ⊗al E[t .

A family of operators � = {�(t)}t≥0 ⊂ L(Ẽ,G−∞) is called a Gp-quantum stochastic
process if there exists p ∈ R3+ ∪R3− (independent of t ≥ 0) such that�(t) ∈ L(Ẽ,Gp) for
each t ≥ 0 and for each ψ ∈ Ẽ the map R+ � t �→ �(t)ψ ∈ Gp is strongly measurable.
We may then think of�(t) as a densely defined operator on the Hilbert space Gp; and call
� adapted if �(t) = �(t]) ⊗alg I ([t) for some �(t]) ∈ L(Ẽt],Gp;t]), where I ([t) is the
identity operator on Gp;[t .
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For certain sets of {E(k)}k=1,2,3,4 of families of adapted process, stochastic integrals of
the type ∫ t

0

{∑
i,j

E
(1)
ij d�ij +

∑
i

E
(2)
i dAi +

∑
i

E
(3)
i dA+i + E(4)ds

}

can be defined as in [9]. We first define the integrals for a finite family of simple adapted
processes {E(k)}k=1,2,3,4 and then the definition can be extended to a certain class of
countable families {E(k)}k=1,2,3,4 with a norm estimate (see (3.3)) induced by the quantum
Itô formula. For detailed calculations, we refer to [8] and [19].

For each p = (p1, p2, p3) ∈ R3+ ∪ R3− we denote A2(Ẽ,Gp) the class of all (ordered)
quadruples of families of adapted processes

E ≡ {E(1)ij (t), E(2)i (t), E
(3)
i (t), E(4)(t); 1 ≤ i, j <∞, t ≥ 0}

satisfying

∫ t

0



∑
i

ρ
2p3
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∑
j

fj (s)E
(1)
ij (s)u⊗ φf

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

p

+
3∑
k=2

∑
i

ρ
2p3
i |||E(k)i (s)u⊗ φf |||2p + |||E(4)(s)u⊗ φf |||2p

}
ds <∞

(3.1)

for all t > 0, u ∈ D0 and f ∈ M .

Theorem 3.1. Let p = (p1, p2, p3) ∈ R3+ ∪R3− and E ∈ A2(Ẽ,Gp). Then the stochastic
integral

�(t) =
∫ t

0

∑
i,j

E
(1)
ij (s)d�ij (s)+

∫ t

0

∑
i

E
(2)
i (s)dAi(s)

+
∫ t

0

∑
i

E
(3)
i (s)dA+i (s)+

∫ t

0
E(4)(s)ds

is well-defined as an adapted process in L(Ẽ,Gp). Moreover, for any u, v ∈ D0 and
f, g ∈ M we have

〈〈�(t)u⊗ φf , v ⊗ φg〉〉

=
∫ t

0

〈〈{∑
i,j

gi(s)fj (s)E
(1)
ij (s)+

∑
i

fi(s)E
(2)
i (s)

}
u⊗ φf , v ⊗ φg

〉〉
ds

+
∫ t

0

〈〈{∑
i

gi(s)E
(3)
i (s)+ E(4)(s)

}
u⊗ φf , v ⊗ φg

〉〉
ds (3.2)

and

|||�(t)u⊗ φf |||2p ≤ exp

{
t + 3e2p2

∫ t

0
| f (u) |2p3

du

}(∫ t

0
G(s)ds

)
<∞,

(3.3)
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where, for each t ∈ R+,

G(t) = 3e2p2
∑
i

ρ
2p3
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∑
j

fj (t)E
(1)
ij (t)u⊗ φf

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

p

+ e2p2
∑
i

ρ
2p3
i |||E(2)i (t)u⊗ φf |||2p

+ 3e2p2
∑
i

ρ
2p3
i |||E(3)i (t)u⊗ φf |||2p + |||E(4)(t)u⊗ φf |||2p. (3.4)

Proof. By similar arguments of those used in [19] and [9] using the quantum Itô formula
(2.1), for simple quadruple E with finite number of non-zero components we can compute
that

d

dt
|||�(t)u⊗ φf |||2p = 2 Re

{
5∑
k=1

Sk

}

+
∑
i

e2p2ρ
2p3
i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∑
j

fj (t)E
(1)
ij (t)u⊗ φf

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

p

+
∑
i

e2p2ρ
2p3
i |||E(3)i (t)u⊗ φf |||2p, (3.5)

where

S1 = e2p2
∑
i

ρ
2p3
i

〈〈
Ap(fi(t)�(t)u⊗ φf ), Ap

(∑
j

fj (t)E
(1)
ij (t)u⊗ φf

)〉〉
,

S2 =
∑
i

e2p2ρ
2p3
i

〈〈
Ap(f̄i(t)�(t)u⊗ φf ), Ap(E

(2)
i (t)u⊗ φf )

〉〉
,

S3 =
∑
i

e2p2ρ
2p3
i

〈〈
Ap(fi(t)�(t)u⊗ φf ), Ap(E

(3)
i (t)u⊗ φf )

〉〉
,

S4 =
〈〈

Ap(�(t)u⊗ φf ), Ap(E(4)(t)u⊗ φf )
〉〉
,

S5 =
∑
i

e2p2ρ
2p3
i

〈〈
Ap(E

(3)
i (t)u⊗ φf ), Ap

(∑
j

fj (t)E
(1)
ij u⊗ φf

)〉〉
.

By using the Cauchy–Schwarz inequality and the fact 2 Re āb ≤ |a|2 + |b|2, we obtain
from (3.5) that

d

dt
|||�(t)u⊗ φf |||2p ≤ (1+ 3e2p2 |f (t)|2p3

)|||�(t)u⊗ φf |||2p +G(t),

whereG(t) is given as in (3.4). The inequality (3.3) can be obtained by applying Gronwall’s
lemma with the above inequality, as in [8] or [17]. Then the inequality (3.3) allows the
extension of the integral to A2(Ẽ,Gp) satisfying the inequality (3.3). �
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4. Regular quantum martingales

An adapted processes {�(t)}t≥0 ⊂ L(Ẽ,Gp) is called a quantum martingale if for any
0 ≤ s ≤ t ,

〈〈�(t)(u⊗ φ1[0,s]f ), v ⊗ φ1[0,s]g〉〉 = 〈〈�(s)(u⊗ φ1[0,s]f ), v ⊗ φ1[0,s]g〉〉
for any u, v ∈ D0 and f, g ∈ M . For each 1 ≤ i, j < ∞, the annihilation process
{Ai(t)}t≥0, creation process {A∗i (t)}t≥0 and conservation process {�ij (t)}t≥0 are quantum
martingales which are called the basic martingales in quantum stochastic calculus.

In the following, for p, q ∈ R3+∪R3− with p−q ∈ R3+ we consider quantum martingales
� in L(Gp,Gq). Thus, for any 0 ≤ s ≤ t and φs] ∈ Gp;s], ψs] ∈ G−q;s],

〈〈�tφs], ψs]〉〉 = 〈〈�sφs], ψs]〉〉.
The following definition of regular martingale is a simple modification of the definition of
bounded regular martingale in [18] and [9].

DEFINITION 4.1

A quantum martingale� in L(Gp,Gq) is said to be regular with respect to a Radon measure
m on R+, or simply regular if for any 0 ≤ v < u and φ ∈ Gp;v], ψ ∈ G−q;v],

||| (�u −�v)φ |||2q ≤ |||φ |||2p m([v, u]),

||| (�∗u −�∗v)ψ |||2−p ≤ |||ψ |||2−q m([v, u]). (4.1)

PROPOSITION 4.2

Let � be a quantum martingale in L(Gp,Gq). If � has the integral representation:

d� =
∑
i,j

Eijd�ij +
∑
i

F ∗i dAi +
∑
i

GidA
∗
i ,

where the quadruples (Eij , F ∗i , Gi, 0) and (E∗ij , Fi,G
∗
i , 0) belong to A2(Ẽ,Gq) and

A2(Ẽ,G−p), respectively, and Eij , F ∗i , Gi are adapted processes in L(Gp,Gq) such that∑
i

ρ
2q3
i G

†
i (s)A

2qGi(s) and
∑
i

ρ
−2p3
i F

†
i (s)A

−2pFi(s)

converge weakly to self-adjoint operators G(s) ∈ L(Gp,G−p) and F(s) ∈ L(G−q,Gq),

respectively, with the property that ‖G(s)‖p;−p and ‖F(s)‖−q;q are locally integrable,
where K† denotes the adjoint of the operator K with respect to 〈〈·, · 〉〉 and ‖�‖r;s is the
operator norm of � ∈ L(Gr,Gs). Then � is regular.

Proof. Let p = (p1, p2, p3) ∈ R3+ ∪ R3− and q = (q1, q2, q3) ∈ R3+ ∪ R3−. Note that for
any 0 ≤ a < t and φa] ∈ Gp;a], ψa] ∈ Gq;a],

〈〈�(t)φa], ψa]〉〉q = 〈〈�(s)φa], ψa]〉〉q.
It follows that

||| (�(t)−�(a))φa] |||2q = |||�(t)φa] |||2q − |||�(a)φa] |||2q. (4.2)
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Therefore, by applying (3.5), we obtain that for any 0 ≤ a < t and φa] ∈ Ẽa],

||| (�(t)−�(a))φa] |||2q = e2q2

∫ t

a

∑
i

ρ
2q3
i |||Gi(s)φa] |||2qds

≤ e2q2 |||φa] |||2p
∫ t

a

‖G(s)‖p;−pds. (4.3)

Similarly, for any 0 ≤ a < t and ψa] ∈ Ẽa], we have

||| (�(t)∗ −�(a)∗)ψa] |||2−p ≤ e−2p2 |||ψa] |||2−q

∫ t

a

‖F(s)‖2−q;qds. (4.4)

Now, we define a Radon measure m on R+ by

m([a, b]) =
∫ b

a

(e2q2‖G(s)‖2p;−p + e−2p2‖F(s)‖2−q;q)ds

for all 0 ≤ a ≤ b <∞.

Therefore, by (4.3), (4.4) and the density of Ẽa] in Gp;a] and G−q;a], we see that� is regular
with respect to the absolutely continuous Radon measure m. �

Remark 4.3. Let� be a martingale in L(Gp,Gq)which is regular with respect to the Radon
measure m. Then for any t > a,

‖�(t)‖p;q ≥ sup
|||φa] |||p=1

|||�(t)φa] |||q

≥ sup
|||φa] |||p=1

|||�(a)φa] |||q ≥ ‖�(a)‖p;q,

where we used (4.2) for the second inequality. Therefore, ‖�(·)‖p;q is non-decreasing.

LetP denote the probability measure of an independent identically distributed sequence
{B1, B2, . . . } of standard Brownian motions. Then the Hilbert space L2(P ) is identified
with �(L2(R+,R)⊗ 	2) by the following correspondence:

φf ←→ exp
∑
i

(∫ ∞
0

fi dBi − 1

2

∫ ∞
0

f 2
i dt

)
,

where f = (f1, f2, . . . ) ∈
⊕∞

i=1 L2(R+,R) ∼= L2(R+,R)⊗ 	2. Put

M0 = {f = (f1, . . . , fi, . . . ) ∈ H∞ ;
fi = 0 for all but a finite number of i′s}.

Then E0 = E(M0) and Ẽ0 = I∞ ⊗al E(M0) are total in H and G, respectively, where I∞
is the Fréchet space constructed by the standard manner with I and the positive operator
A, and then we have

φf 1[0,t] − 1 =
∑
i

∫ t

0
fi(s)φf 1[0,s] dBi(s)
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for φf ∈ E0. In general, we have the following proposition which is an extension of
the classical martingale representation theorem of Kunita–Watanabe for L2-martingales
adapted to one Brownian motion to an I-valued L2-martingale adapted to a countable
family of independent Brownian motion.

PROPOSITION 4.4 [19]

Let {X(t)}t≥0 be an I-valued square integrable martingale adapted to {Bi} which is an
independent identically distributed sequence of standard Brownian motions. Then

X(t) = X(0)+
∑
i

∫ t

0
ξi dBi,

where {ξi}i≥1 is a sequence of adapted processes satisfying∫ t

0

∑
i

E[‖ξi(s)‖2I ]ds <∞, t ∈ R+.

Our aim is to prove the converse of Proposition 4.2 generalizing the main result in [9]
and [19]. For the proof we use similar arguments to those used in [19].

Theorem 4.5. Let p, q ∈ R3+ ∪R3− with p−q ∈ R3+. Let� be a martingale in L(Gp,Gq)

which is regular with respect to a Radon measure m on R+. Then there exist three unique
families of adapted processes {Eij }, {F ∗i }, {Gi} in L(Gp,Gq) such that

d� =
∑
i,j

Eijd�ij +
∑
i

F ∗i dAi +
∑
i

GidA
∗
i

on Ẽ00 (see eq. (4.15)). Furthermore,∑
i

ρ
2q3
i G

†
i (s)A

2qGi(s) and
∑
i

ρ
−2p3
i F

†
i (s)A

−2pFi(s)

converge weakly to operators G(s) ∈ L(Gp,G−p) and F(s) ∈ L(G−q,Gq), respectively,
with

max{‖G(s)‖p;−p, ‖F(s)‖−q;q} ≤ m′ac(s), s ∈ R+,

where mac denotes the absolutely continuous part of m.

Proof. This follows from the identity (4.8) and Lemma 4.11 below. �

Lemma 4.6. Let p = (p1, p2, p3)and q = (q1, q2, q3). Let�be a martingale inL(Gp,Gq)

which is regular with respect to a Radon measure m on R+. Then

(i) m can be replaced by its absolutely continuous part;
(ii) there exist two countable families of adapted processes {F ∗i (t)} and {Gi(t)} in

L(Gp,Gq) such that for any ϕ ∈ Gp;a] and ψ ∈ G−q;a], t > a ≥ 0,

(�(t)−�(a))ϕ =
∫ t

a

∑
i

Gi(s)ϕ dBi(s),

(�∗(t)−�∗(a))ψ =
∫ t

a

∑
i

Fi(s)ψ dBi(s),

where {Bi(s)} is the countable family of Brownian motions in Proposition 4.4;
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(iii) the series∑
i

ρ
2q3
i G

†
i (s)A

2qGi(s) and
∑
i

ρ
−2p3
i F

†
i (s)A

−2pFi(s)

converge weakly to operators G(s) ∈ L(Gp,G−p) and F(s) ∈ L(G−q,Gq), respec-
tively, with the property that ‖G(s)‖p;−p and ‖F(s)‖−q;q are locally integrable.

Proof.
(i) Let ϕ ∈ Gp;a] be fixed. Since {Aq�(t)ϕ}t≥a is a classical I-valued square integrable
martingale in [a,∞) adapted to the countable family {Bi(s)} of independent Brownian
motions, by Proposition 4.4 there exists a countable family of I-valued adapted square
integrable process {ξi(s, ϕ)}s≥a such that

Aq�(t)ϕ − Aq�(a)ϕ =
∫ t

a

∑
i

ξi(s, ϕ)dBi(s).

By the Itô isometry and (4.1), we have for all 0 ≤ a < b < t <∞,

∫ t

b

E

[∑
i

‖ξi(s, ϕ)‖2I
]

ds = ||| [Aq�(t)−Aq�(b)]ϕ |||20 ≤ |||ϕ |||2p m([b, t]).

(4.5)

Similarly, we prove that for fixed ψ ∈ G−q;a] there exists a countable family of I-valued
adapted square integrable process {ηi(s, ψ)}s≥a such that

A−p�(t)∗ψ − A−p�(a)∗ψ =
∫ t

a

∑
i

ηi(s, ψ)dBi(s)

and for all 0 ≤ a < b < t <∞,∫ t

b

E

[∑
i

‖ηi(s, ψ)‖2I
]

ds = ||| [A−p�(t)∗ − A−p�(b)∗]ψ |||20

≤ |||ψ |||2−q m([b, t]). (4.6)

From (4.5) and (4.6) we see that m can be replaced by its absolutely continuous part mac.
(ii)–(iii). From (i) we assume that m is an absolutely continuous Radon measure. By similar
arguments of those used in the proof of Proposition 7.5 in [9] we see that {ξi(s, ϕ)}s≥a
does not depend on the end point a and we put

Gi(s)ϕ = e−2q2ρ
−q3
i A−qξi(s, ϕ) a.e. s > a, ϕ ∈ Gp;a].

This gives an adapted operator family {Gi(s)} (for details see the proof of the Proposi-
tion 7.5 in [9]). Hence by (4.5) for any ϕ ∈ Gp;a] we have

∫ t

b

∑
i

ρ
2q3
i |||AqGi(s)ϕ |||20ds = e−2q2

∫ t

b

E

[∑
i

‖ξi(s, ϕ)‖2I
]

ds

≤ e−2q2 |||ϕ |||2p m([b, t])
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which implies that∑
i

ρ
2q3
i |||AqGi(s)ϕ |||20 ≤ e−2q2m′(s) |||ϕ |||2p for all s. (4.7)

This shows that eachGi(s) is an adapted process in L(Gp,Gq) and that
∑
i ρ

2q3
i G

†
i (s)A

2q

Gi(s) converges strongly to an operator G(s) ∈ L(Gp,G−p) such that ‖G(s)‖p;−p is
locally integrable. In fact, we prove that∥∥∥∥∥

∑
i

ρ
2q3
i G

†
i (s)A

2qGi(s)

∥∥∥∥∥
p;−p

≤ e−2q2m′(s) a.e.

The remainder of the proof is similar. �

Now, we put

S(t) =
∫ t

0

∑
i

(
Gi(s)dA

∗
i (s)+ F ∗i (s)dAi(s)

)
,

S∗(t) =
∫ t

0

∑
i

(
Fi(s)dA

∗
i (s)+G∗i (s)dAi(s)

)
,

Z(t) = �(t)− S(t) and Z∗(t) = �∗(t)− S∗(t). (4.8)

Remark 4.7. By (3.1) and (4.7), the integrals∫ t

0

∑
i

Gi(s)dA
∗
i ,

∫ t

0

∑
i

Fi(s)dA
∗
i

are well-defined on Ẽ with M = H . But, in general, the other two integrals
∫ t

0

∑
i F
∗
i (s)

dAi(s) and
∫ t

0

∑
i G
∗
i (s)dAi(s) are not well-defined on Ẽ with M = H since we have

no estimates for
∑
i ρ
−2p3
i |||A−pG∗i (s)ϕ |||20 and

∑
i ρ

2q3
i |||AqF ∗i (s)ϕ |||20. If we consider

the integrals on Ẽ0, then the infinite series reduce to finite sums and hence the stochastic
integrals are well-defined on Ẽ0 by (3.1). Then from (3.2) and the definitions it is immediate
that the processes {S, S∗} and {Z,Z∗} are adjoint pairs on Ẽ0. Also, we can easily see
that for all u ∈ I∞ and f ∈ M0, {AqZ(t)u ⊗ φ1[0,t]f } and {A−pZ∗(t)u ⊗ φ1[0,t]f } are
classical I-valued martingales adapted to the countable family of Brownian motions {Bi}
in Proposition 4.4. Moreover, for all t > a,

Z(t)u⊗ φ1[0,a]f = Z(a)u⊗ φ1[0,a]f , Z
∗(t)u⊗ φ1[0,a]f = Z∗(a)u⊗ φ1[0,a]f . (4.9)

Lemma 4.8. Let u ∈ I∞ and f ∈ M0. Then

(i) there exists a I-valued square integrable classical process {ξi(·, u, f )} such that

AqZ(t)A−pu⊗ φ1[0,t]f = Aq�(0)A−pu⊗ φ0 +
∫ t

0

∑
i

ξi(s, u, f )dBi(s);

(ii) there exists a I-valued square integrable classical process {ηi(·, u, f )} such that

A−pZ∗(t)Aqu⊗ φ1[0,t]f = A−p�∗(0)Aqu⊗ φ0 +
∫ t

0

∑
i

ηi(s, u, f )dBi(s).
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Proof. The proofs of (i) and (ii) are simple applications of Proposition 4.4. �

Now, we prove that {Z}t≥0 can be represented by a stochastic integral with respect to
{�ij }. For the proof, we use similar arguments to those used in [19] by using a special
martingale U(i) related to the Weyl representation.

Lemma 4.9. [19]. For each i = 1, 2, . . . , let U(i) be the unique bounded martingale
satisfying

dU(i) = (dA∗i − dAi)U
(i), U(i)(0) = I.

Then

(i) e−t/2U(i)(t) = I0⊗W(1[0,t]ei, I ), where I0 is the identity in B(I) andW is the Weyl
representation defined in [8];

(ii) U(i)(t) leaves Ẽ0 invariant.

Lemma 4.10. Let � be a regular martingale in L(Gp,Gq) and let {Gi}, {Fi} be the asso-
ciated families of adapted processes defined in Lemma 4.6. For each i = 1, 2, . . . , put

Y (i)(t) = Aq
(
�(t)A−pU(i)(t)− e−p2ρ

−p3
i

∫ t

0
F ∗i (s)A

−pU(i)(s)ds

)
.

Then

(i) for each i, {Y (i)}t≥0 is a bounded regular martingale in L(G,G);
(ii) for each i, there exists a unique family {M(i)

j } of bounded adapted processes such that
for all t > a > 0 and ϕ ∈ Ga],

[Y (i)(t)− Y (i)(a)]ϕ =
∫ t

a

∑
j

M
(i)
j (s)ϕdBj (s). (4.10)

Proof.
(i) It is clear that Aq�(t)A−pU(i)(t) is bounded. By similar arguments of those used to
get (4.7) we prove that for any t > 0,∫ t

0
‖A−pFi(s)AqU(i)(s)‖0;0ds ≤ ep2

∫ t

0
es/2

√
m′(s)ds <∞ (4.11)

which implies that Y (i)(t) is bounded. Since Ẽ0 is invariant by U(i)(t), the relation:

Y (i)(t) = AqZ(t)A−pU(i)(t)+W(i)(t) (4.12)

holds on Ẽ0, where

W(i)(t)

= Aq
(
S(t)A−pU(i)(t)− e−p2ρ

−p3
i

∫ t

0
F ∗i (s)A

−pU(i)(s)ds

)
, t ≥ 0.
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Note that Ẽ0 is invariant by Ap. Therefore, by (4.9) and the martingale property of
U(i), we prove that {AqZ(t)A−pU(i)(t)} is a martingale on Ẽ0. Now let u, v ∈ I∞ and
f, g ∈ M0. Then by applying Ito’s product formula (2.1) (or see Theorem 6.2 in [9]) to
AqS(t)A−pU(i)(t), we can easily see that {W(i)(t)}t≥0 is a martingale.

In fact, for any t ≥ 0 we have

AqS(t)A−pU(i)(t) = e−p2ρ
−p3
i

∫ t

0
AqS(s)A−pU(i)(s)dA∗i (s)

−
∫ t

0
AqS(s)A−pU(i)(s)dAi(s)

+ eq2ρ
q3
i

∫ t

0
AqGi(s)A−pU(i)(s)dA∗i (s)

+
∫ t

0
AqF ∗i (s)A

−pU(i)(s)dAi(s)

+ e−p2ρ
−p3
i

∫ t

0
AqF ∗i (s)A

−pU(i)(s)ds (4.13)

on Ẽ0. The proof of regularity is similar to that in [18] and [19]. By similar arguments of
those used to get (4.11) we first show that for t > a > 0 and ϕ ∈ Ga],∣∣∣∣

∣∣∣∣
∣∣∣∣ e−p2ρ

−p3
i

∫ t

a

F ∗i (s)A
−pU(i)(s)ϕds

∣∣∣∣
∣∣∣∣
∣∣∣∣2
0

≤ ρ−2p3
i |||ϕ |||20

(∫ t

a

es/2
√

m′(s)ds
)2

≤ ρ−2p3
i |||ϕ |||20 (et − ea)m([a, t]).

On the other hand, for t > a > 0 and ϕ ∈ Ga] we have

||| (�(t)A−pU(i)(t)−�(a)A−pU(i)(a))ϕ |||2q
≤ 2|||�(t)A−p(U(i)(t)− U(i)(a))ϕ |||2q
+ 2||| (�(t)−�(a))A−pU(i)(a)ϕ |||2q
≤ 2‖�(t)‖2p;q(et − ea) |||ϕ |||20 + 2ea |||ϕ |||20 m([a, t]).

Therefore, since ‖�(t)‖p;q is non-decreasing by Remark 4.3, for t > a > 0 and ϕ ∈ Ga]
we have

||| (Y (i)(t)− Y (i)(a))ϕ |||20
≤ 2C |||ϕ |||20 ((et − ea)m([a, t])+ (et − ea)‖�(t)‖2p;q + eam([a, t]))
≤ 2C |||ϕ |||20 [et (‖�(t)‖2p;q +m([0, t]))− ea(‖�(a)‖2p;q +m([0, a]))]

≡ |||ϕ |||20 n([a, t]), (4.14)
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where C = max{ρ−2p3
i , 2} and n is the Radon measure defined by (4.14). Hence we prove

(i). The proof of (ii) is similar to the proof of Lemma 4.6 by applying Proposition 4.4 to
the bounded regular martingale {Y (i)(t)}t≥0. �

Let

M00 = {f ∈ M0 ⊂ H∞ ; ‖f (t)‖ is a locally bounded function of t}
and

Ẽ00 = I∞ ⊗al E(M00). (4.15)

Lemma 4.11. Let � be a regular martingale in L(Gp,Gq) and let {F ∗i }, {Gi}, {S, S∗},
{Z,Z∗}, U(i) and {M(i)

j } be as defined in Lemmas 4.6–4.10. Put

Lij (t) = A−qM
(i)
j (t)U

(i)(t)−1Ap

− eq2ρ
q3
i Gi(t)− e−p2ρ

−p3
i S(t)δij − Z(t)δij . (4.16)

Then the processes {ηi(t, u, f )} defined in (ii) of Lemma 4.8 satisfies the relation for any
u ∈ I∞ and f ∈ M0:

ηi(t, u, f ) =
∑
j

fj (t)A−p[L∗ij (t)+ Z∗(t)δij ]Aqu⊗ φ1[0,t]f a.e. t.

(4.17)

Moreover, we have

Z(t) = �(0)+
∫ t

0

∑
i,j

Eij (s)d�ij (s) (4.18)

defined on Ẽ00, where Eij = ep2−q2ρ
−q3
i ρ

p3
j Lij for each i, j = 1, 2, . . . .

Proof. Let u, v ∈ I∞, f, g ∈ M0 and t > a. Then by (i) in Lemma 4.9 we have

U(i)(t)v ⊗ φ1[0,a]g = e−
∫ a

0 gi(s)dsv ⊗ φ1[0,a]g+1[0,t]ei .

Thus by (ii) in Lemma 4.8 and the Itô isometry, we have

d

dt
〈〈A−pZ∗(t)Aqu⊗ φ1[0,t]f , U

(i)(t)v ⊗ φ1[0,a]g〉〉

= e−
∫ a

0 gi(s)ds
d

dt

∫ t

0

∑
j

(1[0,a](s)gi(s)+ δij )〈〈ηj (s, u, f ), v ⊗ φ1[0,a]g+1[0,t]ei 〉〉ds

= 〈〈ηi(t, u, f ), U(i)(t)v ⊗ φ1[0,a]g〉〉 a.e. t > a.
(4.19)

On the other hand, from (4.12), (4.13), (4.10) and Itô isometry, for t > a we obtain that

〈〈u⊗ φ1[0,t]f , [AqZ(t)A−pU(i)(t)− AqZ(a)A−pU(i)(a)]v ⊗ φ1[0,a]g〉〉
= 〈〈u⊗ φ1[0,t]f , [Y (i)(t)− Y (i)(a)]v ⊗ φ1[0,a]g〉〉
− 〈〈u⊗ φ1[0,t]f , [W(i)(t)−W(i)(a)]v ⊗ φ1[0,a]g〉〉
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=
∫ t

a

∑
j

fj (s)〈〈u⊗ φ1[0,t]f , M
(i)
j (s)v ⊗ φ1[0,a]g〉〉ds −

∫ t

a

∑
j

fj (s)

× 〈〈u⊗ φ1[0,t]f , Aq[eq2ρ
q3
i Gi(s)+ e−p2ρ

−p3
i S(s)δij ]A−pU(i)(s)v ⊗ φ1[0,a]g〉〉ds

=
∫ t

a

∑
j

fj (s)〈〈u⊗ φ1[0,t]f , Aq[Lij (s)+ Z(s)δij ]A−pU(i)(s)v ⊗ φ1[0,a]g〉〉ds.

(4.20)

Therefore, by comparing (4.19) and (4.20) using the totality of the set {v ⊗ φ1[0,a]g | v ∈
I∞, g ∈ M0, 0 < a < t} in Gt], we have (4.17). Hence by (ii) in Lemma 4.8 and (4.17)
we obtain that

A−pZ∗(t)Aqu⊗ φ1[0,t]f

= A−p�∗(0)Aqu⊗ φ0 +
∫ t

0

∑
i,j

fj (s)A−p[L∗ij (s)+ Z∗(s)δij ]Aqu⊗ φ1[0,s]f dBi(s).

(4.21)

It is obvious that {Lij (t)}t≥0 defined by (4.16) are adapted processes in L(Gp,Gq) and a
simple estimate shows that the integral

∫ t
0

∑
i,j Lij (s)d�ij (s) is well-defined on Ẽ00 since

the integrability condition (3.1) is satisfied for any f ∈ M00. Now, by (4.21) and the Itô
isometry, for f, g ∈ M00 we have

〈〈u⊗ φf , AqZ(t)A−pv ⊗ φg〉〉

= 〈〈A−pZ∗(t)Aqu⊗ φ1[0,t]f , v ⊗ φ1[0,t]g〉〉e
∫∞
t
〈f (s), g(s)〉ds

= e
∫∞
t
〈f (s), g(s)〉ds

{
〈〈u⊗ φ0, Aq�(0)A−pv ⊗ φ0〉〉

+
∫ t

0

∑
i,j

fj (s)gi(s)〈〈u⊗ φ1[0,s]f , Aq[Lij (s)+ Z(s)δij ]A−pv ⊗ φ1[0,s]g〉〉ds
}
.

By differentiation we obtain that

d

dt
〈〈u⊗ φf , AqZ(t)A−pv ⊗ φg〉〉

=
∑
i,j

fj (t)gi(t)〈〈u⊗ φf , AqLij (t)A−pv ⊗ φg〉〉

which by (3.2) and (ii) in Lemma 4.8, proves that

Z(t) = �(0)+ A−q

[∫ t

0

∑
i,j

AqLij (s)A−pd�ij (s)

]
Ap (4.22)
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on Ẽ00. On the other hand, by direct computation we prove that

A−q

[∫ t

0

∑
i,j

AqLij (s)A−pd�ij (s)

]
Ap

=
∫ t

0

∑
i,j

ep2−q2ρ
−q3
i ρ

p3
j Lij (s)d�ij (s)

on Ẽ00. Thus by (4.22) we prove (4.18). �
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172–212

[3] Belavkin V P, A quantum nonadapted Ito formula and stochastic analysis in Fock scale,
J. Funct. Anal. 102 (1991) 414–447

[4] Goswami D, Lindsay J M, Sinha K B and Wills S J, Dilation of Markovian cocycles on
a von Neumann algebra, Pacific J. Math. 211 (2003) 221–247

[5] Hida T, Analysis of Brownian Functionals, Carleton Math. Lect. Notes vol. 13 (Ottawa:
Carleton University) (1975)

[6] Hudson R L and Lindsay J M, A non-commutative martingale representation theorem
for non-Fock quantum Brownian motion, J. Funct. Anal. 61 (1985) 202–221

[7] Hudson R L, Lindsay J M and Parthasarathy K R, Stochastic integral representation of
some quantum martingales in Fock space, in: From local times to global geometry, control
and physics, Proc. Warwick Symposium 1984/1985 (Pitman RNM) (1986) pp. 121–131

[8] Hudson R L and Parthasarathy K R, Quantum Ito’s formula and stochastic evolutions,
Commun. Math. Phys. 93 (1984) 301–323

[9] Ji U C, Stochastic integral representation theorem for quantum semimartingales, J. Funct.
Anal. 201 (2003) 1–29

[10] Ji U C and Sinha K B, Integral representation of quantum martingales, Infin. Dimen.
Anal. Quantum Probab. Rel. Top. 8 (2005) 55–72

[11] Lindsay J M, Fermion martingales, Probab. Theory Related Fields 71 (1986) 307–320
[12] Lindsay J M and Parthasarathy K R, Cohomology of power sets with applications in

quantum probability, Commun. Math. Phys. 124 (1989) 337–364
[13] Lindsay J M and Wills S J, Markovian cocycles on operator algebras adapted to a Fock

filtration, J. Funct. Anal. 178 (2000) 269–305
[14] Meyer P-A, Quantum Probability for Probabilists, Lecture Notes in Math., vol. 1538

(Springer-Verlag) (1993)
[15] Meyer P-A, Représentation de martingales d’opérateurs, in: Séminaire de probabilités
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