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Fixed point of multivalued mapping in uniform spaces
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Abstract. In this paper we prove some new fixed point theorems for multivalued
mappings on orbitally complete uniform spaces.
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1. Introduction

Let (X, U) be a uniform space. A family {di : i ∈ I } of pseudometrics on X with indexing
set I, is called an associated family for the uniformity U if the family

β = {V (i, ε) : i ∈ I ; ε > 0} ,

where

V (i, ε) = {(x, y) : x, y ∈ X, di(x, y) < ε}
is a sub-base for the uniformity U . We may assume that β itself is a base by adjoining finite
intersection of members of β, if necessary. The corresponding family of pseudometrics is
called an associated family for U . An associated family for U will be denoted by p∗. For
details the reader is referred to [1,3–8].

Let A be a nonempty subset of a uniform space X. Define

1∗(A) = sup {di(x, y) : x, y ∈ A, i ∈ I } ,

where

{di : i ∈ I } = p∗.

Then 1∗ is called an augmented diameter of A. Further, A is said to be p∗-bounded if
1∗(A) < ∞. Let

2X = {
A : A is a nonempty, closed and p∗ - bounded subset of X

}
.

For any nonempty subsets A and B of X, define

di(x, A) = inf {di(x, a) : a ∈ A}, i ∈ I
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Hi(A, B) = max

{
sup
a∈A

di(a, B), sup
b∈B

di(A, b)

}

= sup
x∈X

{|di(x, A) − di(x, B)|} .

It is well-known that on 2X, Hi is a pseudometric, called the Hausdorff pseudometric
induced by di, i ∈ I .

Let (X, U) be a uniform space with an augmented associated family p∗. p∗ also induces
a uniformity U∗ on 2X defined by the base

β∗ = {
V ∗(i, ε) : i ∈ I, ε > 0

}
,

where

V ∗(i, ε) =
{
(A, B) : A, B ∈ 2X, Hi(A, B) < ε

}
.

The space (2X, U∗) is a uniform space called the hyperspace of (X, U).

DEFINITION 1

The collection of all filters on a given set X is denoted by 8(X).An order relation is defined
on 8(X) by the rule F1 < F2 iff F1 ⊃ F2. If F∗ < F , then F∗ is called a subfilter of F .

DEFINITION 2

Let (X, U) be a uniform space defined by {di : i ∈ I } = p∗. If F : X → 2X is a
multivalued mapping, then

(i) x ∈ X is called a fixed point of F if x ∈ Fx;
(ii) An orbit of F at a point x0 ∈ X is a sequence {xn} given by

O(F, x0) = {xn : xn ∈ Fxn−1, n = 1, 2, ...};
(iii) A uniform space X is called F -orbitally complete if every Cauchy filter which is a

subfilter of an orbit of F at each x ∈ X converges to a point of X.

DEFINITION 3

Let (X, U) be a uniform space and let F : X → X be a mapping. A single-valued mapping
F is orbitally continuous if lim (T ni x) = u implies lim T (T ni x) = T u for each x ∈ X.

2. Main results

Theorem 1. Let (X, U) be an F -orbitally complete Hausdorff uniform space defined by
{di : i ∈ I } = p∗ and (2X, U∗) a hyperspace and let F : X → 2X be a continuous
mapping with Fx compact for each x in X. Assume that

min
{
Hi(Fx, Fy)r , di(x, Fx)di(y, Fy)r−1, di(y, Fy)r

}

+ ai min {di(x, Fy), di(y, Fx)} ≤ [bidi(x, Fx)

+ cidi(x, y)]di(y, Fy)r−1 (1)

for all i ∈ I and x, y ∈ X, where r ≥ 1 is an integer, ai, bi, ci are real numbers such that
0 < bi + ci < 1, then F has a fixed point.
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Proof. Let x0 be an arbitrary point in X and consider the sequence {xn} defined by

x1 ∈ Fx0, x2 ∈ Fx1, ..., xn ∈ Fxn−1, ....

Let us suppose that di(xn, Fxn) > 0 for each i ∈ I and n = 0, 1, 2, .... (Otherwise for
some positive integer n, xn ∈ Fxn as desired.)

Let U ∈ U be an arbitrary entourage. Since β is a base for U , there exists V (i, ε) ∈ β

such that V (i, ε) ⊆ U . Now y → di(x0, y) is continuous on the compact set Fx0 and
this implies that there exists x1 ∈ Fx0 such that di(x0, x1) = di(x0, Fx0). Similarly, Fx1
is compact so there exists x2 ∈ Fx1 such that di(x1, x2) = di(x1, Fx1). Continuing, we
obtain a sequence {xn} such that xn+1 ∈ Fxn and di(xn, xn+1) = di(xn, Fxn).

For x = xn−1, and y = xn by condition (1) we have

min
{
Hi(Fxn−1, Fxn)

r , di(xn−1, Fxn−1)di(xn, Fxn)
r−1, di(xn, Fxn)

r
}

+ ai min {di(xn−1, Fxn), di(xn, Fxn−1)} ≤ [
bi di(xn−1, Fxn−1)

+ ci di(xn−1, xn)
]
di(xn, Fxn)

r−1

or since di(xn, Fxn−1) = 0, xn ∈ Fxn−1. Hence we have

min
{
di(xn, xn+1)

r , di(xn−1, xn)di(xn, xn+1)
r−1

}

≤ [
bi di(xn−1, xn) + ci di(xn−1, xn)

]
di(xn, xn+1)

r−1

and it follows that

min
{
di(xn, xn+1)

r , di(xn−1, xn)di(xn, xn+1)
r−1

}

≤ (bi + ci) di(xn−1, xn) di(xn, xn+1)
r−1.

Since

di(xn−1, xn) di(xn, xn+1)
r−1 ≤ (bi + ci) di(xn−1, xn) di(xn, xn+1)

r−1

is not possible (as 0 < bi + ci < 1), we have

di(xn, xn+1)
r ≤ (bi + ci) di(xn−1, xn) di(xn, xn+1)

r−1

or

di(xn, xn+1)
r ≤ ki di(xn−1, xn) di(xn, xn+1)

r−1,

where ki = bi + ci , 0 < ki < 1.
Proceeding in this manner we get

di(xn, xn+1) ≤ kidi(xn−1, xn)

≤ k2
i di(xn−2, xn−1)

...

≤ kn
i di(x0, x1).
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Hence we obtain

di(xn, xm) ≤ di(xn, xn+1) + di(xn+1, xn+2) + · · · + di(xm−1, xm)

≤ (kn
i + kn+1

i + · · · + km−1
i ) di(x0, x1)

≤ kn
i (1 + ki + · · · + km−n−1

i ) di(x0, x1)

≤ kn
i

1 − k
di(x0, x1).

Since lim
n→∞kn

i = 0, it follows that there exists N(i, ε) such that di(xn, xm) < ε and

hence (xn, xm) ∈ U for all n, m ≥ N(i, ε). Therefore the sequence {xn} is a Cauchy
sequence in the di-uniformity on X.

Let Sp = {xn : n ≥ p} for all positive integers p and let β be the filter basis{
Sp : p = 1, 2, ...

}
. Then since {xn} is a di-Cauchy sequence for each i ∈ I , it is easy to

see that the filter basis β is a Cauchy filter in the uniform space (X, U). To see this we first
note that the family {V (i, ε) : i ∈ I } is a base for U as p∗ = {di : i ∈ I }. Now since {xn}
is a di-Cauchy sequence in X, there exists a positive integer p such that di(xn, xm) < ε

for m ≥ p, n ≥ p. This implies that Sp × Sp ⊆ V (i, ε). Thus given any U ∈ U, we can
find an Sp ∈ β such that Sp ×Sp ⊂ U . Hence β is a Cauchy filter in (X, U). Since (X, U)

is F -orbitally complete and Hausdorff space, Sp → z for some z ∈ X. Consequently
F(Sp) → Fz (follows from the continuity of F ). Also

Sp+1 ⊆ F(Sp) = ∪ {Fxn : n ≥ p}
for p = 1, 2, . . . . It follows that z ∈ Fz. Hence z is a fixed point of F . This completes
the proof.

If we take r = 1 in Theorem 1, then we obtain the following theorem.

Theorem 2. Let (X, U) be an F -orbitally complete Hausdorff uniform space defined by
{di : i ∈ I } = p∗ and (2X, U∗) a hyperspace, let F : X → 2X be a continuous mapping
and Fx compact for each x in X. Assume that

min {Hi(Fx, Fy), di(x, Fx), di(y, Fy)}
+ ai min { di(x, Fy), di(y, Fx)} ≤ bi di(x, Fx) + ci di(x, y) (2)

for all i ∈ I and x, y ∈ X, where ai, bi, ci are real numbers such that 0 < bi + ci < 1,
then F has a fixed point.

We denote that if F is a single valued mapping on X, then we can write di(Fx, Fy) =
Hi(Fx, Fy), x, y ∈ X, i ∈ I .

Thus we obtain the following theorem as a consequence of the Theorem 2.

Theorem 3. Let (X, U) be a T -orbitally complete Hausdorff uniform space and let T :
X → X be a T -orbitally continuous mapping satisfying

min {di(T x, T y), di(x, T x), di(y, T y)}
+ ai min { di(x, T y), di(y, T x)} ≤ bi di(x, T x) + ci di(x, y) (3)

for all x, y ∈ X, i ∈ I and ai, bi, ci are real numbers such that 0 < bi + ci < 1. Then
T has a fixed point and which is unique whenever ai > ci > 0.
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Proof. Define a mapping F of X into 2X by putting Fx = {T x} for all x in X. It follows
that F satisfies the conditions of Theorem 2. Hence T has a fixed point.

Now if ai > ci > 0, we show that T has a unique fixed point. Assume that T has two
fixed points z and w which are distinct. Since di(z, T z) = 0 and di(w, T w) = 0, then by
the condition (2),

ai min { di(z, T w), di(w, T z)} ≤ ci di(z, w)

or

ai di(z, w) ≤ ci di(z, w),

di(z, w) ≤ ci

ai

di(z, w)

which is impossible. Thus if ai > ci > 0, then T has a unique fixed point in X. This
completes the proof.

We note that if ai = −1 in condition (3), then one gets the following result as a corollary.

COROLLARY 4

Let T be an orbitally cotinuous self-map of a T -orbitally complete uniform space (X, U)

satisfying the condition

min {di(T x, T y), di(x, T x), di(y, T y)}
− min {di(x, T y), di(y, T x)} ≤ bi di(x, T x) + ci di(x, y),

x, y ∈ X, i ∈ I and 0 < bi +ci < 1. Then for each x ∈ X, the sequence {T nx} converges
to a fixed point of T .

Remark 1. If we replace the uniform space (X, U) in Theorem 3 and Corollary 4 by a
metric space (i.e. a metrizable uniform space), then Theorem 1 and Corollary 1 of Dhage
[2] will follow as special cases of our results.
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