Proc. Indian Acad. Sci. (Math. Sci.) Vol. 113, No. 2, May 2003, pp. 183–187. © Printed in India

Fixed point of multivalued mapping in uniform spaces

DURAN TÜRKOGLU and BRIAN FISHER*

Department of Mathematics, Faculty of Science and Arts, University of Kirikkale, 71450-Yahsihan Kirikkale, Turkey *Department of Mathematical Sciences, Faculty of Computer Sciences and Engineering, De Montfort University, The Gateway, Leicester, LE1 9BH, England E-mail: duran_t@hotmail.com; fbr@le.ac.uk

MS received 31 December 2001; revised 10 July 2002

Abstract. In this paper we prove some new fixed point theorems for multivalued mappings on orbitally complete uniform spaces.

Keywords. Fixed point; multivalued mappings; orbitally complete; uniform space.

1. Introduction

Let (X, U) be a uniform space. A family $\{d_i : i \in I\}$ of pseudometrics on X with indexing set I, is called an associated family for the uniformity U if the family

$$\beta = \{ V(i, \varepsilon) : i \in I; \varepsilon > 0 \},\$$

where

$$V(i,\varepsilon) = \{(x, y) : x, y \in X, d_i(x, y) < \varepsilon\}$$

is a sub-base for the uniformity \mathcal{U} . We may assume that β itself is a base by adjoining finite intersection of members of β , if necessary. The corresponding family of pseudometrics is called an associated family for \mathcal{U} . An associated family for \mathcal{U} will be denoted by p^* . For details the reader is referred to [1,3–8].

Let A be a nonempty subset of a uniform space X. Define

$$\Delta^*(A) = \sup \{ d_i(x, y) : x, y \in A, i \in I \},\$$

where

$$\{d_i: i \in I\} = p^*.$$

Then Δ^* is called an augmented diameter of A. Further, A is said to be p^* -bounded if $\Delta^*(A) < \infty$. Let

 $2^X = \{A : A \text{ is a nonempty, closed and } p^* \text{ - bounded subset of } X\}.$

For any nonempty subsets A and B of X, define

$$d_i(x, A) = \inf \{ d_i(x, a) : a \in A \}, i \in I$$

Duran Türkoglu and Brian Fisher

$$H_i(A, B) = \max\left\{\sup_{a \in A} d_i(a, B), \sup_{b \in B} d_i(A, b)\right\}$$
$$= \sup_{x \in X} \left\{ |d_i(x, A) - d_i(x, B)| \right\}.$$

It is well-known that on 2^X , H_i is a pseudometric, called the Hausdorff pseudometric induced by d_i , $i \in I$.

Let (X, U) be a uniform space with an augmented associated family p^* . p^* also induces a uniformity U^* on 2^X defined by the base

$$\beta^* = \left\{ V^*(i, \varepsilon) : i \in I, \varepsilon > 0 \right\},\$$

where

$$V^*(i, \varepsilon) = \left\{ (A, B) : A, B \in 2^X, H_i(A, B) < \varepsilon \right\}.$$

The space $(2^X, \mathcal{U}^*)$ is a uniform space called the hyperspace of (X, \mathcal{U}) .

DEFINITION 1

The collection of all filters on a given set *X* is denoted by $\Phi(X)$. An order relation is defined on $\Phi(X)$ by the rule $\mathcal{F}_1 < \mathcal{F}_2$ iff $\mathcal{F}_1 \supset \mathcal{F}_2$. If $\mathcal{F}^* < \mathcal{F}$, then \mathcal{F}^* is called a subfilter of \mathcal{F} .

DEFINITION 2

Let (X, \mathcal{U}) be a uniform space defined by $\{d_i : i \in I\} = p^*$. If $F : X \to 2^X$ is a multivalued mapping, then

- (i) $x \in X$ is called a fixed point of F if $x \in Fx$;
- (ii) An orbit of *F* at a point $x_0 \in X$ is a sequence $\{x_n\}$ given by

$$O(F, x_0) = \{x_n : x_n \in Fx_{n-1}, n = 1, 2, ...\};$$

(iii) A uniform space X is called *F*-orbitally complete if every Cauchy filter which is a subfilter of an orbit of F at each $x \in X$ converges to a point of X.

DEFINITION 3

Let (X, U) be a uniform space and let $F : X \to X$ be a mapping. A single-valued mapping F is *orbitally continuous* if $\lim (T^{n_i}x) = u$ implies $\lim T(T^{n_i}x) = Tu$ for each $x \in X$.

2. Main results

Theorem 1. Let (X, U) be an *F*-orbitally complete Hausdorff uniform space defined by $\{d_i : i \in I\} = p^*$ and $(2^X, U^*)$ a hyperspace and let $F : X \to 2^X$ be a continuous mapping with Fx compact for each x in X. Assume that

$$\min \left\{ H_i(Fx, Fy)^r, d_i(x, Fx)d_i(y, Fy)^{r-1}, d_i(y, Fy)^r \right\} + a_i \min \{ d_i(x, Fy), d_i(y, Fx) \} \le [b_i d_i(x, Fx) + c_i d_i(x, y)] d_i(y, Fy)^{r-1}$$
(1)

for all $i \in I$ and $x, y \in X$, where $r \ge 1$ is an integer, a_i, b_i, c_i are real numbers such that $0 < b_i + c_i < 1$, then F has a fixed point.

184

Proof. Let x_0 be an arbitrary point in X and consider the sequence $\{x_n\}$ defined by

$$x_1 \in Fx_0, x_2 \in Fx_1, \dots, x_n \in Fx_{n-1}, \dots$$

Let us suppose that $d_i(x_n, Fx_n) > 0$ for each $i \in I$ and n = 0, 1, 2, ... (Otherwise for some positive integer $n, x_n \in Fx_n$ as desired.)

Let $U \in \mathcal{U}$ be an arbitrary entourage. Since β is a base for \mathcal{U} , there exists $V(i, \varepsilon) \in \beta$ such that $V(i, \varepsilon) \subseteq U$. Now $y \to d_i(x_0, y)$ is continuous on the compact set Fx_0 and this implies that there exists $x_1 \in Fx_0$ such that $d_i(x_0, x_1) = d_i(x_0, Fx_0)$. Similarly, Fx_1 is compact so there exists $x_2 \in Fx_1$ such that $d_i(x_1, x_2) = d_i(x_1, Fx_1)$. Continuing, we obtain a sequence $\{x_n\}$ such that $x_{n+1} \in Fx_n$ and $d_i(x_n, x_{n+1}) = d_i(x_n, Fx_n)$.

For $x = x_{n-1}$, and $y = x_n$ by condition (1) we have

$$\min \left\{ H_i(Fx_{n-1}, Fx_n)^r, d_i(x_{n-1}, Fx_{n-1})d_i(x_n, Fx_n)^{r-1}, d_i(x_n, Fx_n)^r \right\}$$

+ $a_i \min \{ d_i(x_{n-1}, Fx_n), d_i(x_n, Fx_{n-1}) \} \le \left[b_i d_i(x_{n-1}, Fx_{n-1}) + c_i d_i(x_{n-1}, x_n) \right] d_i(x_n, Fx_n)^{r-1}$

or since $d_i(x_n, Fx_{n-1}) = 0$, $x_n \in Fx_{n-1}$. Hence we have

$$\min\left\{d_i(x_n, x_{n+1})^r, d_i(x_{n-1}, x_n)d_i(x_n, x_{n+1})^{r-1}\right\}$$

$$\leq \left[b_i d_i(x_{n-1}, x_n) + c_i d_i(x_{n-1}, x_n)\right] d_i(x_n, x_{n+1})^{r-1}$$

and it follows that

$$\min\left\{d_i(x_n, x_{n+1})^r, d_i(x_{n-1}, x_n)d_i(x_n, x_{n+1})^{r-1}\right\}$$

$$\leq (b_i + c_i) d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1}.$$

Since

$$d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1} \le (b_i + c_i) d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1}$$

is not possible (as $0 < b_i + c_i < 1$), we have

$$d_i(x_n, x_{n+1})^r \le (b_i + c_i) d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1}$$

or

$$d_i(x_n, x_{n+1})^r \leq k_i d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1},$$

where $k_i = b_i + c_i$, $0 < k_i < 1$.

Proceeding in this manner we get

$$d_{i}(x_{n}, x_{n+1}) \leq k_{i}d_{i}(x_{n-1}, x_{n})$$
$$\leq k_{i}^{2}d_{i}(x_{n-2}, x_{n-1})$$
$$\vdots$$
$$\leq k_{i}^{n}d_{i}(x_{0}, x_{1}).$$

Hence we obtain

$$d_{i}(x_{n}, x_{m}) \leq d_{i}(x_{n}, x_{n+1}) + d_{i}(x_{n+1}, x_{n+2}) + \dots + d_{i}(x_{m-1}, x_{m})$$

$$\leq (k_{i}^{n} + k_{i}^{n+1} + \dots + k_{i}^{m-1}) d_{i}(x_{0}, x_{1})$$

$$\leq k_{i}^{n}(1 + k_{i} + \dots + k_{i}^{m-n-1}) d_{i}(x_{0}, x_{1})$$

$$\leq \frac{k_{i}^{n}}{1 - k} d_{i}(x_{0}, x_{1}).$$

Since $\lim_{n\to\infty} k_i^n = 0$, it follows that there exists $N(i, \varepsilon)$ such that $d_i(x_n, x_m) < \varepsilon$ and hence $(x_n, x_m) \in U$ for all $n, m \ge N(i, \varepsilon)$. Therefore the sequence $\{x_n\}$ is a Cauchy sequence in the d_i -uniformity on X.

Let $S_p = \{x_n : n \ge p\}$ for all positive integers p and let β be the filter basis $\{S_p : p = 1, 2, ...\}$. Then since $\{x_n\}$ is a d_i -Cauchy sequence for each $i \in I$, it is easy to see that the filter basis β is a Cauchy filter in the uniform space (X, \mathcal{U}) . To see this we first note that the family $\{V(i, \varepsilon) : i \in I\}$ is a base for \mathcal{U} as $p^* = \{d_i : i \in I\}$. Now since $\{x_n\}$ is a d_i -Cauchy sequence in X, there exists a positive integer p such that $d_i(x_n, x_m) < \varepsilon$ for $m \ge p$, $n \ge p$. This implies that $S_p \times S_p \subseteq V(i, \varepsilon)$. Thus given any $U \in \mathcal{U}$, we can find an $S_p \in \beta$ such that $S_p \times S_p \subset U$. Hence β is a Cauchy filter in (X, \mathcal{U}) . Since (X, \mathcal{U}) is F-orbitally complete and Hausdorff space, $S_p \to z$ for some $z \in X$. Consequently $F(S_p) \to Fz$ (follows from the continuity of F). Also

$$S_{p+1} \subseteq F(S_p) = \bigcup \{Fx_n : n \ge p\}$$

for p = 1, 2, ... It follows that $z \in Fz$. Hence z is a fixed point of F. This completes the proof.

If we take r = 1 in Theorem 1, then we obtain the following theorem.

Theorem 2. Let (X, U) be an F-orbitally complete Hausdorff uniform space defined by $\{d_i : i \in I\} = p^*$ and $(2^X, U^*)$ a hyperspace, let $F : X \to 2^X$ be a continuous mapping and Fx compact for each x in X. Assume that

$$\min \{H_i(Fx, Fy), d_i(x, Fx), d_i(y, Fy)\} + a_i \min \{d_i(x, Fy), d_i(y, Fx)\} \le b_i d_i(x, Fx) + c_i d_i(x, y)$$
(2)

for all $i \in I$ and $x, y \in X$, where a_i, b_i, c_i are real numbers such that $0 < b_i + c_i < 1$, then F has a fixed point.

We denote that if F is a single valued mapping on X, then we can write $d_i(Fx, Fy) = H_i(Fx, Fy), x, y \in X, i \in I$.

Thus we obtain the following theorem as a consequence of the Theorem 2.

Theorem 3. Let (X, U) be a *T*-orbitally complete Hausdorff uniform space and let *T* : $X \rightarrow X$ be a *T*-orbitally continuous mapping satisfying

$$\min \{ d_i(Tx, Ty), d_i(x, Tx), d_i(y, Ty) \} + a_i \min \{ d_i(x, Ty), d_i(y, Tx) \} \le b_i d_i(x, Tx) + c_i d_i(x, y)$$
(3)

for all $x, y \in X$, $i \in I$ and a_i, b_i, c_i are real numbers such that $0 < b_i + c_i < 1$. Then T has a fixed point and which is unique whenever $a_i > c_i > 0$.

186

Proof. Define a mapping F of X into 2^X by putting $Fx = \{Tx\}$ for all x in X. It follows that F satisfies the conditions of Theorem 2. Hence T has a fixed point.

Now if $a_i > c_i > 0$, we show that *T* has a unique fixed point. Assume that *T* has two fixed points *z* and *w* which are distinct. Since $d_i(z, Tz) = 0$ and $d_i(w, Tw) = 0$, then by the condition (2),

$$a_i \min \left\{ d_i(z, Tw), d_i(w, Tz) \right\} \le c_i d_i(z, w)$$

or

 $a_i d_i(z, w) \le c_i d_i(z, w),$ $d_i(z, w) \le \frac{c_i}{a_i} d_i(z, w)$

which is impossible. Thus if $a_i > c_i > 0$, then T has a unique fixed point in X. This completes the proof.

We note that if $a_i = -1$ in condition (3), then one gets the following result as a corollary.

COROLLARY 4

Let T be an orbitally cotinuous self-map of a T-orbitally complete uniform space (X, U) satisfying the condition

min {
$$d_i(Tx, Ty), d_i(x, Tx), d_i(y, Ty)$$
}

 $-\min \{d_i(x, Ty), d_i(y, Tx)\} \le b_i d_i(x, Tx) + c_i d_i(x, y),$

 $x, y \in X, i \in I \text{ and } 0 < b_i + c_i < 1$. Then for each $x \in X$, the sequence $\{T^n x\}$ converges to a fixed point of T.

Remark 1. If we replace the uniform space (X, U) in Theorem 3 and Corollary 4 by a metric space (i.e. a metrizable uniform space), then Theorem 1 and Corollary 1 of Dhage [2] will follow as special cases of our results.

Acknowledgement

This research was supported by the Scientific and Technical Research Council of Turkey, TBAG-1742 (1999).

References

- Acharya S P, Some results on fixed point in uniform space, *Yokohama Math. J.* XXII (1) (1974) 105–116
- [2] Dhage B C, Some results for the maps with a nonunique fixed point, *Indian J. Pure Appl. Math.* 16(3) (1985) 245–256
- [3] Kelley J L, General Topology (Van Nonstrand Company Inc.) (1955)
- [4] Mishra S N and Singh S N, Fixed point of multivalued mapping in uniform spaces, *Bull. Cal. Math. Soc.* 77 (1985) 323–329
- [5] Taraftar E, An approach to fixed point theorems on uniform spaces, *Trans. Amer. Math. Soc.* 77 (1985) 209–225
- [6] Taylor W W, Fixed point theorems for nonexpansive mappings in linear topological spaces, J. Math. Anal. Appl. 40 (1972) 164–173
- [7] Thron W J, Topological structures (New York: Holt, Rinehart and Winston) (1966)
- [8] Türkoglu D, Özer O and Fisher B, Some fixed point theorems for set valued mapping in uniform spaces, *Demonstratio Math.* 2 (1999) 395–400