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Abstract. On a locally compact group G, if � kn
n ! �, ðkn !1Þ, for some probabi-

lity measures � n and � on G, then a sufficient condition is obtained for the set
A ¼ f�m

n jm � kng to be relatively compact; this in turn implies the embeddability of a
shift of �. The condition turns out to be also necessary when G is totally disconnected.
In particular, it is shown that if G is a discrete linear group over R then a shift of the
limit � is embeddable. It is also shown that any infinitesimally divisible measure on a
connected nilpotent real algebraic group is embeddable.
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1. Introduction

Commutative triangular systems of probability measures on locally compact groups have

been studied extensively and recently the embedding of the limit � (or a translate x�,

x 2 G) have been shown on a large class of groups under certain conditions like infinite-

simality of triangular system and/or ‘fullness’ of the limit � (see [S4] for the latest results

and the literature cited therein for earlier results). Generalizing the techniques developed

in [S3,S4], we extend our earlier result to some particular triangular systems on algebraic

groups. We also discuss special triangular systems of identical measures, i.e. limit

theorems. In particular if � kn
n ! � on G then we give a sufficient condition for the set

A ¼ f�m
n j m � kng to be relatively compact; this in turn would imply the embeddability

of a shift of the limit �. The condition turns out to be also necessary if G is totally

disconnected. We hereby generalize our earlier results on limit theorems on Lie groups to

general locally compact groups. We also show the embedding of a shift of the limit � if G

is a discrete linear group over R.

Let G be a locally compact (Hausdorff) group and let M1ðGÞ be the topological

semigroup of probability measures with weak topology and convolution as the semigroup

operation. Let �; � be any measures in M1ðGÞ. Let the convolution product of � and � be

denoted by ��. For any compact subgroup H of G let !H denote the normalized Haar

measure of H. Let M1
HðGÞ ¼ !HM1ðGÞ!H , then M1

HðGÞ is a closed subsemigroup of

M1ðGÞ with identity !H. For any x 2 G, let �x denote the Dirac measure at x and let

x� ¼ �x�, (similarly, �x ¼ ��x). Let I� ¼ fx 2 G j x� ¼ �xg and let Ið�Þ ¼ fx 2 G j
x� ¼ �x ¼ �g, then I� (resp. Ið�Þ) is a closed (resp. compact) subgroup of G. Let J� ¼
f� 2 M1ðGÞ j �� ¼ �� ¼ �g. Clearly, J� is a compact semigroup and for any � 2 M1ðGÞ,
� 2 J� if and only if supp � � Ið�Þ. Let Gð�Þ be the smallest closed subgroup of G

containing supp�. Let Nð�Þ (resp. Zð�Þ) be the normalizer (resp. centralizer) of Gð�Þ in
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G. Let ~� denote the adjoint of �, defined by ~�ðBÞ ¼ �ðBÿ1Þ, for all Borel subsets B of G.

� is said to be symmetric if � ¼ ~�. Let G0 denote the connected component of the identity

in G. For a set A � M1ðGÞ and a normal subgroup C � G, we denote A=C ¼ �ðAÞ, where

� : G! G=C is the natural projection.

A measure � 2 M1ðGÞ is said to be infinitely divisible (resp. weakly infinitely divisible)

if for every n 2 N, there exists �n 2 M1ðGÞ such that �n
n ¼ � (resp. �n

nxn ¼ � for some

xn 2 G); and it is said to be embeddable if there exists a continuous one-parameter

convolution semigroup f�tgt�0 such that �1 ¼ �. Since we aim to prove the embeddabi-

lity of a given measure under various conditions, the reader is referred to [M2], a survey

article on the embedding problem of infinitely divisible measures.

Let S be a Hausdorff semigroup with identity e and let s 2 S. Let Ts denote the set of

two sided factors of s, that is, Ts ¼ ft 2 S j tr ¼ rt ¼ s for some r 2 Sg. Elements s; t 2 S

are said to be associates if s and t are two sided factors of each other, i.e. s 2 Tt and

t 2 Ts. A subset A of S is said to be associatefree if s; t 2 A are associates then s ¼ t. An

element h in S is said to be an idempotent if h2 ¼ h. An element s is said to be bald (in S)

if e is the only idempotent contained in Ts. For a subset A of S, a decomposition of s as

s ¼ s1 � � � sn, for some n 2 N, where si 2 A and sisj ¼ sjsi for all i; j, is called an A-

decomposition of s. An element s (in S) is said to be infinitesimally divisible if s has a U-

decomposition for every neighbourhood U of e in S. A set � ¼ fsi j 2 S j i 2 N; 1 � j �
ni; ni !1 as i!1g is said to be a triangular system in S; we will sometimes write

� ¼ ðsijÞni

i2N; j¼1. � is said to be commutative if for every fixed i, si j commute with each

other, it is said to be infinitesimal if as i!1, si j ! e uniformly in j. We say that �
converges to � if si1 � � � sini

¼ si ! �.

In § 2, we prove a limit theorem for general locally compact groups, (see Theorem 2.1).

In § 3, we show that if � kn
n ! �, ðkn !1Þ, on a discrete linear group over R, then x� is

embeddable for some x 2 G (see Theorem 3.1). In § 4, we show that any infinitesimally

divisible probability measure � on a connected nilpotent real algebraic group is embed-

dable, (more generally see Theorem 4.1).

2. Limit theorems on locally compact groups

Theorem 2.1. Let G be a locally compact group and let � : G! G=G0 be the natural

projection. Let f� ng be a relatively compact sequence in M1ðGÞ such that for any limit

point � of it, Gð�ð�ÞÞ is a compact group in G=G0 and � kn
n ! � for some � 2 M1ðGÞ and

for some unbounded sequence fkng � N. Suppose that for some connected nilpotent

normal subgroup N of G, the closed subgroup generated by supp� and N contains G0.

Then the set A ¼ f�m
n j m � kng is relatively compact and there exists x 2 I� such that x�

is embeddable.

Remarks. (1) The above theorem generalizes Theorem 1.7(1) of [S4]. (2) If G is totally

disconnected then G0 ¼ feg and hence the above theorem implies that if � kn
n ! � and if

f� ng is relatively compact and for any limit point � of it, Gð�Þ is compact then A is

relatively compact. Conversely, if A is relatively compact then so are f� ng and f� kn
n g, and

for any limit point � of f� ng, Gð�Þ is compact as f� ng � A. Thus, for totally

disconnected groups we get a necessary and sufficient condition for the set A as above to

be relatively compact.

We first prove a more general theorem for totally disconnected locally compact groups.
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Theorem 2.2. Let G be a totally disconnected locally compact group and let f� ng �
M1ðGÞ be such that � n ! � where Gð�Þ is compact and � kn

n �
0
n ! � for some sequence

f�0ng in M1ðGÞ such that � n�
0
n ¼ �0n� n for all n. Then given any neighbourhood U of e and

an � > 0 there exists an l, such that for all large n, �m
n ðGð�ÞIð�ÞUÞ > ð1ÿ �Þ

l
, for all

m � kn. In particular A ¼ f�m
n j m � kng and f�0ng are relatively compact.

Proof. As Gð�Þ is compact and �m 2 T�, for all m, supp � � xIð�Þ ¼ Ið�Þx, for all

x 2 supp � (cf. [S4], Theorem 2.4). Therefore Gð�ÞIð�Þ is a compact group.

Let V be an open compact subgroup of G such that V is normalized by Gð�ÞIð�Þ, and

V � U. Since � n ! �, � nðGð�ÞIð�ÞVÞ > 1ÿ �, for all large n. Let V 0 ¼ f� j �ðGð�Þ
Ið�ÞVÞ > ð1ÿ �Þ1=2g and let U0 ¼ f� j �ðGð�ÞIð�ÞVÞ � 1ÿ �g for some positive � < �.
Then V 0V 0 � U0. Let J ¼ f� 2 M1ðGÞ j supp � � Gð�ÞIð�ÞVg. Clearly, J is a compact

semigroup and JV 0 ¼ V 0. Let � 2 U0 n V 0. If possible, suppose that �n 2 T� for all n, then

by Theorem 2.4 of [S4], supp� � xIð�Þ ¼ Ið�Þx, for all x 2 supp�. Since � 2 U0,
supp � � Gð�ÞIð�ÞV , i. e. � 2 J � V 0, a contradiction. Hence for � 2 T� \ U0 n V 0, there

exists n ¼ nð�Þ, such that �n 62T�. By Lemma 2.1 of [S4], T� \ U0 n V 0 is compact. As in

the proof of Lemma 2.5 in [S4], one can find l, such that for any � 2 T� \ U0 n V 0, �
cannot be expressed as � ¼ �l�0, for any �0 which commutes with �.

Since � n ! �, � n 2 V 0, for all large n. Let such a large n be fixed. Then there exists

an > 1, such that �m
n 2 V 0, for all m < an and � an

n 62V 0. Therefore, � an
n 2 V 0V 0 n V 0 �

U 0 n V 0. Let bn ¼ kn ÿ lan if lan � kn, otherwise bn ¼ 0. If bn ¼ 0, then �m
n 2 ðU0Þ

l
, for

all m � kn. Therefore, for all large n, �m
n ðGð�ÞIð�ÞVÞ � ð1ÿ �Þ

l
, and hence �m

n ðGð�Þ
Ið�ÞUÞ > ð1ÿ �Þl for all m � kn, as V � U and � < �.

We now show that bn ¼ 0, for all large n. If bn 6¼ 0 for infinitely many n, then

� lan
n � bn

n �
0
n ! �. Since f� an

n g � U0 n V 0, by Lemma 2.1 of [S4], f� an
n g is relatively

compact and it has a limit point (say) �, such that � ¼ �l�0, for some �0, which is a limit

point of f� bn
n �
0
ng, i.e. � 2 T� \ U0 n V 0 and ��0 ¼ �0�. This is a contradiction to the

choice of l as above.

Now it is enough to show that A is relatively compact as this would also imply that

f�0ng is relatively compact. Let �n ¼ � kn
n �
0
n. Then �n ! � and for each n, �m

n 2 T�n
for all

m � kn. Let F ¼ Gð�ÞIð�ÞV for V as above. Then F is compact. Let A0 ¼ f� 2 M1ðGÞj
�ðFÞ � ð1ÿ �Þl=2g. Then from above, A � A0. Since �n ! �, for every � > 0 such

that � < ð1ÿ �Þl=2, there exists a compact set K� such that �nðK�Þ > 1ÿ � (cf. [H],

Properties 1.2.20(2)). Therefore, for every n;m as above, there exists xn;m such that

�m
n ðK�xn;mÞ > 1ÿ �. Now since A � A0, the above implies that xn;m 2 Kÿ1

� F and hence

�m
n ðK 0�Þ > 1ÿ �, where K 0� ¼ K�K

ÿ1
� F which is a compact set. In particular A is relatively

compact (cf. [H], 1.2.20). This completes the proof.

We now prove several results which will be needed to prove Theorem 2.1.

Lemma 2.3. Let G be a locally compact first countable group and let f�ng, f�ng and

f� ng be sequences in M1ðGÞ such that �n� n ¼ � n�n ¼ �n ! � for some � 2 M1ðGÞ.
Then there exists a sequence fxng such that xn 2 Nð�nÞ for each n and f�nxng and fxn�ng
are relatively compact and all its limit points are supported on supp �.

The proof is quite similar to Proposition 1.2 in [DM] and Theorem 2.2 in ch. III of [P].

Proof. For any integer r > 0 there exists a compact set Kr � supp� such that

�ðKrÞ > 1ÿ 4ÿðrþ1Þ. Without loss of generality, we may assume that Kr � Krþ1 for all

r. Let fUrg be a neighbourhood basis of e in G such that each Ur is relatively compact,
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Urþ1 � Ur for all r and \rUr ¼ feg. Since �n ! �, there exists nr 2 N, such that

�nðKrUrÞ > 1ÿ 2ÿr and �nðUrKrÞ > 1ÿ 2ÿr, for all n � nr. Let Er
n ¼ fx 2 G j �n

ðKrUrx
ÿ1Þ > 1ÿ 2ÿrg and let Fn ¼ \frjnr�ngE

r
n.

A simple calculation as in Theorem 2.2 of ch. III in [P] shows that for n � nr,

� nðG n Er
nÞ � 2ÿðrþ2Þ and hence � nðG n FnÞ � 1=4. Similarly, we define Br

n ¼ fx 2 G j
�nðxÿ1UrKrÞ > 1ÿ 2ÿrg for any r and Cn ¼ \frjnr�ngB

r
n. Then � nðG n CnÞ � 1=4.

Therefore � nðFn \ CnÞ � 1=2. For each n, we pick xn 2 Fn \ Cn \ supp � n as it is

nonempty, xn 2 supp � n � Nð�nÞ. Then for any r > 0, �nxnðKrUrÞ > 1ÿ 2ÿr and xn�n

ðUrKrÞ > 1ÿ 2ÿr for all n � nr and hence by tightness criterion, f�nxng and fxn�ng are

tight. Also, since Kr � supp� for all r, �nxnððsupp�ÞUrÞ > 1ÿ 2ÿr, for all n � nr. Since

\rUr ¼ feg, it easily follows that for any limit point � of f�nxng, supp� � supp�.

Similarly, the limit points of fxn�ng are also supported on supp�.

Lemma 2.4. Let G be a locally compact group and let �n ! � in M1ðGÞ. Let B be a

subgroup which centralizes an open subgroup H containing supp�. Then the following

hold:

1. For any sequence fxng in B, fxÿ1
n �nxng is relatively compact and it converges to �.

2. Let �n ¼ �n� n ¼ � n�n, for all n. If for sequences fxng and fyng in B, fxn�nyng is

relatively compact then its limit points belong to T�; in particular if �nan ! � for

some fang � B, then � 2 T� and the limit points of fxn�nyng are of the form z� ¼ �z0,
for some z; z0 2 Zð�Þ.

Proof. Let U be any open set contained in H and let K � supp� be any compact set such

that �ðKÞ > 0. Then given 0 < � < �ðKÞ, there exists N such that �nðKUÞ > �ðKÞ ÿ � for

all n > N. Since xn centralizes KU, xÿ1
n �nxnðKUÞ ¼ �nðKUÞ > �ðKÞ ÿ �. Since this is

true for all K and U as above, fxÿ1
n �nxng is relatively compact and it converges to �. Let �0

be a limit point of a relatively compact sequence f�0n ¼ xn�nyng, where xn; yn 2 B. Since

fxn�nxÿ1
n g converges to �, fyÿ1

n � nxÿ1
n g is relatively compact and there exists a limit point

�0 of it such that �0�0 ¼ �. Also, �0�0 is a limit point of fyÿ1
n �nyng, which converges to �.

Therefore, �0�0 ¼ � and hence �0 2 T�. Now suppose �nan ! �, fang � B, then from

above � 2 T�. Therefore, � ¼ x�, for some x 2 Nð�Þ and � supported on Gð�Þ � H. Then

xÿ1�nan ! �. Let K 0 be any compact subset in H such that �ðK 0Þ > 0. Then for any open

subset U contained in H, �nanðxK 0UÞ ¼ zn�
0
nðxK 0UÞ, where zn ¼ xyÿ1

n anxÿ1xÿ1
n 2 Zð�Þ,

as B � Zð�Þ and x 2 Nð�Þ which normalizes Zð�Þ. Since this is true for all n and all

compact subsets K 0 of supp � it implies that fzng is relatively compact in Zð�Þ. Therefore,

�0 ¼ z�, for �0 as above, where z is a limit point of fzÿ1
n g. Now since � 2 T� and z 2 Zð�Þ,

z� ¼ zx� ¼ xz0� ¼ x�z0 ¼ �z0, where z0 ¼ xÿ1zx 2 Zð�Þ.

PROPOSITION 2.5

Let G be a locally compact group and let C be a closed normal (real) vector subgroup of

G. Suppose that f�ng � M1ðGÞ be a sequence such that �n ! �, the closed subgroup

(say) H, generated by the centralizer ZðCÞ of C and supp�, is open in G. Suppose that

there exists a sequence fxng in C such that fxÿ1
n �nxng is relatively compact. Then

fxng=ðZð�Þ \ CÞ is relatively compact. In particular I� \ C ¼ Zð�Þ \ C.

Proof. Suppose C � Zð�Þ then there is nothing to prove. Now let V ¼ Zð�Þ \ C, which

is a proper closed subgroup of C. Since C is normal in G, for any x 2 G, ix : C ! C,
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ixðcÞ ¼ xcxÿ1 for all c 2 C, is a continuous homomorphism of C and hence it is a linear

operator in Mðd;RÞ, where d is such that C is isomorphic to Rd . Now V ¼ Zð�Þ\
C ¼ \x2supp� kerðixÞ and hence V is a (possibly trivial) vector subspace and C ¼ V �W ,

a direct product. Now for each n, xn ¼ zn þ yn, where zn 2 V and yn 2 W . Let �0n ¼
zÿ1

n �nzn, for each n. Since V centralizes Gð�Þ and hence H which is open, by Lemma 2.4,

�0n ! �.

Now it is enough to show that fyng is relatively compact. If possible, suppose it has a

subsequence, denote it by fyng again, which is divergent, i.e. it has no convergent

subsequence. We know that fyÿ1
n �0nyn ¼ xÿ1

n �nxng is relatively compact. Passing to a

subsequence if necessary, we get that yn=jjynjj ! y in W , where jj jj denotes the usual

norm in the vector space C. Since �0n ! �, arguing as in Proposition 9 in [M1], we get

that Gð�Þ � ZðyÞ, the centralizer of y in G, a contradiction as y 62Zð�Þ \ C ¼ V , for

y 2 W and jjyjj ¼ 1. Therefore, fyng is relatively compact. If x 2 I� then x�xÿ1 ¼ �
therefore, ðI� \ CÞ=ðZð�Þ \ CÞ is a compact group, but since C and Zð�Þ \ C are both

vector groups so is C=ðZð�Þ \ CÞ and hence has no nontrivial compact subgroups.

Therefore, I� \ C ¼ Zð�Þ \ C.

PROPOSITION 2.6

Let G and C be as above. Let f� ng be a relatively compact sequence in M1ðGÞ such that

� kn
n ! � and the closed subgroup (say) H, generated by the centralizer ZðCÞ of C and

supp�, is open in G. Let A ¼ f�m
n j m � kng. If A=C is relatively compact then so is A.

Proof. Let A=C be relatively compact. If possible, suppose that A is not relatively

compact. That is, there exists a subsequence of f� ng, denote it by same notation, such

that f� lðnÞ
n g is divergent, where lðnÞ < kn for all n. Passing to a subsequence if necessary,

we get that � n ! � (say). Let � : G! G=G0 be the natural projection. Since f�ð�Þn j
n 2 Ng � �ðAÞ which is compact, Gð�ð�ÞÞ is compact. Also, since f� n j n 2 Ng � T�,

by Theorem 2.4 of [S4], supp � � xIð�Þ ¼ Ið�Þx, for any x 2 supp �. Since A=C is

relatively compact, there exists a sequence fxn;mg in C such that f�m
n xn;mg is relatively

compact and fxn;lðnÞg is divergent. Also since � kn
n ! � (resp. � knþ1

n ! �� ¼ ��) the

above implies fxÿ1
n;m�

knÿm
n g (resp. fxÿ1

n;m�
knþ1ÿm
n g) and hence fxÿ1

n;m�
kn
n xn;mg (resp.

fxÿ1
n;m�

knþ1
n xn;mg) is relatively compact. Now by Proposition 2.5, fxn;mg=ðZð�Þ \ CÞ

(resp. fxn;mg=ðZð��Þ\ CÞ) is relatively compact. As Zð�Þ \ Zð��Þ ¼ Zð�Þ \ Zð�Þ, the

above implies that fxn;mg=ðZð�Þ \ Zð�Þ \ CÞ is relatively compact. Without loss of

generality we may assume that fxn;mg � C0 ¼ Zð�Þ \ Zð�Þ \ C, which is a vector group

centralizing Gð�Þ and H. Therefore, H0 ¼ ZðC0Þ contains H and hence it is an open

subgroup in G containing supp� and supp �. We may also assume that xn;1 ¼ xn;kn
¼ e for

every n as f� ng and f� kn
n g are relatively compact.

Let n 2 N and let 1 � m � kn. From Theorem 2.2, �m
n ðH0Þ > � > 0 and hence

�m
n xn;mðH0Þ > �. Since f�m

n xn;mg is relatively compact, there exists a compact set L � H0,
such that �m

n xn;mðLÞ > �=2. Let 0 < � < minf�=2; 1=4g. There exists a compact set

K � supp� such that �ðKÞ > 1ÿ �. Let U � H0 be such that U is open in G. Then there

exists N, such that for all n � N, � kn
n ðKUÞ > 1ÿ �. Let n � N and let 1 � m � kn. Then

there exists fyn;mg � G, such that �m
n yn;mðKUÞ > 1ÿ �. Since � < �=2, KUyÿ1

n;m\
Lxÿ1

n;m 6¼ ;. That is, yÿ1
n;m 2 K 0xÿ1

n;m, where K 0 ¼ ðKUÞÿ1
L � H0 and hence �m

n xn;mðK1Þ >
1ÿ � and each xn;m commutes with all the elements of K1 ¼ KUK 0 � H0. Now for

m; l < kn such that mþ l � kn, we get that �mþl
n ðK1xÿ1

n;mK1xÿ1
n;l Þ � ð1ÿ �Þ

2
. Since
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�mþl
n ðK1xÿ1

n;mþlÞ > 1ÿ � and � < 1=4, we get that K1xÿ1
n;mþl \ K1xÿ1

n;mK1xÿ1
n;l 6¼ ;. Therefore

xn;mxn;lx
ÿ1
n;mþl 2 K2

1 Kÿ1
1 \ C0. Since C0 is a vector group, C0 is strongly root compact by

3.1.12 of [H] and hence by the definition of strong root compactness (see 3.1.10 of [H]),

there exists a compact subset K 00 such that xn;m 2 K 00, for all m; n. This is a contradiction

to the fact that fxn;lðnÞg is divergent. Therefore A is relatively compact. This completes the

proof.

Let � 2 M1ðGÞ. For some � ¼ ðr1; l1; . . . ; rm; lmÞ, where m 2 N, and ri; li 2 N [ f0g
fixed, let �ð�Þ ¼ �r1 ~�

l1
. . .�rm ~�

lm
, where �0 ¼ ~�

0¼ �e. For any such �, the map � 7!�ð�Þ
on M1ðGÞ is continuous. Also, Gð�Þ ¼ [� supp�ð�Þ (over all possible choices of � as

above).

Proof of theorem 2.1. Without loss of generality we may assume that f� ng is convergent,

that is � n ! � (say). From the hypothesis, Gð�ð�ÞÞ is compact, and hence by Theorem 2.2,

�ðAÞ is relatively compact. It is enough to show that A is relatively compact as by

Theorem 3.6 of [S1], there exists x such that x� ¼ �x is embeddable.

Step 1. Let K be the maximal compact normal subgroup of G0, then K is characteristic in

G0 and hence normal in G. Since A is relatively compact if and only if its image on G=K

is relatively compact, without loss of generality we may assume that G0 has no nontrivial

compact normal subgroups. In particular, G0 is a Lie group. Let L be any open Lie

projective subgroup of G. Let M be any compact normal subgroup of L such that L=M is a

Lie group, then G0M ¼ G0 �M, a direct product, as both G0 and M are normal in L and

G0 \M ¼ feg. Moreover H ¼ G0M is an open subgroup in G. Since Ið�Þ is compact,

without loss of generality, we may assume that Ið�Þ normalizes H.

Step 2. Now we prove the assertion by induction on the dimension of the Lie group G0.

Let dim G0 ¼ 0. Then G is totally disconnected and the assertion follows from above.

Now suppose that for any k > 1, the assertion holds for G such that dim G0 < k. Now let

dim G0 ¼ k.

Step 3. Suppose that there exists a subsequence of f� ng, denote it by f� ng again, such

that f� ln
n g is divergent. By Theorem 1.2.21 of [H], there exists a sequence fxng � G, such

that f� ln
n xng and hence fxÿ1

n � knÿln
n g and fxÿ1

n � kn
n xng are relatively compact and we may

assume that fxng is divergent. Since �ðAÞ is relatively compact, f�ðxnÞg is relatively

compact in G=G0 and hence we may choose fxng to be in G0.

Without loss of generality we may assume that the subgroup N, as in the hypothesis, is

the nilradical. Suppose that N is trivial. Then G0 is a connected semisimple group.

Suppose that the center of G is trivial. Then G0 is an almost algebraic subgroup of

GLnðRÞ. By Propositions 4–6 of [M1], there exists a proper closed subgroup G0 of G0

such that given any relatively compact sequence fzng � G0, the limit points of fxnznxÿ1
n g

are contained in G0. Now since G0 � Gð�Þ, there exists an x 2 Gð�Þ \ ðG0 n G0Þ. Since

G0 n G0 is open in G0, there exists a set U which is open in G0 such that x 2 U,

U � G0 n G0 and U is compact. Then for some � ¼ ðr1; l1; . . . ; rm; lmÞ, we have that

�ð�ÞðUMÞ ¼ � > 0, as UM ¼ U �M is open in G, for a compact group M as above.

Since �ð� kn
n Þ ! �ð�Þ, �ð� kn

n ÞðUMÞ > �=2 for all large n. Now since fxÿ1
n � kn

n xng is

relatively compact, so is fxÿ1
n �ð� kn

n Þxng. Therefore, there exists a compact set K such that

ðxÿ1
n �ð� kn

n ÞxnÞðKÞ ¼ �ð� kn
n ÞðxnKxÿ1

n Þ > 1ÿ �=4 for all n. From the above equation

UM \ xnKxÿ1
n 6¼ ;, for all large n. Therefore, there exists a sequence fang � K, such that
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for all large n, xnanxÿ1
n ¼ unvn, where un 2 U and vn 2 M and hence xnanvÿ1

n xÿ1
n ¼ un.

For each n, put zn ¼ anvÿ1
n , then since xn; un 2 G0, zn 2 G0. Also fzng � KM is relatively

compact. Therefore the limit points of fxnznxÿ1
n ¼ ung belong to G0. But fung � U and

U � G0 n G0, a contradiction. Therefore, A is relatively compact.

Step 4. Now suppose G0 is a semisimple group with nontrivial center Z. Then Z is a

discrete group normal in G and Z ¼ Zn, for some n, as we have assumed that G0 has no

nontrivial compact subgroups normal in G. The action of G on Zn extends to the action of

G on Rn. Therefore, we can form a semidirect product G1 ¼ G �Rn. Let D ¼ fðz; zÞ j
z 2 Zng. Then D is normal in G1. Now G can be embedded as a closed subgroup in

G2 ¼ G1=D and G0
2 ¼ ðG0 �RnÞ=D. It is easy to see that the center C of G0

2 is

isomorphic to Rn. Also, C is normal in G2 and G0
2=C is a semisimple group with trivial

center. Let  : G2 ! G2=C be the natural projection. It is easy to see that Gð ð�ÞÞ
contains G0

2=C, the connected component in G2=C, and hence by the above argument,

 ðAÞ is relatively compact. Since H centralizes G0 in G, H0 ¼ H �Rn ¼ G0 �M �Rn

is open in G1 and hence H0=D is an open subgroup in G2 which centralizes C. Now the

assertion in this case follows from Proposition 2.6.

Step 5. Now suppose the nilradical N of G is nontrivial. Let C be the center of N. Since

G0 does not contain any compact subgroups normal in G, C is a vector group, i.e. C is

isomorphic to Rn, for some n. Since N is normal in G, so is C. Let  : G! G=C be the

natural projection. Then since dim G0=C < k, we have that  ðAÞ is relatively compact.

Now since C centralizes N �M, M as above, and supp� and N generate a subgroup

containing G0, the assertion follows from Proposition 2.6.

Remark. Theorem 2.1 continues to hold if the conditions in it are replaced by the

following: � kn
n ! �, the closed subgroup generated by supp� and N is whole of G (where

N is as in the hypothesis of the theorem), f� ng=G0 is relatively compact and for any limit

point � of it, Gð�Þ is compact in G=G0. For the proof, A=G0 is relatively compact by

Theorem 2.2 and the first three steps of the proof of the above theorem will apply word

for word. Also, for a normal subgroup C in steps 4 and 5 above, Zð�Þ \ C is a central

vector group in G by the above condition and hence by Proposition 2.5, the relative

compactness of A=C implies that of A=ðZð�Þ \ CÞ. Therefore A is relatively compact by

Lemma 3.2 of [S1]. The above variation of Theorem 2.1 generalizes Theorem 3.1 of [S1].

3. Limit theorems on discrete linear groups over R

Theorem 3.1. Let G be a discrete linear group over R: Let f� ng be a sequence in M1ðGÞ
such that � kn

n ! �, for some � 2 M1ðGÞ and some unbounded sequence fkng in N. Then

there exists x 2 I�, such that x� is embeddable.

Remark. So far, in the limit theorems on discrete groups, one had either the support

condition or the infinitesimality condition imposed (see [S4] and Theorem 2.2 above).

The above theorem gives a generalization of Theorems 1.5, 1.7(1) of [S4] for this special

class of discrete groups. It also generalizes Theorem 1.2 of [DM3]. One cannot get an

embedding of � itself or an element x as above to be infinitely divisible as in

G ¼ GLð1;ZÞ ¼ fÿ1; 1g, for x ¼ ÿ1, �x ¼ �2nþ1
x , for all n, but �x is clearly not infinitely

divisible and hence not embeddable.
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To prove the theorem, we need preliminary results.

Lemma 3.2. Let V be a finite dimensional vector space over R: Let f�ng be a divergent

sequence in GLðVÞ such that for some b > 0, jdetð�nÞj � b for all n. Then there exists a

proper subspace W of V such that the following holds: if f�ng � M1ðVÞ is such that

�n ! � and f�nð�nÞg is relatively compact, then supp� � W .

The proof of the Lemma is exactly same as the proof of Proposition 3.2 in [S2] using

Proposition 1.4 in [DM1]. We will not repeat it here.

PROPOSITION 3.3

Let G be a discrete linear group over R and let f�ng be a sequence converging to � in

M1ðGÞ. Let �n 2 T�n
for each n. Then there exist sequences fzng and fz0ng in Zð�Þ such

that f�nzng and fz0n�ng are relatively compact and all their limit points belong to T�.

Proof. There exists a sequence f�0ng in M1ðGÞ, such that �n�
0
n ¼ �0n�n ¼ �n ! �. By

Lemma 2.3, there exists a sequence fxng in G such that f�nxng and fxn�ng are relatively

compact and all its limit points are supported on supp�. Therefore, by Theorem 1.2.21 of

[H], fxÿ1
n �0ng, f�0nxÿ1

n g and hence fxÿ1
n �nxng and fxn�nxÿ1

n g are all relatively compact. If

� is a limit point of fxÿ1
n �0ng then there exists a limit point � of f�nxng such that �� ¼ �.

Since supp� � supp� ¼ supp � supp �, supp � � Gð�Þ. Therefore all the limit points of

fxÿ1
n �0ng and also of fxÿ1

n �nxng are supported on Gð�Þ.
Similarly, the limit points of fxn�nxÿ1

n g are also supported on Gð�Þ, and fxÿ1
n �ð�nÞxng

and fxn�ð�nÞxÿ1
n g are relatively compact and their limit points are supported on Gð�Þ, for

any � (where � and �ð�nÞ are defined as in § 2). Also, for any � > 0, there exists a

compact set K such that ðxÿ1
n �nxnÞðKÞ > 1ÿ � for all n. Now for any limit point 
 of

fxÿ1
n �nxng, 
ðK \ Gð�ÞÞ > 1ÿ �. Therefore it is easy to see that ðxÿ1

n �nxnÞðK 0Þ > 1ÿ �,
for all large n, where K 0 ¼ K \ Gð�Þ.

We know that G � GLðn;RÞ � Mðn;RÞ. Let V� be the vector space generated by

Gð�Þ in Mðn;RÞ. There exists a finite set fy1; . . . ; ymg � Gð�Þ such that fy1; . . . ; ymg
generates V�. Since Gð�Þ ¼ [�supp�ð�Þ, where � and �ð�Þ are as defined in § 2, there

exist �1; . . . ; �m such that yi 2 supp�ið�Þ, for each i. Therefore, as G is discrete, for

some � > 0, �ið�Þfyig > � for all i. Since �ið�nÞ ! �ið�Þ, there exists N such that

�ið�nÞfyig > �=2, for all n > N, for all i.

Now since fxÿ1
n �ið�nÞxng is relatively compact and all its limit points are supported on

Gð�Þ, arguing as above we can get a compact set K1 � Gð�Þ, such that ðxÿ1
n �ið�nÞxnÞ

ðK1Þ > 1ÿ �=2 for all i, for all large n. That is, �ið�nÞðxnK1xÿ1
n Þ > 1ÿ �=2 for all i, for

all large n. Therefore, yi 2 xnK1xÿ1
n , or xÿ1

n yixn 2 K1 � Gð�Þ � V�, for all large n. Since

V� is generated by fy1; . . . ; ymg, the above implies that xÿ1
n V�xn ¼ V�, for all large n.

Let ~G be the Zariski closure of G in GLðd;RÞ and let NðV�Þ ðresp. ZðV�ÞÞ be the

normaliser (resp. centraliser) of V� in ~G. Then ZðV�Þ and NðV�Þ are algebraic subgroups

of ~G and ZðV�Þ is normal in NðV�Þ. Now NðV�Þ acts on V� linearly and the map

� : NðV�Þ ! GLðV�Þ is a rational morphism, as in the proof of Theorem 3.2 in [DM2].

Therefore, the image of �, Imð�Þ is closed in GLðV�Þ and since ker � ¼ ZðV�Þ,
�0 : NðV�Þ=ZðV�Þ ! Im� is a topological isomorphism.

We know that fxng � NðV�Þ. Now if possible, suppose that fxng=ZðV�Þ is not

relatively compact. Going to a subsequence if necessary, without loss of generality, we
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may assume that fxng=ZðV�Þ is divergent; i.e. it has no convergent subsequence, and for

some � > 0, either j det �0ðxnZðV�ÞÞj ¼ j det �ðxnÞj > � or j det �0ðxÿ1
n ZðV�ÞÞj > �.

Suppose j det �0ðxnZðV�ÞÞj ¼ j det �ðxnÞj > � for all n. By Lemma 3.2, there exists a

proper subspace W of V� such that supp�ð�Þ � W for all �, as �ð�nÞ ! �ð�Þ and

fð�0ðxnZðV�ÞÞÞð�ð�nÞÞ ¼ xn�ð�nÞxÿ1
n g is relatively compact. This implies that Gð�Þ ¼

[�supp�ð�Þ � W , a contradiction as Gð�Þ generates V� and W is a proper subspace.

Now suppose j det �0ðxÿ1
n ZðV�ÞÞj > �. Now using the fact that for every �,

fð�0ðxÿ1
n ZðV�ÞÞÞð�ð�nÞÞ ¼ xÿ1

n �ð�nÞxng is relatively compact and replacing fxng by

fxÿ1
n g in the above argument we arrive at a contradiction. Therefore, fxng=ZðV�Þ is

relatively compact.

Clearly, NðV�Þ \ G normalizes ZðV�Þ. Let H ¼ ðNðV�Þ \ GÞZðV�Þ and let x 2 H.

Then xðV� \ GÞxÿ1 ¼ V� \ G. Let G� be the closed subgroup generated by V� \ G in G.

Then Gð�Þ � G� and x normalizes G�. Therefore H is a closed subgroup (in ~G)

normalizing G�. Since G� is discrete, the connected component H
0

of H, centralizes G�

and hence H
0 � ZðV�Þ � H as V� is generated by Gð�Þ and Gð�Þ � G�. Since H

0
is

open in H, it follows that H is open in H. That, is H ¼ H and H is a closed subgroup. This

implies that ððNðV�Þ \ GÞZðV�ÞÞ=ZðV�Þ is isomorphic to ðNðV�Þ \ GÞ=ðZðV�Þ \ GÞ.
Therefore fxng=Zð�Þ is relatively compact as ZðV�Þ \ G ¼ Zð�Þ. Therefore

xn ¼ znan ¼ anz0n, for some relatively compact sequence fang in G and some sequences

fzng and fz0ng in Zð�Þ. Also, since f�nxng and fxn�ng are relatively compact, so are

f�nzng and fz0n�ng, and all their limit points belong to T� by Lemma 2.4.

Proof of Theorem 3.1. Since � kn
n ! �, by Proposition 3.3, for any m, there exists a se-

quence fzm;ng � Zð�Þ such that f�m
n zm;ng is relatively compact. Passing to a subsequence

if necessary, without loss of generality, we may assume that f� nz1;ng is convergent,

with the limit �. Then � 2 T� by Lemma 2.4. Also, for any m, f�m;n ¼ zÿ1
m;n� nzmþ1;ng

is relatively compact and its limit points are of the form z� ¼ �z0, for some z; z0 2 Zð�Þ
(cf. Lemma 2.4).

Suppose for any fixed m, the limit points of f�m
n zm;ng are of the form �mzm for some

zm 2 Zð�Þ. Then combining the above two statements, we get that the limit points of

f�mþ1
n zmþ1;ng have the form �mzmz� ¼ �mþ1zmþ1, for some zmþ1 2 Zð�Þ. By induction,

for any m, the limit points of f�m
n zm;ng are of the form �mzm, for some zm 2 Zð�Þ.

Moreover, by Lemma 2.4, �m 2 T�, as it is a limit point of f�m
n zm;nzÿ1

m g, for each m. Also

supp � � Nð�Þ.
Now by Proposition 3.3, f� ng=Zð�Þ is relatively compact. Therefore Gð�ÞZð�Þ=Zð�Þ

is compact and hence finite of order (say) s, as G is discrete. Let x 2 supp �, then

xs 2 Zð�Þ. Let � ¼ � sz ¼ z� s for z ¼ xÿs 2 Zð�Þ. Then e 2 supp � and �n 2 T� for all n.

Therefore by Theorem 2.4 of [S4], supp � � Ið�Þ and, furthermore, �n ! !H , where

H ¼ Gð�Þ � Ið�Þ. Hence supp � � xH \ Hx. Therefore x� ¼ �� ¼ �� ¼ �x, and hence

x 2 I�, for all x 2 supp �.

Now we show that � has a shift which is infinitely divisible. Let l 2 N be fixed. Let

an ¼ ½kn=l� and bn ¼ kn ÿ lan. Then for any, m � l, �man
n � knÿman

n ! � and hence there

exist sequences fz0m;ng in Zð�Þ such that f�man
n z0m;ng are relatively compact. Arguing as

above, we get that the limit points of f� lan
n z0l;ng are of the form �l

lz, for some z 2 Zð�Þ and

some limit point �l of f� an
n z01;ng. Let r 2 N be fixed. Since an !1, for large n such that

an > r, � an
n z01;n ¼ � r

nzr;n
n, where f
n ¼ zÿ1
r;n�

anÿr
n z01;ng which is relatively compact and

hence �l ¼ � r
 for some 
. Also � an
n z01;n ¼ � anÿr

n � r
nz01;n. By Proposition 3.3, there exists

fyng in Zð�Þ such that f� anÿr
n yng is relatively compact and hence so is fyÿ1

n � r
nz01;ng
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and all its limit points are of the form z0� r for some z0 2 Zð�Þ (cf. Lemma 2.4). That

is, �l ¼ 
0� r, for some 
0 and hence for � ¼ � sz ¼ z� s defined as above, �l ¼ �r�0

¼ �00�r for some �0; �00. Since this is true for all r, !H 2 T�l
. That is, �l!H ¼ !H�l ¼ �l

for all l.

For each n, let zn ¼ ðz0l;nÞ
ÿ1

. Then the sequence fzn�
bn
n g is relatively compact. Clearly,

bn < l for all n. Let r < l be such that r ¼ bnk
for infinitely many nk. Then clearly the

limit points of fzn�
bn
n g are contained in fg� r j r < l; g 2 Zð�Þg and hence if �l is any

such limit point then supp �l � Gð�ÞZð�Þ � I� and �l!H ¼ xl!H (resp. !H�l ¼ !Hxl),

where xs
l 2 Zð�Þ, where s is the cardinality of Gð�ÞZð�Þ=Zð�Þ.

Combining the above we get that � ¼ �l
l�l ¼ �l

l!H�l ¼ �l
lxlð¼ xl�

l
lÞ for some

xl 2 supp �l � I�, for each l. That is, � is weakly infinitely divisible. As �l 2 T�,

supp �l � ylGð�Þ for some yl 2 supp�l � Nð�Þ. Since for each l, � ¼ �l
lxl and xl 2 Gð�Þ

Zð�Þ, we get that yl
l 2 Gð�ÞZð�ÞGð�Þ. Hence ðylÞls 2 Gð�ÞZð�Þ, as Gð�ÞZð�Þ=Zð�Þ is a

finite group of order s. Since T�=Zð�Þ, is relatively compact, arguing as in Theorem 3.1 of

[DM3], we get that F ¼ T�=Gð�ÞZð�Þ is finite and it obviously consists of dirac

measures. Also, the above implies that the image of �l on G0 ¼ Nð�Þ=Gð�ÞZð�Þ is �yl
,

where yl ¼ ylGð�ÞZð�Þ in G0 and yl
ls ¼ e, the identity in G0. Let B ¼ f
 2 F j 
r ¼ �e

for some r 2 Ng. Since F is finite, so is B and there exists an element of maximal order

in B; let i be the maximal order. Then 
i! ¼ �e for all 
 2 B. Since the image of �l on

Nð�Þ=Gð�ÞZð�Þ belongs to B, we have that supp�i!
l � Gð�ÞZð�Þ, for all l. Now for each

m, let �m ¼ �i!
i!m, where � ¼ �i!m

i!mx, for some x 2 I�. Then � ¼ �m
mx and supp �m � Gð�Þ

Zð�Þ. Also, since supp �m � yGð�Þ for some y 2 supp �m, y ¼ zy0 ¼ y0z, for some

y0 2 Gð�Þ; z 2 Zð�Þ. Then �0m ¼ zÿ1�m ¼ �mzÿ1 is supported on Gð�Þ. Also, � ¼ �m
mx ¼

ð�0mÞ
m

zmx ¼ ð�0mÞ
m

x0, where x0 ¼ zmx 2 I� \ Gð�Þ as supp �0m � Gð�Þ. That is, � is

weakly infinitely divisible on Gð�Þ. Moreover, from the above equation, we have that

f�0mg=Z� is relatively compact, where Z� ¼ Gð�Þ \ Zð�Þ is the center of Gð�Þ (cf.

[DM3], Theorem 2.1). In fact, f�0mzmg is relatively compact for some sequence fzmg in

Z�. Let 
0m ¼ �0mzm. Then ð
0mÞ
m ¼ ð�0mÞ

m
zm

m and hence � ¼ ð
0mÞ
m

xm for some xm 2
I� \ Gð�Þ, for all m. Now if 
0 is a limit point of f
0mg then ð
0Þn 2 T� for all n and hence,

as earlier, supp 
0 � xIð�Þ ¼ Ið�Þx, for some x 2 I� \ Gð�Þ. Since ðI� \ Gð�ÞÞ=Z� is

finite (cf. [DM3], Theorem 2.1), if a is its cardinality then supp ð
0Þa � zIð�Þ ¼ Ið�Þz for

some z 2 Z�. Therefore limit points of fð
0mÞ
ag are supported on zIð�Þ ¼ Ið�Þz, z 2 Z�.

Let 
m ¼ ð
0amÞ
a
. Then � ¼ 
m

mxam, where xam 2 I� \ Gð�Þ. Let f
cm
g be a convergent

subsequence of f
m!g converging to 
. Then from above, supp 
 � zIð�Þ ¼ Ið�Þz for

some z 2 Z�. Therefore, for each m, replacing 
cm
by 
cm

zÿ1 (and using the same nota-

tion), we get that � ¼ 
cm
cm

ym, ym 2 I� \ Gð�Þ and 
cm
! 
 and Gð
Þ � Ið�Þ, which is

compact. Also fymg=Z� is finite, and hence passing to a subsequence again, we may

assume that ym ¼ az0m ¼ z0ma, where a 2 I� \ Gð�Þ and z0m 2 Z�. Therefore,


cm
cm

z0m ¼ aÿ1� ¼ �aÿ1. Now applying Theorem 2.2, we get that A ¼ f
n
cm
j n � cmg

and fz0mg are relatively compact. Now if � is a limit point of f
cm
cm
g then aÿ1� ¼ �z0 for

some z0 2 Z�. Since for all m, cm ¼ lm!, where lm !1, any n divides cm for all large m.

Also since A is relatively compact, it is easy to see that � has an n-th root in A, namely,

any limit of the sequence f
cm=n
cm
g. Therefore, y� ¼ � is infinitely divisible in the compact

set A, where y ¼ ðz0Þÿ1
aÿ1 2 I� \ Gð�Þ. Now as in the proof of Theorem 3.1.32 of [H],

y� is rationally embeddable, i.e. there exists a homomorphism f : Q�þ ! M1ðGÞ such that

f ð�0; 1½\Q�þÞ � A is relatively compact and f ð1Þ ¼ �. Now since G is discrete, any

compact connected subgroup of G has to be feg. Therefore, as in the proof of Theorem

3.5.4 of [H], f extends to Rþ and hence y� is embeddable.
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4. Infinitesimally divisible measures on algebraic groups

We first recall that an element s, in a Hausdorff semigroup S with identity e, is said to be

infinitesimally divisible if for every neighbourhood U of e in S, s has a U-decomposition,

i.e. there exist s1; . . . ; sn 2 U such that si’s commute and s ¼ s1 � � � sn. The following

theorem generalizes Theorem 1.2 of [S3] in a certain sense.

Theorem 4.1. Let G be a real algebraic group and let � 2 M1ðGÞ be infinitesimally

divisible in M1ðGÞ. Then there exist a closed semigroup S � M1
HðGÞ, with identity !H for

some compact subgroup H of Ið�Þ, and an equivalence relation �, such that � 2 S and if

� : S! S� ¼ S= � is the natural map then �ð�Þ is bald and infinitesimally divisible in S�,
and T�ð�Þ is compact and associatefree in S�. Moreover, if G is connected and nilpotent

then � is embeddable.

Before proving the above theorem, we define an equivalence relation on a certain kind

of subsemigroup of M1ðGÞ, for any locally compact (Hausdorff) group G. For a

� 2 M1ðGÞ, let S� be the closed subsemigroup generated by T� in M1ðGÞ. Since

T� � M1ðNð�ÞÞ, S� � M1ðNð�ÞÞ. In fact, for any � 2 T�, supp � � xGð�Þ, for some

x 2 supp � � Nð�Þ. Therefore, it easily follows that for any � 2 S�, supp � � xGð�Þ, for

any x 2 supp � � Nð�Þ. We also know that Zð�Þ � T� � S� and Zð�ÞT� ¼ T�Zð�Þ ¼ T�.

Let us define an equivalence relation ‘�’ on S� as follows: for any

�; � 2 S�; � � � if � ¼ z� for some z 2 Zð�Þ:

For f�ng; f�ng � S�, suppose �n � �n, i.e. �n ¼ zn�n for some zn 2 Zð�Þ, for each n.

Now if �n ! � and �n ! �, then we have that fzng is relatively compact and for any

limit point z of it, z 2 Zð�Þ and � ¼ z�. Therefore, � � �.

Now for � 2 S�, for any fixed x 2 supp�, supp ð�xÿ1Þ � Gð�Þ. For any z 2 Zð�Þ,
z0 ¼ xzxÿ1 2 Zð�Þ as Zð�Þ is normal in Nð�Þ and hence

�z ¼ ð�xÿ1Þxz ¼ ð�xÿ1Þz0x ¼ z0ð�xÿ1Þx ¼ z0�:

Similarly, one can also show that z� ¼ �z00, for some z00 2 Zð�Þ.
Now for i 2 f1; 2g, �i; �i 2 S�, let �i � �i, i.e. there exist zi 2 Zð�Þ, such that �i ¼ zi�i,

Then from the above equation, �1�2 ¼ z1�1z2�2 ¼ z1z02�1�2 for some z02 2 Zð�Þ. That is,

�1�2 � �1�2. Let  : S� ! S�� ¼ S�= � be the natural projection. Then  is a continuous

open homomorphism and it is also easy to show that S�� is Hausdorff.

In case of a real algebraic group G, we define an analogous equivalence relation �0
with respect to Z0ð�Þ, the connected component of the identity in Zð�Þ, i.e. for �; � 2 S�,

� �0 � if � ¼ z�, for some z 2 Z0ð�Þ. It is easy to verify as above that this is an

equivalence relation using the fact that Z0ð�Þ is normal in Nð�Þ.

Proof of Theorem 4.1. Let G be a real algebraic group and let � be infinitesimally

divisible in M1ðGÞ. Since G is metrizable, so is M1ðGÞ.

Step 1. Let S�, �0, S�� and  : S� ! S�� be as above. Clearly, S� and S�� are second

countable and  ð�Þ is infinitesimally divisible in S��.

Since G is algebraic, by Theorem 3.2 of [DM2], T�=Z0ð�Þ is relatively compact.

Clearly,  ðT�Þ � T ð�Þ. Now for any f�ng � T�, there exists a sequence fzng � Z0ð�Þ,
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such that f�nzng is relatively compact and hence f ð�nÞ ¼  ð�nznÞg is also relatively

compact. Since T�Zð�Þ ¼ T�, f�nzng � T� and the above implies that  ðT�Þ is compact

in S��.

Since � is infinitesimally divisible so is  ð�Þ in S��. We can choose a neighbourhood

basis fUigi2N of �e in M1ðGÞ. For any i, there exist �i1; . . . ; �ini
2 Ui \ T�, such that �i js

commute and � ¼ �i1 � � ��ini
. Therefore  ð�Þ ¼  ð�i1Þ � � � ð�ini

Þ is a  ðUiÞ-decom-

position of  ð�Þ in  ðT�Þ. Let � ¼ ð�i jÞni

i2N; j¼1 and  ð�Þ ¼ ð ð�i jÞÞni

i2N; j¼1. Then �
(resp.  ð�Þ) is a commutative infinitesimal triangular system in S� (resp. in S��Þ
converging to � (resp.  ð�Þ). In fact, � ¼ �ni

j¼1�i j and  ð�Þ ¼ �ni

j¼1 ð�i jÞ.

Step 2. Since I0
� is open in I�, one can choose U and W to be neighbourhoods of I0

�J�
such that U ¼ f� 2 M1ðGÞ j �ðI0

�Ið�ÞVÞ > �g, for some � > 0, U \ I�J� ¼ I0
�J�, for

some relatively compact neighbourhood V of e in G0 and WW � U. Now let � 2 S�\
U nW be such that  ð�nÞ 2 T ð�Þ in S�� for all n, then � ¼ �n� n ¼ � 0n�n, for some � n; �

0
n

in S� for all n. Then the concentration functions of both � and ~� do not converge to zero.

Since � commutes with �, as in the proof of Theorem 2.4 of [S4], supp � � xIð�Þ ¼
Ið�Þx, for some x 2 supp� � I� \ U. i.e. � 2 I0

�J�, a contradiction as � 62 W . Now as in

the proof of Lemma 2.5 in [S4], there exists n such that for any m � n,  ð�Þ cannot be

expressed as  ð�Þ ¼  ð�1Þ � � � ð�mÞ ð�Þ, where  ð�jÞs commute with each other and

also with  ð�Þ for any �j 2 S� \ U nW, for all j.

Since I� � T�,  ðI�Þ is compact. Let K ¼  ðI0
�J�Þ. Then K is a compact semigroup

and  ðU \ S�Þ and  ðW \ S�Þ are neighbourhoods of K in S��.

Since  ð�Þ is a limit of a triangular system as above, as in Lemma 2.6 of [S4], given

any neighbourhood U0 of K in S��, one can choose small neighbourhoods U and W as

above such that  ðU \ S�Þ � U0 and show that there exists a U0-decomposition of  ð�Þ
in  ðT�Þ, namely,  ð�Þ ¼  ð�1Þ � � � ð�nÞ, where each  ð�iÞ 2 U0 is a limit of a sub-

system of  ð�Þ.

Step 3. Let fU0ng be a neighbourhood basis of K in S�� such that U0nþ1 � U0n for all n and

\n2NU0n ¼ K. Now let  ð�Þ ¼ 
1 � � � 
n be a U01-decomposition of  ð�Þ in  ðT�Þ
obtained as above. Given any U0k-decomposition of  ð�Þ as  ð�Þ ¼ � 1 � � � � r, � l ¼ �j2Jil

 ð�kðiÞjÞ, where [lJil ¼ f1; . . . ; nkðiÞg we get U0kþ1-decomposition of each � l in such a

way that � l ¼ � l1 � � � � lnl
, � lm 2 U0kþ1, where � lm� pq ¼ � pq� lm, for all l;m; p; q, and all

the � lm are limits of a subsystem of ð ð�ðkþ1ÞðiÞjÞÞ, where fðk þ 1ÞðiÞg is a subsequence of

fkðiÞg. Clearly  ð�Þ ¼ �l;m� lm is a U0kþ1-decomposition for  ð�Þ.
For each k 2 N, let Mk be the subsemigroup of S�� generated by U0k-decomposition

obtained in above manner. Then each Mk is abelian, � 2 Mk and Mk � Mkþ1. Let

M ¼ [kMk and let K 0 ¼ K \M ¼  ðI0
�J�Þ \M. Then M (resp. K 0) is a closed (resp.

compact) abelian semigroup. Also, given any neighbourhood U0 of K 0 in M, there exists a

neighbourhood U00 of K in S��, such that U00 \M � U0. Hence � has a U0-decomposition

in M for every neighbourhood U0 of K 0.

Step 4. We now show that T ð�Þ is compact in M. Let U, W and V be as in Step 2. Let

� 2 S� be such that  ð�Þ 2 T ð�Þ in M. Now � ¼ ��0 ¼ �00� for some �0; �00 2 S�.

Arguing as in Step 2, there exists n (which does not depend on the choice of  ð�Þ 2 T ð�Þ)
such that for any m � n,  ð�Þ cannot be expressed as  ð�Þ ¼  ð�1Þ � � � ð�mÞ ð�Þ in M

for �j 2 S� \ U nW, for all j, and  ð�jÞs commute and they also commute with  ð�Þ.
Here,  ð�Þ is a limit of a commutative K 0-infinitesimal triangular system in M, i.e.
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 ð�Þ ¼ limi!1�ni

j¼1 ð� i jÞ for some � i j 2 S�. Again arguing as in Step 2,  ð�Þ ¼
 ð� 1Þ � � � ð� nÞ for  ð� iÞ 2 T ð�Þ \  ðU nWÞ. That is,  ð�Þ 2 ð ðU nWÞn. Since n does

not depend on the choice of  ð�Þ in T ð�Þ, T ð�Þ � ð ðU nWÞÞn. Hence it is easy to show

as in the proof of Lemma 2.1 of [S4] that T ð�Þ is relatively compact.

Step 5. Let J ¼  ðJ�Þ \M. Then J is a compact semigroup and there exists a maximal

idempotent h1 in J. Then J0 ¼ Jh1 is a group. Let H ¼ fx 2 Ið�Þ j  ðxÞh1 2 J0g. It is easy

to check that H is a compact group. Let h ¼ !H and let h� ¼  ð!HÞ. Then Jh� ¼ J0h� ¼
h� and K 00 ¼ K 0h� ¼ ð ðI0

�Þ \MÞh�, which is a compact group. Let M� ¼ Mh�. M� is a

closed abelian semigroup with identity h� and K 00 � M� � M. Now if U is a neigh-

bourhood of K 00 in M� then there exists a neighbourhood U0 of K 0 in M such that

U 0h� � U, and hence if  ð�Þ ¼ �1 � � ��n is a U0-decomposition of  ð�Þ in M, then since

� ¼ �h ¼ �hn,  ð�Þ ¼ �1 � � ��n ðhnÞ and hence  ð�Þ ¼ �1h� � � ��nh� is a U-decom-

position of  ð�Þ in M�. Now we define an equivalence relation �0 on M� as follows: For

�; � 2 M�; � �0 � if � ¼ k� for some k 2 K 00:

Let S� ¼ M�= �0 and let � : M� ! S� be the natural projection and let � ¼ � �  . Then

S� is a Hausdorff abelian semigroup with identity �ðh�Þ, �ÿ1ðS�Þ ¼ S is a closed

semigroup in M1
HðGÞ, the relation � is defined by � on S, each �ð�Þ in T�ð�Þ is inifinite-

simally divisible in S� and by step 4, T�ð�Þ is compact. Now if a; b 2 T�ð�Þ are associates

then a ¼ a0b and b ¼ b0a. Let �; �0 2 S1 be such that �ð�Þ ¼ b and �ð�0Þ ¼ b0 and

�ð
Þ ¼ a0, then since b ¼ b0a0b,  ð�Þ ¼ k ð�0Þ ð
Þ ð�Þ for some k 2 K 00 and hence

 ð�0Þn 2 T ð�Þ for all n. As in step 2, supp �0 � xIð�Þ ¼ Ið�Þx, for some x 2 I�, and since

�ð�0Þ ¼ b0 is infinitesimally divisible, it is easy to show that x 2 I0
�. Therefore b0 is

identity in S� and b ¼ a, i.e. T�ð�Þ is associatefree.

Now if � 2 S� be such that �ð�Þ 2 T�ð�Þ is an idempotent then  ð�Þn 2 T ð�Þ for all n

and hence as in step 2, supp� � xIð�Þ ¼ Ið�Þx for some x 2 I�. Since �ð�Þ is also in-

finitesimally divisible in S� one can easily show that x 2 I0
� and � ¼ x!H0 ¼ !H0x for some

H 0 � Ið�Þ and hence  ð�Þ 2 K 00 and hence �ð�Þ is identity in S�. Therefore �ð�Þ is bald.

Step 6. Now let G be connected and nilpotent and let Z be the center of G. Then G=Z is

simply connected and hence so are NðZð�ÞÞ=Z and NðZð�ÞÞ=Zð�Þ, where NðZð�ÞÞ is the

normaliser of Zð�Þ, and both of them are connected. Therefore, I� ¼ Zð�Þ as I�=Zð�Þ is

compact. Hence, in the above equation K 00 ¼ h� and �0 is a trivial relation, i.e. S� ¼ M�

and also � ¼  .

Now we show that for s 2 T ð�Þ n  ðhÞ in S�, there exists a continuous s-norm fs on Ts

(in S�) such that fsðsÞ > 0, (an s-norm on Ts (in S�) is a map fs : Ts ! Rþ which is

continous at the identity and it is a partial homoporphism, i.e. fsðs1s2Þ ¼ fsðs1Þ þ fsðs2Þ if

s1; s2; s1s2 2 Ts). This would imply the embedding of  ð�Þ in a continuous real one-

parameter semigroup f
tgt2Rþ
in S� (cf. [S3], Theorem 2.3 or [S4], Theorem 4.1) and in

particular, � ¼ �n
nxn xn 2 Zð�Þ ¼ Z0ð�Þ.

Let � 2 S be such that  ð�Þ ¼ s. If � is not a translate of an idempotent then as in the

proof of Theorem 5.1 in [S3], there exists a continuous �-norm f� on S such that

f�ð�Þ > 0, (it is easy to see that one does not need the underlying semigroup to be abelian

in that proof). Moreover, if  ð� 1Þ ¼  ð� 2Þ then � 1 ¼ � 2x for some x 2 Zð�Þ. Then

� 1 ~� 1 ¼ � 2 ~� 2 and f�ð� 1Þ ¼ f�ð� 2Þ (see the proof of Theorem 5.1 in [S3]). Therefore, we

can define a s-norm fs on Ts in S� such that fsð ð�ÞÞ ¼ f�ð�Þ. Now if � is indeed a

translate of an idempotent, i.e. � ¼ x!K ¼ !Kx for some compact group K � Ið�Þ � Z,
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then clearly x 2 I� ¼ Zð�Þ and hence s ¼  ð�Þ is an idempotent. Now since  ð�Þ is bald

s ¼  ðhÞ, a contradiction.

The embeddability of  ð�Þ in particular implies that  ð�Þ ¼  ð�nÞn, and hence

� ¼ �n
nxn, xn 2 Zð�Þ for all n. Therefore, supp�n

n � Gð�ÞZð�Þ. Here, supp�n � ynGð�Þ
for some yn 2 supp�n � Nð�Þ. Therefore, yn

n 2 Gð�ÞZð�Þ � ~Gð�ÞZð�Þ, where ~Gð�Þ is

the Zariski closure of Gð�Þ. Since Nð�Þ=~Gð�ÞZð�Þ is simply connected, yn 2 ~Gð�ÞZð�Þ
for all n. That is, for each n, supp�n � ~Gð�ÞZð�Þ and hence �n ¼ �nzn for some

zn 2 Zð�Þ and supp �n � ~Gð�Þ and � ¼ �n
nz0n, where z0n ¼ zn

nxn 2 Zð�Þ. Now we have that

z0n 2 C ¼ ~Gð�Þ \ Zð�Þ, which is the center of ~Gð�Þ. Therefore, CZ � Zð�Þ is an abelian

algebraic subgroup containing the center Z of G. Therefore CZ is connected, and hence it

is divisible. In particular, each z0n is infinitely divisible in CZ, and hence � is infinitely

divisible on G which is a connected nilpotent Lie group, therefore � is embeddable

(cf. [BM]).

Remark. As remarked in [S4], Theorem 4.1 also holds for � 2 M1
HðGÞ which is

infinitesimally divisible in M1
HðGÞ.

We now state the following theorem for maximally almost periodic groups without a

proof. A locally compact group G is said to be maximally almost periodic if its

irreducible finite dimensional unitary representations separate points of G.

Theorem 4.2. Let G be a maximally almost periodic first countable group. Let � be a

commutative infinitesimal triangular system of probability measures converging to � in

M1ðGÞ. Then there exists an x 2 G0 such that x� ¼ �x is embeddable.

If G is as above then there exists a normal vector subgroup V , such that G0=V is

compact and V centralises an open subgroup of finite index in G (cf. [RW], Theorems

1, 2]. The above theorem can be proven using the above fact, Proposition 2.5, Lemma

2.4, Proposition 3.3 and Theorem 4.2 of [S4] and the techniques developed above.
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