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Abstract. It is well-known that well-posedness of a martingale problem in the class
of continuous (or r.c.l.l.) solutions enables one to construct the associated transition
probability functions. We extend this result to the case when the martingale problem is
well-posed in the class of solutions which are continuous in probability. This extension is
used to improve on a criterion for a probability measure to be invariant for the semigroup
associated with the Markov process. We also give examples of martingale problems that
are well-posed in the class of solutions which are continuous in probability but for which
no r.c.l.l. solution exists.
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1. Introduction

The seminal paper on multi-dimensional diffusions by Stroock and Varadhan [12] intro-
duced martinagle problems as a way of construction and study of Markov processes. Since
then, this approach has been used successfully in several contexts such as interacting
particle systems, Markov processes associated with Boltzmann equation, nonlinear filter-
ing theory, controlled Markov processes, branching processes etc. A good account of the
‘theory of martingale problems’ is given in the book by Ethier and Kurtz [7]. To construct
a Markov process, the martingale problem approach allows one to construct the process
for each initial condition separately and a general result gives the measurability of the
associated transition probability function. To proceed, we give the basic definitions here.

Given an operator A with domain D(A) ⊆ Cb(E) and range subset of Cb(E) (where E
is a complete separable metric space), a process Xxt adapted to a filtration (Ft ) is said to
be a solution to the (A, δx) martingale problem if for all f ∈ D(A),

f (Xxt )−
∫ t

0
Af (Xxu)du is a (Ft )-martingale (1.1)

and

P(Xx0 = x) = 1. (1.2)

The martingale problem forA is said to be well-posed in the class of r.c.l.l. solutions if for
all x there exists a r.c.l.l. process (Xxt ) satisfying (1.1) and (1.2) and further for two such
processes satisfying (1.1) and (1.2) (defined possibly on different probability spaces), the
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finite dimensional distributions are the same. Well-posedness in the class of continuous
solutions or measurable solutions is similarly defined. A well-known result, which has its
origins in the work of Stroock and Varadhan [13] says that if the martingale problem for
A is well-posed in the class of r.c.l.l. solutions (or well-posed in the class of continuous
solutions), then (assuming that A, D(A) satisfy some mild conditions) it follows that
pt (x, ·) defined by

pt (x,A) = P(Xxt ∈ A) (1.3)

is a transition probability function and any solution is a Markov process with pt as its
transition probability function (see e.g. Theorems IV.4.2 and IV.4.6 of [7]). This in turn
gives us the associated semi-group (Tt ) and its generator L. The generator L happens to
be an extension of the operator A and thus A contains all the ‘relevant information’ about
L as well as about X.

We extend this result and show that if the martingale problem is well-posed in the class
of solutions that are continuous in probability, then (under suitable conditions onA,D(A))
the function pt defined by (1.3) is measurable.

In order to achieve our aim we give a Borel structure to the set of distributions of
processes that are continuous in probability. Once we have done this, we can deduce
that well-posedness in the class of solutions which are continuous in probability implies
measurability of the associated transition probability function.

In §4, we give criterion for a measure to be invariant for the semigroup generated by a
well-posed martingale problem. This is an improvement on several results on this theme
(see [1–4, 6, 9, 10]). In the last section, we give examples of operators (and their domains)
satisfying the conditions of §3, and such that the corresponding martingale problems are
well-posed in the class of solutions that are continuous in probability but for which no
r.c.l.l. solution exists.

2. Preliminaries

We will denote by (E, d) a complete, separable metric space. A will denote an operator
with domain D(A) ⊂ Cb(E), the space of real-valued bounded continuous functions
on E and with range contained in M(E), the class of all real-valued Borel measurable
functions onE. Let B(E) denote the class of all bounded Borel measurable functions. For
C ⊂ B(E), we define the bp-closure of C to be the smallest subset of B(E) containing
C which is closed under bounded pointwise convergence of sequences of functions. B(E)
will denote the Borel σ -field on E, P(E) will denote the space of probability measures
on E. For a random variable Z taking values in E, L(Z) will denote the law of Z- i.e. the
probability measure P ◦Z−1, if Z is defined on (�,F,P). For a measurable Process(Xt )
defined on (�,F,P), let

∗FX
t = σ

{
Xu,

∫ u

0
h(Xs)ds: u ≤ t , h ∈ Cb(E)

}
.

Throughout this article, we will assume the following:

Assumption A1. There exists a [0,∞)-valued measurable function � on E such that

|Af (x)| ≤ Cf�(x) ∀x ∈ E, f ∈ D(A). (2.1)
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DEFINITION 2.1

An E-valued process (Xt )0≤t<∞ defined on some probability space (�,F,P) is said to
be a solution to the martingale problem for (A,µ) if

(i) X is a measurable process with L(X0) = µ,

(ii) EP

[∫ T
0 �(Xs)ds

]
< ∞ for all T < ∞, and

(iii) for every f ∈ D(A),

M
f
t = f (Xt )−

∫ t

0
Af (Xs) ds (2.2)

is a (∗FX
t )-martingale. X will be called a solution to the A martingale problem if it

is a solution to the (A,µ) martingale problem for some µ.

Let W be a class of E-valued processes. For example, we could consider W to be the
class of E-valued processes with r.c.l.l. paths or W can be the class of solutions that are
continuous in probability.

DEFINITION 2.2

The martingale problem for A is said to be well-posed in the class W if for all x ∈ E,
there exists a solution Xx ∈ W to the (A, δx) martingale problem and if Y ∈ W is any
other solution to the (A, δx) martingale problem, then the finite dimensional distributions
of Xx and Y are the same.

We begin with some observations on solutions to the A-martingale problem.

Theorem 2.1. LetX (defined on some (�,F,P)) be a solution of the martingale problem
for A. Suppose that D(A) is a determining class and further that

t −→ L(Xt ) is continuous. (2.3)

Then t −→ Xt is continuous in probability.

Proof. Let f ∈ D(A). The assumption (2.3) alongwith the fact that the martingaleMf (see
eq. (2.2)) has a r.c.l.l. modification implies that Mf is continuous in probability. This in
turn implies that the mapping t −→ f (Xt ) is continuous in probability. As a consequence,
for f, g ∈ D(A),

(s, t) −→ EP[f (Xs)g(Xt )] is continuous. (2.4)

Let sk → s. The assumption (2.3) implies that the family of distributions {L(Xsk )} is tight
and so the family of distributions (on E × E)

{L(Xsk , Xs): k ≥ 1} is tight. (2.5)

Since the class of functions (x, y) −→ f (x)g(y), f, g ∈ D(A) constitutes a determining
class, (2.4) and (2.5) together imply that

L(Xsk , Xs) → L(Xs,Xs). (2.6)
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Now for any ε > 0, P(d(Xs,Xs) ≥ ε) = 0. Thus in view of (2.6)

lim sup
k→∞

P(d(Xsk , Xs) ≥ ε) ≤ 0

i.e.,

P(d(Xsk , Xs) ≥ ε) → 0.

This completes the proof.

Remark 2.2. The proof given above contains the proof of the following: if for a process
Y , the mapping (s, t) −→ L(Ys, Yt ) is continuous, then Y is continuous in probability.

Remark 2.3. The assumption (2.3) can be replaced by

{Xt : 0 ≤ t ≤ T } is tight ∀T < ∞.

COROLLARY 2.4

LetX (defined on some (�,F,P)) be a solution of the martingale problem forA. Suppose
that the domain D(A) of A is a convergence determining class on E. Then the process X
is continuous in probability.

Proof. Since f (Xt ) − ∫ t
0 Af (Xs)ds is a martingale for f ∈ D(A), it follows that the

mapping t −→ EP[f (Xt )] is continuous. Since D(A) is a convergence determining class,
this implies continuity of the mapping

t −→ L(Xt ).
Thus, by Theorem 2.1, t −→ Xt is continuous in probability.

3. Main result

We have seen in the previous section that under suitable conditions, all solutions to a
martingale problem are continous in probability. Thus we now construct a Borel structure
on the class of distributions of such processes.

For m ≥ 1, Em with the product topology is again a complete separable met-
ric space. Let P(Em) be equipped with the topology of weak convergence. Let
Cm = C([0,∞)m,P(Em)) be equipped with the topology of uniform convergence on
compact subsets. Then Cm is a complete separable metric space. Let Sm be the set of
µm = µm(t1, t2, . . . , tm) ∈ Cm satisfying∫

(πf )(x1, x2, . . . , xm)µ
m(tπ1, tπ2, . . . , tπm)(dx1, dx2, . . . , dxm)

=
∫
f (x1, x2, . . . , xm)µ

m(t1, t2, . . . , tm)(dx1, dx2, . . . , dxm) (3.1)

for all permutations π of {1, 2, . . . , m}, for all f ∈ Cb(Em) where πf is defined by

πf (x1, x2, . . . , xm) = f (xπ1, xπ2, . . . , xπm).
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It is easy to see that Sm is a closed subset of Cm and hence Sm is a complete separable
metric space. Let S∞ = �∞

m=1Sm. Under the product topology, S∞ is also a complete
separable metric space. Elements of S∞ will be denoted by µ = (µ1, µ2, . . . ) with
µk ∈ Sk . Let D denote the diagonal in E2,

D = {(x, x): x ∈ E}
and let

H = {µ2 ∈ S2: µ2(t, t)(D) = 1 ∀t ∈ [0,∞)}.

Since D is closed in E2 and µ2 ∈ S2 is continuous, it follows that H is a closed subset of
S2. Let

S∗ = {µ ∈ S∞: µm(t1, . . . , tm) ◦ (hm)−1 = µm−1(t1, . . . , tm−1), ∀m > 1},

where hm: Em −→ Em−1 is the projection map defined by

hm(x1, x2, . . . , xm) = (x1, x2, . . . , xm−1).

Let

S̃ = {µ ∈ S∗: µ2 ∈ H}.

Then clearly S̃ is also a complete separable metric space since it is a closed subspace of
S∞. Every element of S̃ is a consistent family of finite dimensional distributions and hence
by the Kolmogorov consistency theorem, given µ = (µ1, µ2, . . . ) ∈ S̃, there exists a
probability space (�∗,F∗, P ∗) and a stochastic process (Xt ) on it such that for allm ≥ 1,

L(Xt1 , Xt2 , . . . , Xtm) = µm(t1, t2, . . . , tm). (3.2)

In view of Remark 2.2 and the fact thatµ2 ∈ H, the processX is continuous in probability.
Conversely, given a E-valued process X that is continuous in probability, µm defined by
(3.2) belongs to Sm, µ2 belongs to H and clearly {µ1, µ2, . . . } is a consistent family and
hence µ = (µ1, µ2, . . . ) ∈ S̃. Thus, S̃ can be identified with the class of distributions of
E-valued processes that are continuous in probability.

Having given a topological structure to the class of (distributions of) processes that are
continuous in probability, we now identify the class of (distributions of) solutions to the
martingale problem for A and show that it is a Borel set. As in the corresponding result on
solutions with r.c.l.l. paths [7], we assume that A,D(A) satisfy the following:

Assumption A2. There exists a countable set {fn: n ≥ 1} ⊂ D(A) such that

bp − closure{(fn,�−1Afn): n ≥ 1} ⊃ {(f,�−1Af ): f ∈ D(A)}.
LetX be a process that is continuous in probability (on some (�,F,P)). Since every such
process admits a measurable modification [5], we assume that X is measurable. Let G be
a countable bp-dense subset of Cb(E). Then X is a solution to the A martingale problem
if and only if

EP

[∫ N

0
φ(Xu)du

]
< ∞ ∀N ≥ 1
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and

EP

[
g1(Xs1) . . . gk(Xsk )

(
fm(Xt )− fm(Xs)−

∫ t

s

(Afm)(Xu)du

)]
= 0

for all s1, s2, . . . , sk, s, t rationals with si ≤ s ≤ t , gi ∈ G, 1 ≤ i ≤ k, k ≥ 1,m ≥ 1, where
{fj : j ≥ 1} are as in Assumption A2. Thus, a measurable process X is a solution to the
A martingale problem if and only if its finite dimensional distributions µ = (µ1, µ2, . . . )

defined by (3.2) belong to M ⊂ S̃ defined as follows: M is the set ofµ = (µ1, µ2, . . . ) ∈
S̃ satisfying∫ N

0
〈µ1(s),�〉ds < ∞ ∀N ≥ 1 (3.3)

(here, 〈F,	〉 denotes
∫
Fd	) and

〈µk+1(s1, s2, . . . , sk, t),G⊗ fm〉 − 〈µk+1(s1, s2, . . . , sk, s),G⊗ fm〉

=
∫ t

s

〈µk+1(s1, s2, . . . , sk, u),G⊗ Afm〉du (3.4)

for all s1, s2, . . . sk, s, t rationals with si ≤ s ≤ t , gi ∈ G, 1 ≤ i ≤ k, k ≥ 1,m ≥ 1, where
{fj : j ≥ 1} are as in Assumption A2 and

G⊗ fm(x1, x2, . . . , xk, z) = g1(x1)g2(x2) . . . gk(xk)fm(z).

Since M is defined via countably many conditions with each condition in turn involving
measurable functions of µ = (µ1, µ2, . . . ), it follows that M is a Borel subset of S̃.
Moreover, given µ = (µ1, µ2, . . . ) ∈ M, as noted above there exists a process X such
that its finite dimensional distributions are those given by µ = (µ1, µ2, . . . ). Further,
µ2 ∈ H and Remark 2.2 implies that this process is continuous in probability and can be
assumed to be measurable. It follows thatX is a solution to the Amartingale problem. We
have thus proved the following.

Theorem 3.1. Suppose that A,D(A) satisfy Assumptions A1 and A2. Then µ =
(µ1, µ2, . . . ) ∈ M if and only if there exists a process X that is (i) continuous in prob-
ability, (ii) the finite dimensional distributions of X are given by µ = (µ1, µ2, . . . ) and
(iii) X is a solution to the martingale problem for A.

We are now ready to prove the measurability of pt when the martingale problem for A
is well-posed. We introduce the following:

Assumption A3. The martingale problem for (A, δx) is well-posed in the class of solutions
that are continuous in probability for each x ∈ E.

Theorem 3.2. Suppose that A,D(A) satisfy A1, A2 and A3. Let Xx denote a solution
that is continuous in probability to the (A, δx) martingale problem. Let pt (x, B), t ∈
[0,∞), x ∈ E, B ∈ B(E) be defined by

pt (x, B) = P(Xxt ∈ B). (3.5)

Then for all t ∈ [0,∞), B ∈ B(E), x −→ pt (x, B) is Borel measurable.
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Proof. Note that F = {δx : x ∈ E} is a Borel measurable subset of P(E) (indeed it is a
closed subset) and the function θ(δx) = x is a Borel measurable function on it (again this
is a continuous function). Let ψt : M −→ P(E) for 0 ≤ t < ∞ be defined by

ψt(µ) = µ1(t), µ = (µ1, µ2, . . . ) ∈ M.

The functions ψt are continuous and hence measurable. Let M0 = (ψ0)
−1(F ). It follows

that M0 is a Borel subset of S̃. Also,� = θ ◦ψ0 is a measurable function from M0 intoE.
In view of the Assumption A3, for a given x ∈ E, M has exactly one element µ =

(µ1, µ2, . . . ) such that

µ1(0) = δx

and hence the function� is one-to-one. Hence by Kurtowski’s theorem (see e.g. Corollary
I.3.3 of [11]) the function is bimeasurable, or it has a measurable inverse. Let us note that
�−1(x) denotes the finite dimensional distributions ofXx- the (unique in law) solution to
(A, δx) martingale problem which is continuous in probability. The required conclusion
follows by noting that

pt (x, B) = ψt(�
−1(x))(B).

Assumption A4. D(A) is convergence determining.

Assumption A5. The (A, δx) martingale problem is well-posed in the class of measurable
processes for all x ∈ E.

Remark 3.3. Let us note that Assumptions A4 and A5 imply Assumption A3. This is
because Assumption A4 implies that every solution to the A martingale problem is con-
tinuous in probability. Thus the conclusion of the above theorem remains valid with the
same proof if instead we assume that A,D(A) satisfy A1, A2 , A4 and A5.

Remark 3.4. Assume that Assumptions A1, A2 and A3 are true. Denote by

µx = (µ1
x, µ

2
x, . . . )

the finite dimensional distributions of the (unique in law) solution to the (A, δx)martingale
problem that is continuous in probability. We have seen in the proof above that

x −→ µx(= �−1(x))

is Borel measurable and hence for all t1, t2, . . . , tm, m ≥ 1

x −→ µmx (t1, t2, . . . , tm) is Borel measurable. (3.6)

The next step is to prove that {Tt : t ≥ 0} defined by

Ttf (x) =
∫
f (y)pt (x, dy) =

∫
f (y)µ1

x(t)(dy) (3.7)

is a semigroup on the class of bounded Borel measurable functions f on E. For this, we
need to consider the martingale problem with non-degenerate initial distributions. Note
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that well-posedness for degenerate initials in the class of all solutions may not imply well-
posedness for all initials. To proceed further, let us introduce the following notation:

�∗
N(x) =

∫ N

0
〈µ1
x(s),�〉ds. (3.8)

Then in view of Remark 3.4, it follows that �∗
N is a [0,∞)-valued measurable function.

The next lemma shows that the existence of solution to the martingale problem holds for
a large class of initial distributions.

Let P� be the set of all measures λ ∈ P(E) such that

〈�∗
N, λ〉 < ∞, ∀N ≥ 1. (3.9)

Lemma 3.5. Suppose thatA,D(A) satisfy Assumptions A1, A2 and A3. Let λ ∈ P�. Then
ν = (ν1, ν2, . . . ) defined by

〈νm(t1, t2, . . . , tm), g〉 =
∫

〈µmx (t1, t2, . . . , tm), g〉dλ(x) (3.10)

belongs to M with ν1(0) = λ. Hence there exists a solution to the martingale problem for
(A, λ) (whose finite dimensional distributions are {νm}).
Proof. It is easy to see that {νm} satisfy (3.4) since each {µmx } satisfies the same. Further,
condition (3.9) on λ alongwith the definition of �∗

N implies that ν1 satisfies (3.3) and
hence {νm} belongs to M. Thus the corresponding process Y is a solution to the martingale
problem for (A, λ).

We need one more observation on martingale problems before we can state our result
on (Tt ) defined by (3.7).

Lemma 3.6. Let a process X defined on (�,F,P) be a solution to the (A, λ) martingale
problem and let g be a [0,M]-valued measurable function on E (where M < ∞) such
that 〈λ, g〉 = 1. Let γ be defined by dγ /dλ = g. Let Q be defined by

dQ

dP
= g(X0).

Then, considered as a process on (�,F, Q), X is a solution to the (A, γ ) martingale
problem.

Proof. Since g is bounded it follows that

EQ

[∫ N

0
�(Xu)du

]
≤ MEP

[∫ N

0
�(Xu)du

]
< ∞.

Moreover, since d Q /dP is σ(X0) measurable, it follows that f (Xt ) − ∫ t
0 Af (Xu)du is

a martingale on (�,F, Q ) (as it is a martingale on (�,F,P)). The result follows upon
noting that Q ◦ (X0)

−1 = γ .

In addition to Assumption A3, we need to assume the following in order to show that
{Tt } is a semigroup.
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Assumption A6. There exists a sequence {hn: n ≥ 1} of [0,∞)-valued Borel measurable
functions on E such that for every λ ∈ P(E) satisfying

〈hn, λ〉 < ∞ ∀n ≥ 1, (3.11)

any two solutions to the (A, λ)martingale problem that are continuous in probability have
the same finite-dimensional distributions.

Thus, in order to verify that Assumption A6 holds in a given example, we can show
that the uniqueness holds under finitely many (or even countably many) integrability con-
dition(s). We are now in a position to prove the semigroup property of (Tt ). In the course
of the proof, we also get, with little extra work, the result that every solution to the mar-
tingale problem satisfies the Markov property. The Markov property can also be obtained
by following arguments as in [8].

Theorem 3.7. Suppose that A,D(A) satisfy Assumptions A1, A2, A3 and A6.

(i) The martingale problem for (A, λ) is well-posed in the class of solutions that are
continuous in probability if and only if λ ∈ P�. Further, the finite-dimensional laws
of the solution Y that is continuous in probability are given by (3.10).

(ii) Let λ ∈ P�. Let X be a solution to the (A, λ) martingale problem (defined on some
probability space (�,F,P)). Further, let X be continuous in probability. Then X is
a Markov process and the associated semigroup {Tt : t ≥ 0} is defined by (3.7).

Proof.

(i) Let λ ∈ P�. We have seen in Lemma 3.5 that the (A, λ)martingale problem admits a
solutionXwhose finite-dimensional distributions are given by (3.10). LetX be defined
on (�,F,P). This process X is continuous in probability. Let Y be another solution
to the (A, λ) martingale problem defined on (�̃, F̃, P̃) such that Y is continuous in
probability. Define g on E by

g(x) = C

∞∑
n=1

2−n 1

1 + hn(x)
,

where C is a constant that is chosen so that 〈λ, g〉 = 1. Define probability measures
γ , Q and Q̃ by

dγ

dλ
= g,

d Q

dP
= g(X0) and

d Q̃

dP̃
= g(Y0).

By Lemma 3.6, X on (�,F, Q ) and Y on (�̃, F̃, Q̃ ) are solutions to the (A, γ )
martingale problem. Further, these processes are continuous in probability. By con-
struction, γ satisfies (3.11) and hence by Assumption A6, the finite-dimensional
distributions ofX on (�,F, Q ) are the same as those of Y on (�̃, F̃, Q̃ ). This in turn
implies that the finite-dimensional distributions of X on (�,F,P) are the same as
those of Y on (�̃, F̃, P̃). This proves well-posedness of the martingale problem for
(A, λ).
Conversely, let X be a solution of the (A, λ) martingale problem that is continuous
in probability. This time define

g(x) = C

∞∑
n=1

2−n 1

1 +�∗
n(x)

,



92 Abhay G Bhatt, Rajeeva L Karandikar and B V Rao

where C is a constant that is chosen so that 〈λ, g〉 = 1. Define probability measures
γ and Q by

dγ

dλ
= g, and

d Q

dP
= g(X0).

By Lemma 3.6, X is a solution to the (A, γ ) martingale problem under Q and X is
continuous in Q probability. By the first part, we have that the regular conditional
probability distribution of (Xt1 , Xt2 , . . . , Xtm) given by σ(X0) is µmX0

(t1, t2, . . . , tm).
As a consequence

EQ

[∫ N

0
�(Xs)ds|σ(X0)

]
= �∗

N(X0). (3.12)

Since d Q/dP is σ(X0) measurable, (3.12) implies that

EP

[∫ N

0
�(Xs)ds|σ(X0)

]
= �∗

N(X0)

and hence

EP

[∫ N

0
�(Xs)ds

]
= EP

[
�∗
N(X0)

]
= 〈�∗

N, λ〉.
Since X is a solution to the (A, λ)martingale problem, the LHS above is finite for all
N and hence λ ∈ P�.

(ii) Let X be a solution to the (A, λ) martingale problem that is continuous in
probability (defined on some probability space (�,F,P)). Fix m ≥ 1 and
0 ≤ u1 < u2 < · · · < um ≤ s and h1, h2 . . . hm bounded positive continuous
functions. Define a probabiltiy measure Q on (�,F,P) by

d Q

dP
= Ch1(Xu1)h2(Xu2) . . . hm(Xum),

where the constant C is chosen such that Q is a probability measure. Define Y by

Yt = Xs+t , t ≥ 0.

Then using d Q /dP which is bounded (say by M), we get

EQ

[∫ T

0
�(Yu)du

]
= EQ

[∫ T+s

s

�(Xu)du

]

≤ MEP

[∫ T+s

s

�(Xu)du

]
< ∞. (3.13)

Further, it can be shown that Y is a solution to the (A, γ ) martingale problem where
γ = Q ◦ [Y (0)]−1. Of course, Y is continuous in probability. Hence, by part (i)
above we get that γ ∈ P� and that the finite-dimensional distributions are given by
(3.10) (with λ replaced by γ ). Thus, for g1, . . . , gk ∈ Cb(E) and 0 ≤ s1 < · · · < sk ,

EQ

[
g1(Ys1) . . . gk(Ysk )

] =
∫

〈µkx(s1, . . . , sk), g1 ⊗ · · · ⊗ gk〉dγ (x)

= EQ

[〈µkY0
(s1, . . . , sk), g1 ⊗ · · · ⊗ gk〉

]



Characterisation of Markov processes 93

and so (using k = 1, s1 = t and g1 = g) we can conclude that

EP

[
Ch1(Xu1)h2(Xu2) . . . hm(Xum)g(Xs+t )

]
= EQ [g(Yt )] = EQ

[〈µ1
Y0
(t), g〉]

= EP

[
Ch1(Xu1)h2(Xu2) . . . hm(Xum)〈µ1

Xs
(t), g〉]

for all 0 ≤ u1 < u2 < · · · < um ≤ s and h1, h2 . . . hm bounded positive continuous
functions, m ≥ 1. As a consequence,

EP

[
g(Xs+t )

∣∣σ(Xu: 0 ≤ u ≤ s)
] = 〈µ1

Xs
(t), g〉 = (Ttg)(Xs).

This completes the proof.

4. Criterion for an invariant measure

Several papers gave criterion for a measure to be invariant for the semigroup (Tt ) arising
from a well-posed martingale problem [1–4, 6, 9, 10]. These papers assumed different sets
of conditions on (A,D(A)). It was shown that existence of solution for each degenerate
initial and ∫

(Af )dλ = 0 ∀f ∈ D(A)

gives existence of a stationary solution of the martingale problem for (A, λ). In addition,
if the martingale problem is well-posed and there is a semigroup (Tt ) associated with it, it
follows that λ is an invariant measure for (Tt ).

Well-posedness of the martingale problem in the class of r.c.l.l. solutions is sufficient
for the existence of the semigroup (Tt ) (see Theorem 4.4.6 of [7]).

In the light of the results obtained in the previous section, we can improve on this
criterion for invariant measure.

We introduce another condition on A and � (appearing in Assumption A1).

Assumption A7. � and Af , for every f ∈ D(A), are continuous.

Lemma 4.1. Suppose thatA,D(A) satisfy Assumptions A1, A2, A3 and A7. ThenA satisfies
the positive maximum principle, i.e. if f ∈ D(A) and z ∈ E are such that f (z) ≥ 0 and
f (z) ≥ f (x) for all x ∈ E, then

Af (z) ≤ 0.

Proof. Let X be a solution to (A, δz) martingale problem defined on (�,F,P) that is
continuous in probability. Let Ft = ∗FX

t and

Mt = f (Xt )−
∫ t

0
Af (Xu)du.

Then (Mt ,Ft ) is a martingale. Let σt , 0 ≤ t < ∞ be the increasing family of (Ft ) stopping
times defined by

σt = inf

{
s ≥ 0:

∫ s

0
(1 +�(Xu))du ≥ t

}
.
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Note that σt ≤ t for all t . Since EP[
∫ s

0 �(Xu)du] < ∞, it follows that σt increases to ∞
a.s..

Let Nt = Mσt , Yt = Xσt and Gt = Fσt . Then, it follows that (Nt ,Gt ) is a local
martingale. Moreover, t −→ σt is continuous and henceY is also continuous in probability.
Using change of variable, it is easy to see that

Nt = f (Yt )−
∫ t

0

Af (Yr)

1 +�(Yr)
dr.

Since Af (x) ≤ Cf�(x), it follows that N is bounded and hence is a martingale. Since f
has a maximum at z and

EP

[
f (Yt )− f (z)−

∫ t

0

Af (Yr)

1 +�(Yr)
dr

]
= 0,

it follows that (using Fubini’s theorem)∫ t

0
EP

[
Af (Yr)

1 +�(Yr)

]
dr ≤ 0 ∀t > 0. (4.1)

Since Y is continuous in probability and Af (x) ≤ Cf�(x), it follows that

r −→ EP

[
Af (Yr)

1 +�(Yr)

]

is continuous. Now dividing the LHS in (4.1) by t and taking limit as t → 0 we get

Af (z)

1 +�(z)
≤ 0.

Since �(z) ≥ 0 this completes the proof.

Here is yet another assumption on A,D(A).

Assumption A8. D(A) is an algebra that contains constants and separates points in E.

Theorem 4.2. Suppose that A,D(A) satisfy Assumptions A1, A2, A3, A6, A7 and A8. Let
(Tt ) be the semigroup associated with (A,D(A)) by Theorem 3.7.

If λ ∈ P(E) is such that
∫
�dλ < ∞ and∫

(Af )(x)dλ(x) = 0 ∀f ∈ D(A), (4.2)

then λ is an invariant measure for the semigroup (Tt ) and the solution to the (A, λ)
martingale problem that is continuous in probability is a stationary process.

Proof. In view of Lemma 4.1 and the assumptions made in the statement of this theorem,
the proof of Theorem 3.1 in [3] gives the existence of a stationary solution to the (A, λ)
martingale problem. Since the solution (say X) is stationary, the mapping t −→ L(Xt )
is continuous (it is a constant) and hence by Theorem 2.1, X is continuous in probability.
Now, Theorem 3.7 implies that λ is an invariant measure for (Tt ).
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Remark 4.3. The criterion for invariant measure given above is true even if Assumption
A7 above is not true but instead one assumes that the operatorA satisfies Assumptions A9,
A10 and A11 given below. This is helpful, e.g., when Af is allowed to be a discontinuous
function (see [4, 9]).

Assumption A9. A satisfies the positive maximum principle.

Assumption A10. There exists a complete separable metric space U , an operator
Â: D(A) → C(E × U) and a transition function η from (E,B(E)) into (U,B(U)) such
that

(Af )(x) =
∫
U

Âf (x, u)η(x, du). (4.3)

Assumption A11. There exists �̂ ∈ C(E × U) such that for all f ∈ D(A), there exists
Cf < ∞ satisfying

|Âf (x, u)| ≤ Cf �̂(x, u) ∀x, u ∈ E × U, (4.4)

�(x) =
∫
U

�̂(x, u)η(x, du) < ∞. (4.5)

Under these conditions, existence of a stationary solution to the (A, λ)martingale prob-
lem was proven in [4]. Rest of the argument is as in the proof of the above theorem.

5. Example

We give two examples of processes that are continuous in probability and which arise as
solutions of well-posed martingale problems but such that they do not admit any r.c.l.l.
modification. The results of the previous section, however, are applicable.

Example 5.1. Let E = [0, 1). Let D(A) be the class of functions f that are restrictions
of some periodic function g ∈ C2

b (R) with period 1. Further for f ∈ D(A) define Af by
Af = 1

2f
′′. Then A and D(A) satisfy the conditions of Theorems 3.2 and 3.7.

It follows easily that ifW is a one-dimensional standard Brownian motion thenXt = Wt

(mod 1) is a solution to the martingale problem for A. Moreover, for any other solution Y
of the martingale problem, it is easy to check that Y behaves like a Brownian motion as
long as it does not hit the boundary. Now, uniqueness can be shown using localisation
arguments as in Theorem 6.6.1 of [13].

Note that almost every path of the unique solutionX is neither r.c.l.l. nor l.c.r.l. However
the set of discontinuity points of X is contained in the set

{t : Wt is an integer}.
This implies that X is continuous in probability.

Example 5.2. LetE = (0,∞) and letµ be a probability measure onE withµ{(0, a)} = 0
for some a > 0. Let D(A) be defined by

D(A) =
{
f ∈ C2

b (E): lim
x→0

f (x) =
∫
f dµ

}
.
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For f ∈ D(A) define Af by Af = 1
2f

′′. Once again, A and D(A) satisfy the conditions
of Theorems 3.2 and 3.7.

The uniqueness of solution for the martingale problem for A can also be shown using
localisation arguments as in Theorem 6.6.1 of [13]. To construct the unique solution for
the (A, δx) martingale problem we can proceed as follows.

Let {Wz,i : i ≥ 0} be independent one-dimensional standard Brownian motions starting
at z. Define

τ z,i = inf{t > 0: Wz,i = 0}.
Note that

τ z,i < ∞ a.s. for every z, i. (5.1)

Let U1, U2, . . . be i.i.d. random variables with common distribution µ and which are
independent of all {Wz,i : i ≥ 1}. Define

Xxt =


W
x,0
t , for t < τx,0,

W
Ui,i
t , for τUi−1,i−1 ≤ t < τUi,i; i ≥ 1.

Then it is easily checked that Xx is a solution of the martingale problem for A starting at
x and which is also continuous in probability. Then (5.1) and the fact that 0 �∈ E together
imply that almost every path of Xx is not left continuous.

References

[1] Bhatt A G and Borkar V S, Occupation measures for controlled Markov processes:
Characterization and optimality, Ann. Probab. 24 (1996) 1531–1562

[2] Bhatt A G and Karandikar R L, Invariant measures and evolution equations for Markov
processes characterised via martingale problems, Ann. Probab. 21 (1993) 2246–2268

[3] Bhatt A G and Karandikar R L, Evolution equations for Markov processes: Applications
to the White noise theory of filtering, Appl. Math. Optim. 31 (1995) 327–348

[4] Bhatt A G and Karandikar R L, Characterization of the optimal filter: The non-Markov
case, Stochastics and Stoch. Rep. 66 (1999) 177–204

[5] Dellacherie C and Meyer P A, Probabilities and potential (Amsterdam: North-Holland)
(1978)

[6] Echverria P E, A criterion for invariant measures of Markov processes, Z. Wahrsch. verw.
Gebiete. 61 (1982) 1–16

[7] Ethier S N and Kurtz T G, Markov processes: Characterization and convergence (New
York: Wiley) (1986)

[8] Kurtz T G, Martingale problems for conditional distributions of Markov processes, Elec-
tron. J. Probab. 3 (1998) 1–29

[9] Kurtz T G and Stockbridge R H, Existence of Markov controls and characterization of
optimal Markov controls, SIAM J. Cont. Optim. 36 (1998) 609–653

[10] Kurtz T G and Stockbridge R H, Stationary solutions and forward equations for controlled
and singular martingale problems, Electron. J. Probab. 6 (2001) 1–52

[11] Parthasarathy K R, Probability measures on metric spaces (New York: Academic) (1967)
[12] Stroock D W and Varadhan S R S, Diffusion processes with continuous coefficients I, II,

Comm. Pure Appl. Math. 22 (1969) 345–400, 479–530
[13] Stroock D W and Varadhan S R S, Multidimensional diffusion processes (Berlin:

Springer-Verlag) (1979)


