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Fixed point of multivalued mapping in uniform spaces
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Abstract.  In this paper we prove some new fixed point theorems for multivalued
mappings on orbitally complete uniform spaces.
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1. Introduction

Let (X, U) be a uniform space. A family {d; : i € I} of pseudometrics on X with indexing
set 1, is called an associated family for the uniformity ¢/ if the family

B={V(,e):iel;e>0},
where
V@,e) ={(x,y):x,ye X, di(x,y) <&}

is a sub-base for the uniformity /. We may assume that § itself is a base by adjoining finite
intersection of members of 8, if necessary. The corresponding family of pseudometrics is
called an associated family for /. An associated family for ¢/ will be denoted by p*. For
details the reader is referred to [1,3-8].

Let A be a nonempty subset of a uniform space X. Define

A*(A) =sup{di(x,y):x,y e A, i eI},
where
{diiiel}zp*.

Then A* is called an augmented diameter of A. Further, A is said to be p*-bounded if
A*(A) < oo. Let

2X = {A : A is a nonempty, closed and p* - bounded subset of X } .
For any nonempty subsets A and B of X, define

di(x,A)=inf {d;j(x, a):a € A},i el
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H; (A, B) = max {sup di(a, B), supd;(A, b)}
acA beB

= sup {|d;(x, A) —d;(x, B)|}.

xeX

It is well-known that on 2%, H; is a pseudometric, called the Hausdorff pseudometric
induced by d;, i € I.

Let (X, U) be a uniform space with an augmented associated family p*. p* also induces
a uniformity &/* on 2% defined by the base

ﬂ*:{V*(i, 8):i€],8>0},
where

Vi, &) = {(A, B): A, Be2X, Hi(A, B) < e].
The space (2%, U*) is a uniform space called the hyperspace of (X, U).

DEFINITION 1

The collection of all filters on a given set X is denoted by ® (X). An order relation is defined
on ®(X) by the rule F; < F, iff | D Fp. If F* < F, then F* is called a subfilter of F.

DEFINITION 2

Let (X, U) be a uniform space defined by {d; : i € I} = p* If F : X — 2¥Xisa
multivalued mapping, then

(i) x € X is called a fixed point of F if x € Fux;
(i) An orbit of F at a point xg € X is a sequence {x,} given by

O(F,x0) ={xn : Xy € Fxp_1,n=1,2,...};

(iii) A uniform space X is called F-orbitally complete if every Cauchy filter which is a
subfilter of an orbit of F at each x € X converges to a point of X.

DEFINITION 3

Let (X, U) be auniform space andlet F : X — X be a mapping. A single-valued mapping
F is orbitally continuous if lim (T" x) = u implies lim T (T"x) = Tu for each x € X.
2. Main results

Theorem 1. Let (X, U) be an F-orbitally complete Hausdorff uniform space defined by
{di: i el} = p*and 2%, U*) a hyperspace and let F : X — 2% be a continuous
mapping with Fx compact for each x in X. Assume that

min {Hy(Fx, Fy)', di(x, Fo)di(y, Fy)Y ™, di(y, FyY'|
+a; min{d; (x, Fy), d;(y, Fx)} < [b;d;(x, Fx)
+ cid; O, i (y, Fy)'™! M

foralli € I andx, y € X, wherer > 1is an integer, a; b;, c; are real numbers such that
0 < b; +c¢; <1, then F has a fixed point.
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Proof. Let x be an arbitrary point in X and consider the sequence {x,} defined by
x1 € Fxo,xp € Fx1,...,x, € Fx,—1, ....

Let us suppose that d; (x,,, Fx,) > Oforeachi € [ andn = 0, 1, 2, .... (Otherwise for
some positive integer n, x, € Fx, as desired.)

Let U € U be an arbitrary entourage. Since f is a base for U, there exists V (i, ¢) € B
such that V (i, ¢) € U. Now y — d;(xp, y) is continuous on the compact set Fxy and
this implies that there exists x| € Fxg such thatd; (xg, x1) = d;(x9, Fxo). Similarly, Fx
is compact so there exists x, € Fxp such that d;(x1, x2) = d;(x1, Fx1). Continuing, we
obtain a sequence {x,} such that x,,+1 € Fx, and d; (x,, xp+1) = di (xn, Fxy).

For x = x,_1, and y = x,, by condition (1) we have

min {Hi(Fxn—la Fxp)', di(xu—1, Fx,—1)d;(x, Fxn)r_la d; (xn, Fxn)r}
+ a; min {d; (xy—1, Fxn), di(xp, Fxp_1)} <[ bidi(xp—1, Fx,_1)
+ i di (en—1, Xn)] di(xa, Fxp)™!

or since d; (x,;, Fx,—1) =0, x, € Fx,_1. Hence we have

min {di(xn, Y1), di (xp—1, Xp)dj (X, xn+1)r7]}
< [bi di (n—t, xn) + ci di(tn—1, xn)] di (Xn, Xps)" ™!
and it follows that
min {d; (6, x001)", di Gamts %)y G, i)' |
< (bi + i) di(tn—t, Xn) ;i Con, Xp )"
Since
di (tn—1, Xn) di (xn, Xng1)" ™" < By + ¢i) di (Xn—t1, Xn) di (X, X)) !
is not possible (as 0 < b; + ¢; < 1), we have
di (Xn, Xp41)" < (bi + ¢i) di(Xn—1, Xp) di (xn, Xpi1) ™
or
di (Xn, Xns1)" < ki diCener, Xp) di (X, Xp)

where k; = b; +C,‘,O <k < 1.
Proceeding in this manner we get

di(xXn, Xpv1) < kidi (xp—1, xp)

< kK di (xn-2, Xn—1)

< ki'd; (xo, x1).
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Hence we obtain
di (Xn, Xm) = di(ns Xn1) + di 1, Xn2) + -+ di =1, Xm)
< KT KT dio, x)
<Kt ki oA di (o, x)

n

< 1 —ik di(xg, x1).

Since lim k! = 0, it follows that there exists N (i, &) such that d; (x,, x,) < & and
n—>oo

hence (x,, x;,) € U for all n,m > N(i, ¢). Therefore the sequence {x,} is a Cauchy
sequence in the d;-uniformity on X.

Let S, = {x,: n > p} for all positive integers p and let B be the filter basis
{S,, p=1,2, } Then since {x,} is a d;-Cauchy sequence for each i € I, it is easy to
see that the filter basis S is a Cauchy filter in the uniform space (X, ). To see this we first
note that the family {V (i, ¢) : i € I}is a base for i as p* = {d; : i € I}. Now since {x,}
is a d;-Cauchy sequence in X, there exists a positive integer p such that d; (x,, x,,) < €
form > p, n > p. This implies that S, x S, C V (i, ¢). Thus given any U € U, we can
findan S, € Bsuchthat S, x S, C U.Hence 8 is a Cauchy filter in (X, ). Since (X, U)
is F-orbitally complete and Hausdorff space, S, — z for some z € X. Consequently
F(S,) — Fz (follows from the continuity of F'). Also

Sp+1gF(Sp)=U{Fxn:n2p}

for p =1, 2,.... It follows that z € Fz. Hence z is a fixed point of F. This completes
the proof.

If we take r = 1 in Theorem 1, then we obtain the following theorem.

Theorem 2. Let (X, U) be an F-orbitally complete Hausdorff uniform space defined by
{d; :i € I} = p* and (2%, U*) a hyperspace, let F : X — 2% be a continuous mapping
and Fx compact for each x in X. Assume that

min {H; (Fx, Fy), di(x, Fx), d;(y, Fy)}
+a;min{d;(x, Fy), di(y, Fx)} < b; d;(x, Fx) +c;di(x, y) (2)

foralli € I and x, y € X, where a;, b;, c; are real numbers such that 0 < b; +c¢; < 1,
then F has a fixed point.

We denote that if F is a single valued mapping on X, then we can write d;(Fx, Fy) =
H;(Fx, Fy),x,ye X,iel.

Thus we obtain the following theorem as a consequence of the Theorem 2.

Theorem 3. Let (X, U) be a T-orbitally complete Hausdorff uniform space and let T :
X — X be a T-orbitally continuous mapping satisfying

min {d;(Tx, Ty), di(x, Tx), d;(y, Ty)}
+a;min{d;(x, Ty), d;(y, Tx)} < bidi(x, Tx) +c;di(x, y) 3)

forallx, y € X, i € I and a;, b;, c; are real numbers such that 0 < b; + ¢; < 1. Then
T has a fixed point and which is unique whenever a; > c¢; > 0.
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Proof. Define a mapping F of X into 2% by putting Fx = {Tx} for all x in X. It follows
that F satisfies the conditions of Theorem 2. Hence T has a fixed point.

Now if a; > ¢; > 0, we show that T has a unique fixed point. Assume that 7" has two
fixed points z and w which are distinct. Since d; (z, Tz) = 0 and d; (w, Tw) = 0, then by
the condition (2),

a; min{d;(z, Tw), di(w, Tz)} < ¢; d;i(z, w)
or

a;jdi(z, w) < c;di(z, w),
o

di(z, w) < = di(z, w)
a;

which is impossible. Thus if a; > ¢; > 0, then T has a unique fixed point in X. This
completes the proof.
We note thatif a; = —1 in condition (3), then one gets the following result as a corollary.

COROLLARY 4

Let T be an orbitally cotinuous self-map of a T -orbitally complete uniform space (X, U)
satisfying the condition

min {d;(Tx, Ty), di(x, Tx), d;(y, Ty)}
—min {d;(x, Ty), di(y, Tx)} < b;di(x, Tx) +c;di(x, y),

x,yeX,ie€land0 < bj+c; < 1. Then foreach x € X, the sequence {T" x} converges
to a fixed point of T.

Remark 1. If we replace the uniform space (X, i) in Theorem 3 and Corollary 4 by a
metric space (i.e. a metrizable uniform space), then Theorem 1 and Corollary 1 of Dhage
[2] will follow as special cases of our results.
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