Limits of commutative triangular systems on locally compact groups

RIDDHI SHAH

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

MS received 22 December 1999; revised 28 July 2000

Abstract. On a locally compact group G, if $\nu_n^{k_n} \to \mu$, $(k_n \to \infty)$, for some probability measures ν_n and μ on G, then a sufficient condition is obtained for the set $A = \{\nu_n^m | m \le k_n\}$ to be relatively compact; this in turn implies the embeddability of a shift of μ . The condition turns out to be also necessary when G is totally disconnected. In particular, it is shown that if G is a discrete linear group over \mathbf{R} then a shift of the limit μ is embeddable. It is also shown that any infinitesimally divisible measure on a connected nilpotent real algebraic group is embeddable.

Keywords. Embeddable measures; triangular systems of measures; infinitesimally divisible measures; totally disconnected groups; real algebraic groups.

1. Introduction

Commutative triangular systems of probability measures on locally compact groups have been studied extensively and recently the embedding of the limit μ (or a translate $x\mu$, $x \in G$) have been shown on a large class of groups under certain conditions like infinitesimality of triangular system and/or 'fullness' of the limit μ (see [S4] for the latest results and the literature cited therein for earlier results). Generalizing the techniques developed in [S3,S4], we extend our earlier result to some particular triangular systems on algebraic groups. We also discuss special triangular systems of identical measures, i.e. limit theorems. In particular if $\nu_n^{k_n} \rightarrow \mu$ on *G* then we give a sufficient condition for the set $A = {\nu_n^m \mid m \leq k_n}$ to be relatively compact; this in turn would imply the embeddability of a shift of the limit μ . The condition turns out to be also necessary if *G* is totally disconnected. We hereby generalize our earlier results on limit theorems on Lie groups to general locally compact groups. We also show the embedding of a shift of the limit μ if *G* is a discrete linear group over **R**.

Let *G* be a locally compact (Hausdorff) group and let $M^1(G)$ be the topological semigroup of probability measures with weak topology and convolution as the semigroup operation. Let μ, ν be any measures in $M^1(G)$. Let the convolution product of μ and ν be denoted by $\mu\nu$. For any compact subgroup *H* of *G* let ω_H denote the normalized Haar measure of *H*. Let $M_H^1(G) = \omega_H M^1(G) \omega_H$, then $M_H^1(G)$ is a closed subsemigroup of $M^1(G)$ with identity ω_H . For any $x \in G$, let δ_x denote the Dirac measure at *x* and let $x\mu = \delta_x \mu$, (similarly, $\mu x = \mu \delta_x$). Let $I_\mu = \{x \in G \mid x\mu = \mu x\}$ and let $I(\mu) = \{x \in G \mid x\mu = \mu x = \mu\}$, then I_μ (resp. $I(\mu)$) is a closed (resp. compact) subgroup of *G*. Let $J_\mu =$ $\{\lambda \in M^1(G) \mid \lambda\mu = \mu\lambda = \mu\}$. Clearly, J_μ is a compact semigroup and for any $\lambda \in M^1(G)$, $\lambda \in J_\mu$ if and only if supp $\lambda \subset I(\mu)$. Let $G(\mu)$ be the smallest closed subgroup of *G* containing supp μ . Let $N(\mu)$ (resp. $Z(\mu)$) be the normalizer (resp. centralizer) of $G(\mu)$ in *G*. Let $\tilde{\mu}$ denote the *adjoint of* μ , defined by $\tilde{\mu}(B) = \mu(B^{-1})$, for all Borel subsets *B* of *G*. μ is said to be *symmetric* if $\mu = \tilde{\mu}$. Let G^0 denote the connected component of the identity in *G*. For a set $A \subset M^1(G)$ and a normal subgroup $C \subset G$, we denote $A/C = \pi(A)$, where $\pi : G \to G/C$ is the natural projection.

A measure $\mu \in M^1(G)$ is said to be *infinitely divisible* (resp. *weakly infinitely divisible*) if for every $n \in \mathbb{N}$, there exists $\mu_n \in M^1(G)$ such that $\mu_n^n = \mu$ (resp. $\mu_n^n x_n = \mu$ for some $x_n \in G$); and it is said to be *embeddable* if there exists a continuous one-parameter convolution semigroup $\{\mu_t\}_{t\geq 0}$ such that $\mu_1 = \mu$. Since we aim to prove the embeddability of a given measure under various conditions, the reader is referred to [M2], a survey article on the embedding problem of infinitely divisible measures.

Let *S* be a Hausdorff semigroup with identity *e* and let $s \in S$. Let T_s denote the set of two sided factors of *s*, that is, $T_s = \{t \in S \mid tr = rt = s \text{ for some } r \in S\}$. Elements $s, t \in S$ are said to be *associates* if *s* and *t* are two sided factors of each other, i.e. $s \in T_i$ and $t \in T_s$. A subset *A* of *S* is said to be *associatefree* if $s, t \in A$ are associates then s = t. An element *h* in *S* is said to be an *idempotent* if $h^2 = h$. An element *s* is said to be *bald* (in *S*) if *e* is the only idempotent contained in T_s . For a subset *A* of *S*, a decomposition of *s* as $s = s_1 \cdots s_n$, for some $n \in \mathbb{N}$, where $s_i \in A$ and $s_i s_j = s_j s_i$ for all *i*, *j*, is called an *Adecomposition of s*. An element *s* (in *S*) is said to be *infinitesimally divisible* if *s* has a *U*decomposition for every neighbourhood *U* of *e* in *S*. A set $\Delta = \{s_{ij} \in S \mid i \in \mathbb{N}, 1 \leq j \leq n_i, n_i \to \infty$ as $i \to \infty\}$ is said to be commutative if for every fixed *i*, s_{ij} commute with each other, it is said to be *infinitesimal* if as $i \to \infty$, $s_{ij} \to e$ uniformly in *j*. We say that Δ converges to μ if $s_{i1} \cdots s_{in_i} = s_i \to \mu$.

In § 2, we prove a limit theorem for general locally compact groups, (see Theorem 2.1). In § 3, we show that if $\nu_n^{k_n} \to \mu$, $(k_n \to \infty)$, on a discrete linear group over **R**, then $x\mu$ is embeddable for some $x \in G$ (see Theorem 3.1). In § 4, we show that any infinitesimally divisible probability measure μ on a connected nilpotent real algebraic group is embeddable, (more generally see Theorem 4.1).

2. Limit theorems on locally compact groups

Theorem 2.1. Let G be a locally compact group and let $\pi : G \to G/G^0$ be the natural projection. Let $\{\nu_n\}$ be a relatively compact sequence in $M^1(G)$ such that for any limit point ν of it, $G(\pi(\nu))$ is a compact group in G/G^0 and $\nu_n^{k_n} \to \mu$ for some $\mu \in M^1(G)$ and for some unbounded sequence $\{k_n\} \subset \mathbb{N}$. Suppose that for some connected nilpotent normal subgroup N of G, the closed subgroup generated by $\sup \mu$ and N contains G^0 . Then the set $A = \{\nu_n^m \mid m \leq k_n\}$ is relatively compact and there exists $x \in I_{\mu}$ such that $x\mu$ is embeddable.

Remarks. (1) The above theorem generalizes Theorem 1.7(1) of [S4]. (2) If G is totally disconnected then $G^0 = \{e\}$ and hence the above theorem implies that if $\nu_n^{k_n} \to \mu$ and if $\{\nu_n\}$ is relatively compact and for any limit point ν of it, $G(\nu)$ is compact then A is relatively compact. Conversely, if A is relatively compact then so are $\{\nu_n\}$ and $\{\nu_n^{k_n}\}$, and for any limit point ν of $\{\nu_n\}$, $G(\nu)$ is compact as $\{\nu_n\} \subset A$. Thus, for totally disconnected groups we get a necessary and sufficient condition for the set A as above to be relatively compact.

We first prove a more general theorem for totally disconnected locally compact groups.

Theorem 2.2. Let G be a totally disconnected locally compact group and let $\{\nu_n\} \subset M^1(G)$ be such that $\nu_n \to \nu$ where $G(\nu)$ is compact and $\nu_n^{k_n} \nu'_n \to \mu$ for some sequence $\{\nu'_n\}$ in $M^1(G)$ such that $\nu_n \nu'_n = \nu'_n \nu_n$ for all n. Then given any neighbourhood U of e and an $\epsilon > 0$ there exists an l, such that for all large n, $\nu_n^m(G(\nu)I(\mu)U) > (1-\epsilon)^l$, for all $m \leq k_n$. In particular $A = \{\nu_n^m \mid m \leq k_n\}$ and $\{\nu'_n\}$ are relatively compact.

Proof. As $G(\nu)$ is compact and $\nu^m \in T_\mu$, for all m, supp $\nu \subset xI(\mu) = I(\mu)x$, for all $x \in \text{supp } \nu$ (cf. [S4], Theorem 2.4). Therefore $G(\nu)I(\mu)$ is a compact group.

Let *V* be an open compact subgroup of *G* such that *V* is normalized by $G(\nu)I(\mu)$, and $V \subset U$. Since $\nu_n \to \nu$, $\nu_n(G(\nu)I(\mu)V) > 1 - \epsilon$, for all large *n*. Let $V' = \{\lambda \mid \lambda(G(\nu)I(\mu)V) > (1 - \delta)^{1/2}\}$ and let $U' = \{\lambda \mid \lambda(G(\nu)I(\mu)V) \ge 1 - \delta\}$ for some positive $\delta < \epsilon$. Then $V'V' \subset U'$. Let $J = \{\lambda \in M^1(G) \mid \text{supp } \lambda \subset G(\nu)I(\mu)V\}$. Clearly, *J* is a compact semigroup and JV' = V'. Let $\lambda \in U' \setminus V'$. If possible, suppose that $\lambda^n \in T_\mu$ for all *n*, then by Theorem 2.4 of [S4], $\text{supp } \lambda \subset xI(\mu) = I(\mu)x$, for all $x \in \text{supp } \lambda$. Since $\lambda \in U'$, supp $\lambda \subset G(\nu)I(\mu)V$, i. e. $\lambda \in J \subset V'$, a contradiction. Hence for $\lambda \in T_\mu \cap U' \setminus V'$, there exists $n = n(\lambda)$, such that $\lambda^n \notin T_\mu$. By Lemma 2.1 of [S4], $T_\mu \cap U' \setminus V'$ is compact. As in the proof of Lemma 2.5 in [S4], one can find *l*, such that for any $\lambda \in T_\mu \cap U' \setminus V'$, μ cannot be expressed as $\mu = \lambda^l \lambda'$, for any λ' which commutes with λ .

Since $\nu_n \to \nu$, $\nu_n \in V'$, for all large *n*. Let such a large *n* be fixed. Then there exists $a_n > 1$, such that $\nu_n^m \in V'$, for all $m < a_n$ and $\nu_n^{a_n} \notin V'$. Therefore, $\nu_n^{a_n} \in V'V' \setminus V' \subset U' \setminus V'$. Let $b_n = k_n - la_n$ if $la_n \leq k_n$, otherwise $b_n = 0$. If $b_n = 0$, then $\nu_n^m \in (U')^l$, for all $m \leq k_n$. Therefore, for all large *n*, $\nu_n^m(G(\nu)I(\mu)V) \geq (1-\delta)^l$, and hence $\nu_n^m(G(\nu)I(\mu)U) > (1-\epsilon)^l$ for all $m \leq k_n$, as $V \subset U$ and $\delta < \epsilon$.

We now show that $b_n = 0$, for all large *n*. If $b_n \neq 0$ for infinitely many *n*, then $\nu_n^{la_n}\nu_n^{b_n}\nu'_n \to \mu$. Since $\{\nu_n^{a_n}\} \subset U' \setminus V'$, by Lemma 2.1 of [S4], $\{\nu_n^{a_n}\}$ is relatively compact and it has a limit point (say) λ , such that $\mu = \lambda^l \lambda'$, for some λ' , which is a limit point of $\{\nu_n^{b_n}\nu'_n\}$, i.e. $\lambda \in T_{\mu} \cap U' \setminus V'$ and $\lambda \lambda' = \lambda' \lambda$. This is a contradiction to the choice of *l* as above.

Now it is enough to show that *A* is relatively compact as this would also imply that $\{\nu'_n\}$ is relatively compact. Let $\mu_n = \nu_n^{k_n} \nu'_n$. Then $\mu_n \to \mu$ and for each n, $\nu_n^m \in T_{\mu_n}$ for all $m \leq k_n$. Let $F = G(\nu)I(\mu)V$ for *V* as above. Then *F* is compact. Let $A' = \{\lambda \in M^1(G) | \lambda(F) \geq (1-\epsilon)^l/2\}$. Then from above, $A \subset A'$. Since $\mu_n \to \mu$, for every $\delta > 0$ such that $\delta < (1-\epsilon)^l/2$, there exists a compact set K_δ such that $\mu_n(K_\delta) > 1-\delta$ (cf. [H], Properties 1.2.20(2)). Therefore, for every n, m as above, there exists $x_{n,m}$ such that $\nu_n^m(K_\delta x_{n,m}) > 1-\delta$. Now since $A \subset A'$, the above implies that $x_{n,m} \in K_\delta^{-1}F$ and hence $\nu_n^m(K_\delta') > 1-\delta$, where $K_\delta' = K_\delta K_\delta^{-1}F$ which is a compact set. In particular *A* is relatively compact (cf. [H], 1.2.20). This completes the proof.

We now prove several results which will be needed to prove Theorem 2.1.

Lemma 2.3. Let G be a locally compact first countable group and let $\{\mu_n\}$, $\{\lambda_n\}$ and $\{\nu_n\}$ be sequences in $M^1(G)$ such that $\lambda_n\nu_n = \nu_n\lambda_n = \mu_n \rightarrow \mu$ for some $\mu \in M^1(G)$. Then there exists a sequence $\{x_n\}$ such that $x_n \in N(\mu_n)$ for each n and $\{\lambda_n x_n\}$ and $\{x_n\lambda_n\}$ are relatively compact and all its limit points are supported on supp μ .

The proof is quite similar to Proposition 1.2 in [DM] and Theorem 2.2 in ch. III of [P].

Proof. For any integer r > 0 there exists a compact set $K_r \subset \text{supp } \mu$ such that $\mu(K_r) > 1 - 4^{-(r+1)}$. Without loss of generality, we may assume that $K_r \subset K_{r+1}$ for all r. Let $\{U_r\}$ be a neighbourhood basis of e in G such that each U_r is relatively compact,

 $U_{r+1} \subset U_r$ for all r and $\bigcap_r U_r = \{e\}$. Since $\mu_n \to \mu$, there exists $n_r \in \mathbf{N}$, such that $\mu_n(K_r U_r) > 1 - 2^{-r}$ and $\mu_n(U_r K_r) > 1 - 2^{-r}$, for all $n \ge n_r$. Let $E_n^r = \{x \in G \mid \lambda_n (K_r U_r x^{-1}) > 1 - 2^{-r}\}$ and let $F_n = \bigcap_{\{r \mid n_r \le n\}} E_n^r$.

A simple calculation as in Theorem 2.2 of ch. III in [P] shows that for $n \ge n_r$, $\nu_n(G \setminus E_n^r) \ge 2^{-(r+2)}$ and hence $\nu_n(G \setminus F_n) \ge 1/4$. Similarly, we define $B_n^r = \{x \in G \mid \lambda_n(x^{-1}U_rK_r) > 1 - 2^{-r}\}$ for any r and $C_n = \bigcap_{\{r \mid n_r \le n\}} B_n^r$. Then $\nu_n(G \setminus C_n) \ge 1/4$.

Therefore $\nu_n(F_n \cap C_n) \ge 1/2$. For each *n*, we pick $x_n \in F_n \cap C_n \cap \operatorname{supp} \nu_n$ as it is nonempty, $x_n \in \operatorname{supp} \nu_n \subset N(\mu_n)$. Then for any r > 0, $\lambda_n x_n(K_r U_r) > 1 - 2^{-r}$ and $x_n \lambda_n$ $(U_r K_r) > 1 - 2^{-r}$ for all $n \ge n_r$ and hence by tightness criterion, $\{\lambda_n x_n\}$ and $\{x_n \lambda_n\}$ are tight. Also, since $K_r \subset \operatorname{supp} \mu$ for all r, $\lambda_n x_n((\operatorname{supp} \mu)U_r) > 1 - 2^{-r}$, for all $n \ge n_r$. Since $\cap_r U_r = \{e\}$, it easily follows that for any limit point λ of $\{\lambda_n x_n\}$, $\operatorname{supp} \lambda \subset \operatorname{supp} \mu$. Similarly, the limit points of $\{x_n \lambda_n\}$ are also supported on supp μ .

Lemma 2.4. Let G be a locally compact group and let $\mu_n \to \mu$ in $M^1(G)$. Let B be a subgroup which centralizes an open subgroup H containing supp μ . Then the following hold:

- 1. For any sequence $\{x_n\}$ in B, $\{x_n^{-1}\mu_n x_n\}$ is relatively compact and it converges to μ .
- 2. Let $\mu_n = \lambda_n \nu_n = \nu_n \lambda_n$, for all *n*. If for sequences $\{x_n\}$ and $\{y_n\}$ in *B*, $\{x_n\lambda_n y_n\}$ is relatively compact then its limit points belong to T_{μ} ; in particular if $\lambda_n a_n \rightarrow \lambda$ for some $\{a_n\} \subset B$, then $\lambda \in T_{\mu}$ and the limit points of $\{x_n\lambda_n y_n\}$ are of the form $z\lambda = \lambda z'$, for some $z, z' \in Z(\mu)$.

Proof. Let *U* be any open set contained in *H* and let $K \subset \text{supp } \mu$ be any compact set such that $\mu(K) > 0$. Then given $0 < \epsilon < \mu(K)$, there exists *N* such that $\mu_n(KU) > \mu(K) - \epsilon$ for all n > N. Since x_n centralizes KU, $x_n^{-1}\mu_nx_n(KU) = \mu_n(KU) > \mu(K) - \epsilon$. Since this is true for all *K* and *U* as above, $\{x_n^{-1}\mu_nx_n\}$ is relatively compact and it converges to μ . Let λ' be a limit point of a relatively compact sequence $\{\lambda'_n = x_n\lambda_ny_n\}$, where $x_n, y_n \in B$. Since $\{x_n\mu_nx_n^{-1}\}$ converges to μ , $\{y_n^{-1}\nu_nx_n^{-1}\}$ is relatively compact and there exists a limit point ν' of it such that $\lambda'\nu' = \mu$. Also, $\nu'\lambda'$ is a limit point of $\{y_n^{-1}\mu_ny_n\}$, which converges to μ . Therefore, $\nu'\lambda' = \mu$ and hence $\lambda' \in T_{\mu}$. Now suppose $\lambda_n a_n \to \lambda$, $\{a_n\} \subset B$, then from above $\lambda \in T_{\mu}$. Therefore, $\lambda = x\beta$, for some $x \in N(\mu)$ and β supported on $G(\mu) \subset H$. Then $x^{-1}\lambda_n a_n \to \beta$. Let *K'* be any compact subset in *H* such that $\beta(K') > 0$. Then for any open subset *U* contained in *H*, $\lambda_n a_n(xK'U) = z_n\lambda'_n(xK'U)$, where $z_n = xy_n^{-1}a_nx^{-1}x_n^{-1} \in Z(\mu)$, as $B \subset Z(\mu)$ and $x \in N(\mu)$ which normalizes $Z(\mu)$. Since this is true for all *n* and all compact subsets *K'* of supp β it implies that $\{z_n\}$ is relatively compact in $Z(\mu)$. Therefore, $\lambda' = z\lambda$, for λ' as above, where *z* is a limit point of $\{z_n^{-1}\}$. Now since $\lambda \in T_{\mu}$ and $z \in Z(\mu)$, $z\lambda = zx\beta = xz'\beta = x\beta z' = \lambda z'$, where $z' = x^{-1}zx \in Z(\mu)$.

PROPOSITION 2.5

Let G be a locally compact group and let C be a closed normal (real) vector subgroup of G. Suppose that $\{\mu_n\} \subset M^1(G)$ be a sequence such that $\mu_n \to \mu$, the closed subgroup (say) H, generated by the centralizer Z(C) of C and supp μ , is open in G. Suppose that there exists a sequence $\{x_n\}$ in C such that $\{x_n^{-1}\mu_nx_n\}$ is relatively compact. Then $\{x_n\}/(Z(\mu) \cap C)$ is relatively compact. In particular $I_{\mu} \cap C = Z(\mu) \cap C$.

Proof. Suppose $C \subset Z(\mu)$ then there is nothing to prove. Now let $V = Z(\mu) \cap C$, which is a proper closed subgroup of C. Since C is normal in G, for any $x \in G$, $i_x : C \to C$,

 $i_x(c) = xcx^{-1}$ for all $c \in C$, is a continuous homomorphism of *C* and hence it is a linear operator in $M(d, \mathbf{R})$, where *d* is such that *C* is isomorphic to \mathbf{R}^d . Now $V = Z(\mu) \cap C = \bigcap_{x \in \text{supp } \mu} \ker(i_x)$ and hence *V* is a (possibly trivial) vector subspace and $C = V \times W$, a direct product. Now for each *n*, $x_n = z_n + y_n$, where $z_n \in V$ and $y_n \in W$. Let $\mu'_n = z_n^{-1}\mu_n z_n$, for each *n*. Since *V* centralizes $G(\mu)$ and hence *H* which is open, by Lemma 2.4, $\mu'_n \to \mu$.

Now it is enough to show that $\{y_n\}$ is relatively compact. If possible, suppose it has a subsequence, denote it by $\{y_n\}$ again, which is divergent, i.e. it has no convergent subsequence. We know that $\{y_n^{-1}\mu'_ny_n = x_n^{-1}\mu_nx_n\}$ is relatively compact. Passing to a subsequence if necessary, we get that $y_n/||y_n|| \to y$ in W, where || || denotes the usual norm in the vector space C. Since $\mu'_n \to \mu$, arguing as in Proposition 9 in [M1], we get that $G(\mu) \subset Z(y)$, the centralizer of y in G, a contradiction as $y \notin Z(\mu) \cap C = V$, for $y \in W$ and ||y|| = 1. Therefore, $\{y_n\}$ is relatively compact. If $x \in I_{\mu}$ then $x\mu x^{-1} = \mu$ therefore, $(I_{\mu} \cap C)/(Z(\mu) \cap C)$ is a compact group, but since C and $Z(\mu) \cap C$ are both vector groups so is $C/(Z(\mu) \cap C)$ and hence has no nontrivial compact subgroups. Therefore, $I_{\mu} \cap C = Z(\mu) \cap C$.

PROPOSITION 2.6

Let G and C be as above. Let $\{\nu_n\}$ be a relatively compact sequence in $M^1(G)$ such that $\nu_n^{k_n} \to \mu$ and the closed subgroup (say) H, generated by the centralizer Z(C) of C and supp μ , is open in G. Let $A = \{\nu_n^m \mid m \leq k_n\}$. If A/C is relatively compact then so is A.

Proof. Let A/C be relatively compact. If possible, suppose that A is not relatively compact. That is, there exists a subsequence of $\{\nu_n\}$, denote it by same notation, such that $\{\nu_n^{l(n)}\}$ is divergent, where $l(n) < k_n$ for all n. Passing to a subsequence if necessary, we get that $\nu_n \to \nu$ (say). Let $\pi : G \to G/G^0$ be the natural projection. Since $\{\pi(\nu)^n \mid n \in \mathbb{N}\} \subset \pi(A)$ which is compact, $G(\pi(\nu))$ is compact. Also, since $\{\nu_n^n \mid n \in \mathbb{N}\} \subset T_{\mu}$, by Theorem 2.4 of [S4], $\sup p \nu \subset xI(\mu) = I(\mu)x$, for any $x \in \sup p \nu$. Since A/C is relatively compact, there exists a sequence $\{x_{n,m}\}$ in C such that $\{\nu_n^m x_{n,m}\}$ is relatively compact and $\{x_{n,l(n)}\}$ is divergent. Also since $\nu_n^{k_n} \to \mu$ (resp. $\nu_n^{k_n+1} \to \mu\nu = \nu\mu$) the above implies $\{x_{n,m}^{-1}\nu_n^{k_n-m}\}$ (resp. $\{x_{n,m}^{-1}\nu_n^{k_n+1}x_{n,m}\}$) is relatively compact. Now by Proposition 2.5, $\{x_{n,m}\}/(Z(\mu) \cap C)$ (resp. $\{x_{n,m}\}/(Z(\mu) \cap C)$) is relatively compact. As $Z(\mu) \cap Z(\mu\nu) = Z(\mu) \cap Z(\nu)$, the above implies that $\{x_{n,m}\}/(Z(\mu) \cap Z(\nu) \cap C)$ is relatively compact. Without loss of generality we may assume that $\{x_{n,m}\} \subset C' = Z(\mu) \cap Z(\nu) \cap C$, which is a vector group centralizing $G(\nu)$ and H. Therefore, H' = Z(C') contains H and hence it is an open subgroup in G containing $\sup \mu$ and $\sup \nu$. We may also assume that $x_{n,1} = x_{n,k_n} = e$ for every n as $\{\nu_n\}$ and $\{\nu_n^{k_n}\}$ are relatively compact.

Let $n \in \mathbb{N}$ and let $1 \le m \le k_n$. From Theorem 2.2, $\nu_n^m(H') > \delta > 0$ and hence $\nu_n^m x_{n,m}(H') > \delta$. Since $\{\nu_n^m x_{n,m}\}$ is relatively compact, there exists a compact set $L \subset H'$, such that $\nu_n^m x_{n,m}(L) > \delta/2$. Let $0 < \epsilon < \min\{\delta/2, 1/4\}$. There exists a compact set $K \subset \text{supp } \mu$ such that $\mu(K) > 1 - \epsilon$. Let $U \subset H'$ be such that U is open in G. Then there exists N, such that for all $n \ge N$, $\nu_n^k(KU) > 1 - \epsilon$. Let $n \ge N$ and let $1 \le m \le k_n$. Then there exists $\{y_{n,m}\} \subset G$, such that $\nu_n^m y_{n,m}(KU) > 1 - \epsilon$. Since $\epsilon < \delta/2$, $KUy_{n,m}^{-1} \cap Lx_{n,m}^{-1} \ne \emptyset$. That is, $y_{n,m}^{-1} \in K'x_{n,m}^{-1}$, where $K' = (KU)^{-1}L \subset H'$ and hence $\nu_n^m x_{n,m}(K_1) > 1 - \epsilon$ and each $x_{n,m}$ commutes with all the elements of $K_1 = KUK' \subset H'$. Now for $m, l < k_n$ such that $m + l \le k_n$, we get that $\nu_n^{m+l}(K_1x_{n,m}^{-1}K_1x_{n,l}^{-1}) \ge (1 - \epsilon)^2$. Since

 $\nu_n^{m+l}(K_1x_{n,m+l}^{-1}) > 1 - \epsilon$ and $\epsilon < 1/4$, we get that $K_1x_{n,m+l}^{-1} \cap K_1x_{n,m}^{-1}K_1x_{n,l}^{-1} \neq \emptyset$. Therefore $x_{n,m}x_{n,l}x_{n,m+l}^{-1} \in K_1^2K_1^{-1} \cap C'$. Since C' is a vector group, C' is strongly root compact by 3.1.12 of [H] and hence by the definition of strong root compactness (see 3.1.10 of [H]), there exists a compact subset K'' such that $x_{n,m} \in K''$, for all m, n. This is a contradiction to the fact that $\{x_{n,l(n)}\}$ is divergent. Therefore A is relatively compact. This completes the proof.

Let $\lambda \in M^1(G)$. For some $\alpha = (r_1, l_1, \dots, r_m, l_m)$, where $m \in \mathbb{N}$, and $r_i, l_i \in \mathbb{N} \cup \{0\}$ fixed, let $\alpha(\lambda) = \lambda^{r_1} \tilde{\lambda}^{l_1} \dots \lambda^{r_m} \tilde{\lambda}^{l_m}$, where $\lambda^0 = \tilde{\lambda}^0 = \delta_e$. For any such α , the map $\lambda \mapsto \alpha(\lambda)$ on $M^1(G)$ is continuous. Also, $G(\lambda) = \bigcup_{\alpha} \operatorname{supp} \alpha(\lambda)$ (over all possible choices of α as above).

Proof of theorem 2.1. Without loss of generality we may assume that $\{\nu_n\}$ is convergent, that is $\nu_n \to \nu$ (say). From the hypothesis, $G(\pi(\nu))$ is compact, and hence by Theorem 2.2, $\pi(A)$ is relatively compact. It is enough to show that A is relatively compact as by Theorem 3.6 of [S1], there exists x such that $x\mu = \mu x$ is embeddable.

Step 1. Let *K* be the maximal compact normal subgroup of G^0 , then *K* is characteristic in G^0 and hence normal in *G*. Since *A* is relatively compact if and only if its image on G/K is relatively compact, without loss of generality we may assume that G^0 has no nontrivial compact normal subgroups. In particular, G^0 is a Lie group. Let *L* be any open Lie projective subgroup of *G*. Let *M* be any compact normal subgroup of *L* such that L/M is a Lie group, then $G^0M = G^0 \times M$, a direct product, as both G^0 and *M* are normal in *L* and $G^0 \cap M = \{e\}$. Moreover $H = G^0M$ is an open subgroup in *G*. Since $I(\mu)$ is compact, without loss of generality, we may assume that $I(\mu)$ normalizes *H*.

Step 2. Now we prove the assertion by induction on the dimension of the Lie group G^0 . Let dim $G^0 = 0$. Then G is totally disconnected and the assertion follows from above. Now suppose that for any k > 1, the assertion holds for G such that dim $G^0 < k$. Now let dim $G^0 = k$.

Step 3. Suppose that there exists a subsequence of $\{\nu_n\}$, denote it by $\{\nu_n\}$ again, such that $\{\nu_n^{l_n}\}$ is divergent. By Theorem 1.2.21 of [H], there exists a sequence $\{x_n\} \subset G$, such that $\{\nu_n^{l_n}x_n\}$ and hence $\{x_n^{-1}\nu_n^{k_n-l_n}\}$ and $\{x_n^{-1}\nu_n^{k_n}x_n\}$ are relatively compact and we may assume that $\{x_n\}$ is divergent. Since $\pi(A)$ is relatively compact, $\{\pi(x_n)\}$ is relatively compact in G/G^0 and hence we may choose $\{x_n\}$ to be in G^0 .

Without loss of generality we may assume that the subgroup N, as in the hypothesis, is the nilradical. Suppose that N is trivial. Then G^0 is a connected semisimple group. Suppose that the center of G is trivial. Then G^0 is an almost algebraic subgroup of $GL_n(\mathbf{R})$. By Propositions 4–6 of [M1], there exists a proper closed subgroup G' of G^0 such that given any relatively compact sequence $\{z_n\} \subset G^0$, the limit points of $\{x_n z_n x_n^{-1}\}$ are contained in G'. Now since $G^0 \subset G(\mu)$, there exists an $x \in G(\mu) \cap (G^0 \setminus G')$. Since $G^0 \setminus G'$ is open in G^0 , there exists a set U which is open in G^0 such that $x \in U$, $\overline{U} \subset G^0 \setminus G'$ and \overline{U} is compact. Then for some $\alpha = (r_1, l_1, \ldots, r_m, l_m)$, we have that $\alpha(\mu)(UM) = \delta > 0$, as $UM = U \times M$ is open in G, for a compact group M as above. Since $\alpha(\nu_n^{k_n}) \to \alpha(\mu)$, $\alpha(\nu_n^{k_n})(UM) > \delta/2$ for all large n. Now since $\{x_n^{-1}\nu_n^{k_n}x_n\}$ is relatively compact, so is $\{x_n^{-1}\alpha(\nu_n^{k_n})x_n\}$. Therefore, there exists a compact set K such that $(x_n^{-1}\alpha(\nu_n^{k_n})x_n)(K) = \alpha(\nu_n^{k_n})(x_nKx_n^{-1}) > 1 - \delta/4$ for all n. From the above equation $UM \cap x_nKx_n^{-1} \neq \emptyset$, for all large n. Therefore, there exists a sequence $\{a_n\} \subset K$, such that for all large n, $x_n a_n x_n^{-1} = u_n v_n$, where $u_n \in U$ and $v_n \in M$ and hence $x_n a_n v_n^{-1} x_n^{-1} = u_n$. For each n, put $z_n = a_n v_n^{-1}$, then since $x_n, u_n \in G^0$, $z_n \in G^0$. Also $\{z_n\} \subset KM$ is relatively compact. Therefore the limit points of $\{x_n z_n x_n^{-1} = u_n\}$ belong to G'. But $\{u_n\} \subset U$ and $\overline{U} \subset G^0 \setminus G'$, a contradiction. Therefore, A is relatively compact.

Step 4. Now suppose G^0 is a semisimple group with nontrivial center Z. Then Z is a discrete group normal in G and $Z = \mathbb{Z}^n$, for some n, as we have assumed that G^0 has no nontrivial compact subgroups normal in G. The action of G on \mathbb{Z}^n extends to the action of G on \mathbb{R}^n . Therefore, we can form a semidirect product $G_1 = G \cdot \mathbb{R}^n$. Let $D = \{(z, z) \mid z \in \mathbb{Z}^n\}$. Then D is normal in G_1 . Now G can be embedded as a closed subgroup in $G_2 = G_1/D$ and $G_2^0 = (G^0 \times \mathbb{R}^n)/D$. It is easy to see that the center C of G_2^0 is isomorphic to \mathbb{R}^n . Also, C is normal in G_2 and G_2^0/C is a semisimple group with trivial center. Let $\psi : G_2 \to G_2/C$ be the natural projection. It is easy to see that $G(\psi(\mu))$ contains G_2^0/C , the connected component in G_2/C , and hence by the above argument, $\psi(A)$ is relatively compact. Since H centralizes G^0 in G, $H' = H \times \mathbb{R}^n = G^0 \times M \times \mathbb{R}^n$ is open in G_1 and hence H'/D is an open subgroup in G_2 which centralizes C. Now the assertion in this case follows from Proposition 2.6.

Step 5. Now suppose the nilradical N of G is nontrivial. Let C be the center of N. Since G^0 does not contain any compact subgroups normal in G, C is a vector group, i.e. C is isomorphic to \mathbb{R}^n , for some n. Since N is normal in G, so is C. Let $\psi : G \to G/C$ be the natural projection. Then since dim $G^0/C < k$, we have that $\psi(A)$ is relatively compact. Now since C centralizes $N \times M$, M as above, and supp μ and N generate a subgroup containing G^0 , the assertion follows from Proposition 2.6.

Remark. Theorem 2.1 continues to hold if the conditions in it are replaced by the following: $\nu_n^{k_n} \rightarrow \mu$, the closed subgroup generated by supp μ and N is whole of G (where N is as in the hypothesis of the theorem), $\{\nu_n\}/G^0$ is relatively compact and for any limit point ν of it, $G(\nu)$ is compact in G/G^0 . For the proof, A/G^0 is relatively compact by Theorem 2.2 and the first three steps of the proof of the above theorem will apply word for word. Also, for a normal subgroup C in steps 4 and 5 above, $Z(\mu) \cap C$ is a central vector group in G by the above condition and hence by Proposition 2.5, the relative compactness of A/C implies that of $A/(Z(\mu) \cap C)$. Therefore A is relatively compact by Lemma 3.2 of [S1]. The above variation of Theorem 2.1 generalizes Theorem 3.1 of [S1].

3. Limit theorems on discrete linear groups over R

Theorem 3.1. Let G be a discrete linear group over **R**. Let $\{\nu_n\}$ be a sequence in $M^1(G)$ such that $\nu_n^{k_n} \to \mu$, for some $\mu \in M^1(G)$ and some unbounded sequence $\{k_n\}$ in **N**. Then there exists $x \in I_{\mu}$, such that $x\mu$ is embeddable.

Remark. So far, in the limit theorems on discrete groups, one had either the support condition or the infinitesimality condition imposed (see [S4] and Theorem 2.2 above). The above theorem gives a generalization of Theorems 1.5, 1.7(1) of [S4] for this special class of discrete groups. It also generalizes Theorem 1.2 of [DM3]. One cannot get an embedding of μ itself or an element x as above to be infinitely divisible as in $G = GL(1, \mathbb{Z}) = \{-1, 1\}$, for x = -1, $\delta_x = \delta_x^{2n+1}$, for all n, but δ_x is clearly not infinitely divisible and hence not embeddable.

To prove the theorem, we need preliminary results.

Lemma 3.2. Let V be a finite dimensional vector space over **R**. Let $\{\tau_n\}$ be a divergent sequence in GL(V) such that for some b > 0, $|\det(\tau_n)| \ge b$ for all n. Then there exists a proper subspace W of V such that the following holds: if $\{\mu_n\} \subset M^1(V)$ is such that $\mu_n \to \mu$ and $\{\tau_n(\mu_n)\}$ is relatively compact, then supp $\mu \subset W$.

The proof of the Lemma is exactly same as the proof of Proposition 3.2 in [S2] using Proposition 1.4 in [DM1]. We will not repeat it here.

PROPOSITION 3.3

Let G be a discrete linear group over **R** and let $\{\mu_n\}$ be a sequence converging to μ in $M^1(G)$. Let $\lambda_n \in T_{\mu_n}$ for each n. Then there exist sequences $\{z_n\}$ and $\{z'_n\}$ in $Z(\mu)$ such that $\{\lambda_n z_n\}$ and $\{z'_n \lambda_n\}$ are relatively compact and all their limit points belong to T_{μ} .

Proof. There exists a sequence $\{\lambda'_n\}$ in $M^1(G)$, such that $\lambda_n \lambda'_n = \lambda'_n \lambda_n = \mu_n \to \mu$. By Lemma 2.3, there exists a sequence $\{x_n\}$ in *G* such that $\{\lambda_n x_n\}$ and $\{x_n \lambda_n\}$ are relatively compact and all its limit points are supported on supp μ . Therefore, by Theorem 1.2.21 of [H], $\{x_n^{-1}\lambda'_n\}$, $\{\lambda'_n x_n^{-1}\}$ and hence $\{x_n^{-1}\mu_n x_n\}$ and $\{x_n\mu_n x_n^{-1}\}$ are all relatively compact. If ν is a limit point of $\{x_n^{-1}\lambda'_n\}$ then there exists a limit point λ of $\{\lambda_n x_n\}$ such that $\lambda \nu = \mu$. Since supp $\lambda \subset$ supp $\mu =$ supp λ supp ν , supp $\nu \subset G(\mu)$. Therefore all the limit points of $\{x_n^{-1}\lambda'_n\}$ and also of $\{x_n^{-1}\mu_n x_n\}$ are supported on $G(\mu)$.

Similarly, the limit points of $\{x_n\mu_nx_n^{-1}\}$ are also supported on $G(\mu)$, and $\{x_n^{-1}\alpha(\mu_n)x_n\}$ and $\{x_n\alpha(\mu_n)x_n^{-1}\}$ are relatively compact and their limit points are supported on $G(\mu)$, for any α (where α and $\alpha(\mu_n)$ are defined as in § 2). Also, for any $\epsilon > 0$, there exists a compact set K such that $(x_n^{-1}\mu_nx_n)(K) > 1 - \epsilon$ for all n. Now for any limit point γ of $\{x_n^{-1}\mu_nx_n\}, \gamma(K \cap G(\mu)) > 1 - \epsilon$. Therefore it is easy to see that $(x_n^{-1}\mu_nx_n)(K') > 1 - \epsilon$, for all large n, where $K' = K \cap G(\mu)$.

We know that $G \subset GL(n, \mathbf{R}) \subset M(n, \mathbf{R})$. Let V_{μ} be the vector space generated by $G(\mu)$ in $M(n, \mathbf{R})$. There exists a finite set $\{y_1, \ldots, y_m\} \subset G(\mu)$ such that $\{y_1, \ldots, y_m\}$ generates V_{μ} . Since $G(\mu) = \bigcup_{\alpha} \operatorname{supp} \alpha(\mu)$, where α and $\alpha(\mu)$ are as defined in § 2, there exist $\alpha_1, \ldots, \alpha_m$ such that $y_i \in \operatorname{supp} \alpha_i(\mu)$, for each *i*. Therefore, as *G* is discrete, for some $\delta > 0$, $\alpha_i(\mu)\{y_i\} > \delta$ for all *i*. Since $\alpha_i(\mu_n) \to \alpha_i(\mu)$, there exists *N* such that $\alpha_i(\mu_n)\{y_i\} > \delta/2$, for all n > N, for all *i*.

Now since $\{x_n^{-1}\alpha_i(\mu_n)x_n\}$ is relatively compact and all its limit points are supported on $G(\mu)$, arguing as above we can get a compact set $K_1 \subset G(\mu)$, such that $(x_n^{-1}\alpha_i(\mu_n)x_n)$ $(K_1) > 1 - \delta/2$ for all *i*, for all large *n*. That is, $\alpha_i(\mu_n)(x_nK_1x_n^{-1}) > 1 - \delta/2$ for all *i*, for all large *n*. Therefore, $y_i \in x_nK_1x_n^{-1}$, or $x_n^{-1}y_ix_n \in K_1 \subset G(\mu) \subset V_{\mu}$, for all large *n*. Since V_{μ} is generated by $\{y_1, \ldots, y_m\}$, the above implies that $x_n^{-1}V_{\mu}x_n = V_{\mu}$, for all large *n*.

Let *G* be the Zariski closure of *G* in $GL(d, \mathbf{R})$ and let $N(V_{\mu})$ (resp. $Z(V_{\mu})$) be the normaliser (resp. centraliser) of V_{μ} in \tilde{G} . Then $Z(V_{\mu})$ and $N(V_{\mu})$ are algebraic subgroups of \tilde{G} and $Z(V_{\mu})$ is normal in $N(V_{\mu})$. Now $N(V_{\mu})$ acts on V_{μ} linearly and the map $\rho: N(V_{\mu}) \to GL(V_{\mu})$ is a rational morphism, as in the proof of Theorem 3.2 in [DM2]. Therefore, the image of ρ , $\operatorname{Im}(\rho)$ is closed in $GL(V_{\mu})$ and since ker $\rho = Z(V_{\mu})$, $\rho': N(V_{\mu})/Z(V_{\mu}) \to \operatorname{Im}\rho$ is a topological isomorphism.

We know that $\{x_n\} \subset N(V_\mu)$. Now if possible, suppose that $\{x_n\}/Z(V_\mu)$ is not relatively compact. Going to a subsequence if necessary, without loss of generality, we

may assume that $\{x_n\}/Z(V_\mu)$ is divergent; i.e. it has no convergent subsequence, and for some $\delta > 0$, either $|\det \rho'(x_nZ(V_\mu))| = |\det \rho(x_n)| > \delta$ or $|\det \rho'(x_n^{-1}Z(V_\mu))| > \delta$.

Suppose $|\det \rho'(x_n Z(V_\mu))| = |\det \rho(x_n)| > \delta$ for all *n*. By Lemma 3.2, there exists a proper subspace *W* of V_μ such that $\sup \rho \alpha(\mu) \subset W$ for all α , as $\alpha(\mu_n) \to \alpha(\mu)$ and $\{(\rho'(x_n Z(V_\mu)))(\alpha(\mu_n)) = x_n \alpha(\mu_n) x_n^{-1}\}$ is relatively compact. This implies that $G(\mu) = \bigcup_{\alpha} \sup \rho \alpha(\mu) \subset W$, a contradiction as $G(\mu)$ generates V_μ and *W* is a proper subspace.

Now suppose $|\det \rho'(x_n^{-1}Z(V_{\mu}))| > \delta$. Now using the fact that for every α , $\{(\rho'(x_n^{-1}Z(V_{\mu})))(\alpha(\mu_n)) = x_n^{-1}\alpha(\mu_n)x_n\}$ is relatively compact and replacing $\{x_n\}$ by $\{x_n^{-1}\}$ in the above argument we arrive at a contradiction. Therefore, $\{x_n\}/Z(V_{\mu})$ is relatively compact.

Clearly, $N(V_{\mu}) \cap G$ normalizes $Z(V_{\mu})$. Let $H = (N(V_{\mu}) \cap G)Z(V_{\mu})$ and let $x \in H$. Then $x(V_{\mu} \cap G)x^{-1} = V_{\mu} \cap G$. Let G_{μ} be the closed subgroup generated by $V_{\mu} \cap G$ in G. Then $G(\mu) \subset G_{\mu}$ and x normalizes G_{μ} . Therefore \overline{H} is a closed subgroup (in \tilde{G}) normalizing G_{μ} . Since G_{μ} is discrete, the connected component \overline{H}^0 of \overline{H} , centralizes G_{μ} and hence $\overline{H}^0 \subset Z(V_{\mu}) \subset H$ as V_{μ} is generated by $G(\mu)$ and $G(\mu) \subset G_{\mu}$. Since \overline{H}^0 is open in \overline{H} , it follows that H is open in \overline{H} . That, is $\overline{H} = H$ and H is a closed subgroup. This implies that $((N(V_{\mu}) \cap G)Z(V_{\mu}))/Z(V_{\mu})$ is isomorphic to $(N(V_{\mu}) \cap G)/(Z(V_{\mu}) \cap G)$. Therefore $\{x_n\}/Z(\mu)$ is relatively compact as $Z(V_{\mu}) \cap G = Z(\mu)$. Therefore $x_n = z_n a_n = a_n z'_n$, for some relatively compact sequence $\{a_n\}$ in G and some sequences $\{z_n\}$ and $\{z'_n\}$ in $Z(\mu)$. Also, since $\{\lambda_n x_n\}$ and $\{x_n \lambda_n\}$ are relatively compact, so are $\{\lambda_n z_n\}$ and $\{z'_n \lambda_n\}$, and all their limit points belong to T_{μ} by Lemma 2.4.

Proof of Theorem 3.1. Since $\nu_n^{k_n} \to \mu$, by Proposition 3.3, for any *m*, there exists a sequence $\{z_{m,n}\} \subset Z(\mu)$ such that $\{\nu_n^m z_{m,n}\}$ is relatively compact. Passing to a subsequence if necessary, without loss of generality, we may assume that $\{\nu_n z_{1,n}\}$ is convergent, with the limit ν . Then $\nu \in T_{\mu}$ by Lemma 2.4. Also, for any *m*, $\{\nu_{m,n} = z_{m,n}^{-1}\nu_n z_{m+1,n}\}$ is relatively compact and its limit points are of the form $z\nu = \nu z'$, for some $z, z' \in Z(\mu)$ (cf. Lemma 2.4).

Suppose for any fixed *m*, the limit points of $\{\nu_n^m z_{m,n}\}$ are of the form $\nu^m z_m$ for some $z_m \in Z(\mu)$. Then combining the above two statements, we get that the limit points of $\{\nu_n^{m+1} z_{m+1,n}\}$ have the form $\nu^m z_m z \nu = \nu^{m+1} z_{m+1}$, for some $z_{m+1} \in Z(\mu)$. By induction, for any *m*, the limit points of $\{\nu_n^m z_{m,n}\}$ are of the form $\nu^m z_m$, for some $z_m \in Z(\mu)$. Moreover, by Lemma 2.4, $\nu^m \in T_\mu$, as it is a limit point of $\{\nu_n^m z_{m,n} z_m^{-1}\}$, for each *m*. Also supp $\nu \subset N(\mu)$.

Now by Proposition 3.3, $\{\nu^n\}/Z(\mu)$ is relatively compact. Therefore $G(\nu)Z(\mu)/Z(\mu)$ is compact and hence finite of order (say) *s*, as *G* is discrete. Let $x \in \text{supp }\nu$, then $x^s \in Z(\mu)$. Let $\beta = \nu^s z = z\nu^s$ for $z = x^{-s} \in Z(\mu)$. Then $e \in \text{supp }\beta$ and $\beta^n \in T_\mu$ for all *n*. Therefore by Theorem 2.4 of [S4], $\text{supp }\beta \subset I(\mu)$ and, furthermore, $\beta^n \to \omega_H$, where $H = G(\beta) \subset I(\mu)$. Hence $\text{supp }\nu \subset xH \cap Hx$. Therefore $x\mu = \nu\mu = \mu\nu = \mu x$, and hence $x \in I_\mu$, for all $x \in \text{supp }\nu$.

Now we show that μ has a shift which is infinitely divisible. Let $l \in \mathbf{N}$ be fixed. Let $a_n = [k_n/l]$ and $b_n = k_n - la_n$. Then for any, $m \leq l$, $\nu_n^{ma_n}\nu_n^{k_n-ma_n} \to \mu$ and hence there exist sequences $\{z'_{m,n}\}$ in $Z(\mu)$ such that $\{\nu_n^{ma_n}z'_{m,n}\}$ are relatively compact. Arguing as above, we get that the limit points of $\{\nu_n^{la_n}z'_{l,n}\}$ are of the form $\lambda_l^l z$, for some $z \in Z(\mu)$ and some limit point λ_l of $\{\nu_n^{a_n}z'_{1,n}\}$. Let $r \in \mathbf{N}$ be fixed. Since $a_n \to \infty$, for large *n* such that $a_n > r$, $\nu_n^{a_n}z'_{1,n} = \nu_n^r z_{r,n}r_n$, where $\{\gamma_n = z_{r,n}^{-1}\nu_n^{a_n-r}z'_{1,n}\}$ which is relatively compact and hence $\lambda_l = \nu^r \gamma$ for some γ . Also $\nu_n^{a_n}z'_{1,n} = \nu_n^{a_n-r}\nu_n^r z'_{1,n}$. By Proposition 3.3, there exists $\{y_n\}$ in $Z(\mu)$ such that $\{\nu_n^{a_n-r}y_n\}$ is relatively compact and hence so is $\{y_n^{-1}\nu_n^r z'_{1,n}\}$

and all its limit points are of the form $z'\nu^r$ for some $z' \in Z(\mu)$ (cf. Lemma 2.4). That is, $\lambda_l = \gamma'\nu^r$, for some γ' and hence for $\beta = \nu^s z = z\nu^s$ defined as above, $\lambda_l = \beta^r \beta' = \beta''\beta^r$ for some β', β'' . Since this is true for all $r, \omega_H \in T_{\lambda_l}$. That is, $\lambda_l \omega_H = \omega_H \lambda_l = \lambda_l$ for all l.

For each *n*, let $z_n = (z'_{l,n})^{-1}$. Then the sequence $\{z_n\nu_n^{b_n}\}$ is relatively compact. Clearly, $b_n < l$ for all *n*. Let r < l be such that $r = b_{n_k}$ for infinitely many n_k . Then clearly the limit points of $\{z_n\nu_n^{b_n}\}$ are contained in $\{g\nu^r \mid r < l, g \in Z(\mu)\}$ and hence if ρ_l is any such limit point then supp $\rho_l \subset G(\nu)Z(\mu) \subset I_{\mu}$ and $\rho_l\omega_H = x_l\omega_H$ (resp. $\omega_H\rho_l = \omega_H x_l$), where $x_l^s \in Z(\mu)$, where *s* is the cardinality of $G(\nu)Z(\mu)/Z(\mu)$.

Combining the above we get that $\mu = \lambda_l^l \rho_l = \lambda_l^l \omega_H \rho_l = \lambda_l^l x_l (= x_l \lambda_l^l)$ for some $x_l \in \text{supp } \rho_l \subset I_{\mu}$, for each *l*. That is, μ is weakly infinitely divisible. As $\lambda_l \in T_{\mu}$, supp $\lambda_l \subset y_l G(\mu)$ for some $y_l \in \text{supp } \lambda_l \subset N(\mu)$. Since for each $l, \mu = \lambda_l^l x_l$ and $x_l \in G(\nu)$ $Z(\mu)$, we get that $y_l^l \in G(\nu)Z(\mu)G(\mu)$. Hence $(y_l)^{ls} \in G(\mu)Z(\mu)$, as $G(\nu)Z(\mu)/Z(\mu)$ is a finite group of order s. Since $T_{\mu}/Z(\mu)$, is relatively compact, arguing as in Theorem 3.1 of [DM3], we get that $F = T_{\mu}/G(\mu)Z(\mu)$ is finite and it obviously consists of dirac measures. Also, the above implies that the image of λ_l on $G' = N(\mu)/G(\mu)Z(\mu)$ is $\delta_{\overline{y}_l}$, where $\overline{y}_l = y_l G(\mu) Z(\mu)$ in G' and $\overline{y}_l^{ls} = \overline{e}$, the identity in G'. Let $B = \{\gamma \in F \mid \gamma^r = \delta_{\overline{e}}\}$ for some $r \in \mathbb{N}$. Since F is finite, so is B and there exists an element of maximal order in B; let i be the maximal order. Then $\gamma^{i!} = \delta_{\overline{e}}$ for all $\gamma \in B$. Since the image of λ_l on $N(\mu)/G(\mu)Z(\mu)$ belongs to B, we have that supp $\lambda_l^{i!} \subset G(\mu)Z(\mu)$, for all l. Now for each *m*, let $\beta_m = \lambda_{i!m}^{i!}$, where $\mu = \lambda_{i!m}^{i!m} x$, for some $x \in I_{\mu}$. Then $\mu = \beta_m^m x$ and supp $\beta_m \subset G(\mu)$ $Z(\mu)$. Also, since supp $\beta_m \subset yG(\mu)$ for some $y \in \text{supp } \beta_m$, y = zy' = y'z, for some $y' \in G(\mu), z \in Z(\mu)$. Then $\beta'_m = z^{-1}\beta_m = \beta_m z^{-1}$ is supported on $G(\mu)$. Also, $\mu = \beta_m^m x = \beta_m z^{-1}$ $(\beta'_m)^m z^m x = (\beta'_m)^m x'$, where $x' = z^m x \in I_\mu \cap G(\mu)$ as $\operatorname{supp} \beta'_m \subset G(\mu)$. That is, μ is weakly infinitely divisible on $G(\mu)$. Moreover, from the above equation, we have that $\{\beta'_m\}/Z_\mu$ is relatively compact, where $Z_\mu = G(\mu) \cap Z(\mu)$ is the center of $G(\mu)$ (cf. [DM3], Theorem 2.1). In fact, $\{\beta'_m z_m\}$ is relatively compact for some sequence $\{z_m\}$ in Z_{μ} . Let $\gamma'_m = \beta'_m z_m$. Then $(\gamma'_m)^m = (\beta'_m)^m z_m^m$ and hence $\mu = (\gamma'_m)^m x_m$ for some $x_m \in \mathcal{I}_m$ $I_{\mu} \cap G(\mu)$, for all *m*. Now if γ' is a limit point of $\{\gamma'_m\}$ then $(\gamma')^n \in T_{\mu}$ for all *n* and hence, as earlier, supp $\gamma' \subset xI(\mu) = I(\mu)x$, for some $x \in I_{\mu} \cap G(\mu)$. Since $(I_{\mu} \cap G(\mu))/Z_{\mu}$ is finite (cf. [DM3], Theorem 2.1), if a is its cardinality then supp $(\gamma')^a \subset zI(\mu) = I(\mu)z$ for some $z \in Z_{\mu}$. Therefore limit points of $\{(\gamma'_m)^a\}$ are supported on $zI(\mu) = I(\mu)z, z \in Z_{\mu}$. Let $\gamma_m = (\gamma'_{am})^a$. Then $\mu = \gamma_m^m x_{am}$, where $x_{am} \in I_\mu \cap G(\mu)$. Let $\{\gamma_{c_m}\}$ be a convergent subsequence of $\{\gamma_{m!}\}$ converging to γ . Then from above, supp $\gamma \subset zI(\mu) = I(\mu)z$ for some $z \in Z_{\mu}$. Therefore, for each *m*, replacing γ_{c_m} by $\gamma_{c_m} z^{-1}$ (and using the same notation), we get that $\mu = \gamma_{c_m}^{c_m} y_m$, $y_m \in I_\mu \cap G(\mu)$ and $\gamma_{c_m} \to \gamma$ and $G(\gamma) \subset I(\mu)$, which is compact. Also $\{y_m\}/Z_{\mu}$ is finite, and hence passing to a subsequence again, we may assume that $y_m = a z'_m = z'_m a$, where $a \in I_\mu \cap G(\mu)$ and $z'_m \in Z_\mu$. Therefore, $\gamma_{c_m}^{c_m} z'_m = a^{-1} \mu = \mu a^{-1}$. Now applying Theorem 2.2, we get that $A = \{\gamma_{c_m}^n \mid n \le c_m\}$ and $\{z'_m\}$ are relatively compact. Now if β is a limit point of $\{\gamma_{c_m}^{c_m}\}$ then $a^{-1}\mu = \beta z'$ for some $z' \in Z_{\mu}$. Since for all $m, c_m = l_m!$, where $l_m \to \infty$, any n divides c_m for all large m. Also since A is relatively compact, it is easy to see that β has an *n*-th root in \overline{A} , namely, any limit of the sequence $\{\gamma_{c_m}^{c_m/n}\}$. Therefore, $y\mu = \beta$ is infinitely divisible in the compact set \overline{A} , where $y = (z')^{-1} a^{-1} \in I_{\mu} \cap G(\mu)$. Now as in the proof of Theorem 3.1.32 of [H], $y\mu$ is rationally embeddable, i.e. there exists a homomorphism $f: \mathbf{Q}^*_+ \to M^1(G)$ such that $f([0,1]\cap \mathbf{Q}_{+}^{*}) \subset A$ is relatively compact and $f(1) = \mu$. Now since G is discrete, any compact connected subgroup of G has to be $\{e\}$. Therefore, as in the proof of Theorem 3.5.4 of [H], f extends to \mathbf{R}_+ and hence $y\mu$ is embeddable.

4. Infinitesimally divisible measures on algebraic groups

We first recall that an element *s*, in a Hausdorff semigroup *S* with identity *e*, is said to be infinitesimally divisible if for every neighbourhood *U* of *e* in *S*, *s* has a *U*-decomposition, i.e. there exist $s_1, \ldots, s_n \in U$ such that s_i 's commute and $s = s_1 \cdots s_n$. The following theorem generalizes Theorem 1.2 of [S3] in a certain sense.

Theorem 4.1. Let G be a real algebraic group and let $\mu \in M^1(G)$ be infinitesimally divisible in $M^1(G)$. Then there exist a closed semigroup $S \subset M^1_H(G)$, with identity ω_H for some compact subgroup H of $I(\mu)$, and an equivalence relation \sim , such that $\mu \in S$ and if $\rho : S \to S^* = S/\sim$ is the natural map then $\rho(\mu)$ is bald and infinitesimally divisible in S^* , and $T_{\rho(\mu)}$ is compact and associatefree in S^* . Moreover, if G is connected and nilpotent then μ is embeddable.

Before proving the above theorem, we define an equivalence relation on a certain kind of subsemigroup of $M^1(G)$, for any locally compact (Hausdorff) group *G*. For a $\mu \in M^1(G)$, let S_μ be the closed subsemigroup generated by T_μ in $M^1(G)$. Since $T_\mu \subset M^1(N(\mu))$, $S_\mu \subset M^1(N(\mu))$. In fact, for any $\lambda \in T_\mu$, supp $\lambda \subset xG(\mu)$, for some $x \in \text{supp } \lambda \subset N(\mu)$. Therefore, it easily follows that for any $\beta \in S_\mu$, supp $\beta \subset xG(\mu)$, for any $x \in \text{supp } \beta \subset N(\mu)$. We also know that $Z(\mu) \subset T_\mu \subset S_\mu$ and $Z(\mu)T_\mu = T_\mu Z(\mu) = T_\mu$. Let us define an equivalence relation ' \approx ' on S_μ as follows: for any

$$\beta, \lambda \in S_{\mu}, \beta \approx \lambda$$
 if $\beta = z\lambda$ for some $z \in Z(\mu)$.

For $\{\beta_n\}, \{\lambda_n\} \subset S_\mu$, suppose $\beta_n \approx \lambda_n$, i.e. $\beta_n = z_n \lambda_n$ for some $z_n \in Z(\mu)$, for each *n*. Now if $\beta_n \to \beta$ and $\lambda_n \to \lambda$, then we have that $\{z_n\}$ is relatively compact and for any limit point *z* of it, $z \in Z(\mu)$ and $\beta = z\lambda$. Therefore, $\beta \approx \lambda$.

Now for $\lambda \in S_{\mu}$, for any fixed $x \in \text{supp } \lambda$, $\text{supp } (\lambda x^{-1}) \subset G(\mu)$. For any $z \in Z(\mu)$, $z' = xzx^{-1} \in Z(\mu)$ as $Z(\mu)$ is normal in $N(\mu)$ and hence

$$\lambda z = (\lambda x^{-1})xz = (\lambda x^{-1})z'x = z'(\lambda x^{-1})x = z'\lambda.$$

Similarly, one can also show that $z\lambda = \lambda z''$, for some $z'' \in Z(\mu)$.

Now for $i \in \{1, 2\}$, β_i , $\lambda_i \in S_\mu$, let $\beta_i \approx \lambda_i$, i.e. there exist $z_i \in Z(\mu)$, such that $\beta_i = z_i\lambda_i$, Then from the above equation, $\beta_1\beta_2 = z_1\lambda_1z_2\lambda_2 = z_1z'_2\lambda_1\lambda_2$ for some $z'_2 \in Z(\mu)$. That is, $\beta_1\beta_2 \approx \lambda_1\lambda_2$. Let $\psi: S_\mu \to S^*_\mu = S_\mu/\approx$ be the natural projection. Then ψ is a continuous open homomorphism and it is also easy to show that S^*_μ is Hausdorff.

In case of a real algebraic group G, we define an analogous equivalence relation \approx' with respect to $Z^0(\mu)$, the connected component of the identity in $Z(\mu)$, i.e. for $\beta, \lambda \in S_{\mu}$, $\beta \approx' \lambda$ if $\beta = z\lambda$, for some $z \in Z^0(\mu)$. It is easy to verify as above that this is an equivalence relation using the fact that $Z^0(\mu)$ is normal in $N(\mu)$.

Proof of Theorem 4.1. Let G be a real algebraic group and let μ be infinitesimally divisible in $M^1(G)$. Since G is metrizable, so is $M^1(G)$.

Step 1. Let S_{μ} , \approx' , S_{μ}^* and $\psi: S_{\mu} \to S_{\mu}^*$ be as above. Clearly, S_{μ} and S_{μ}^* are second countable and $\psi(\mu)$ is infinitesimally divisible in S_{μ}^* .

Since G is algebraic, by Theorem 3.2 of [DM2], $T_{\mu}/Z^{0}(\mu)$ is relatively compact. Clearly, $\psi(T_{\mu}) \subset T_{\psi(\mu)}$. Now for any $\{\lambda_{n}\} \subset T_{\mu}$, there exists a sequence $\{z_{n}\} \subset Z^{0}(\mu)$, such that $\{\lambda_n z_n\}$ is relatively compact and hence $\{\psi(\lambda_n) = \psi(\lambda_n z_n)\}$ is also relatively compact. Since $T_{\mu}Z(\mu) = T_{\mu}, \{\lambda_n z_n\} \subset T_{\mu}$ and the above implies that $\psi(T_{\mu})$ is compact in S_{μ}^* .

Since μ is infinitesimally divisible so is $\psi(\mu)$ in S^*_{μ} . We can choose a neighbourhood basis $\{U_i\}_{i\in\mathbb{N}}$ of δ_e in $M^1(G)$. For any *i*, there exist $\mu_{i1}, \ldots, \mu_{in_i} \in U_i \cap T_\mu$, such that μ_{ij} s commute and $\mu = \mu_{i1} \cdots \mu_{in_i}$. Therefore $\psi(\mu) = \psi(\mu_{i1}) \cdots \psi(\mu_{in_i})$ is a $\psi(U_i)$ -decomposition of $\psi(\mu)$ in $\psi(T_\mu)$. Let $\Delta = (\mu_{ij})^{n_i}_{i\in\mathbb{N}, j=1}$ and $\psi(\Delta) = (\psi(\mu_{ij}))^{n_i}_{i\in\mathbb{N}, j=1}$. Then Δ (resp. $\psi(\Delta)$) is a commutative infinitesimal triangular system in S_μ (resp. in S^*_μ) converging to μ (resp. $\psi(\mu)$). In fact, $\mu = \prod_{j=1}^{n_i} \mu_{ij}$ and $\psi(\mu) = \prod_{j=1}^{n_i} \psi(\mu_{ij})$.

Step 2. Since I^0_{μ} is open in I_{μ} , one can choose U and W to be neighbourhoods of $I^0_{\mu}J_{\mu}$ such that $U = \{\nu \in M^1(G) \mid \nu(I^0_{\mu}I(\mu)V) > \delta\}$, for some $\delta > 0$, $\overline{U} \cap I_{\mu}J_{\mu} = I^0_{\mu}J_{\mu}$, for some relatively compact neighbourhood V of e in G^0 and $WW \subset U$. Now let $\lambda \in S_{\mu} \cap \overline{U} \setminus W$ be such that $\psi(\lambda^n) \in T_{\psi(\mu)}$ in S^*_{μ} for all n, then $\mu = \lambda^n \nu_n = \nu'_n \lambda^n$, for some ν_n, ν'_n in S_{μ} for all n. Then the concentration functions of both λ and $\tilde{\lambda}$ do not converge to zero. Since λ commutes with μ , as in the proof of Theorem 2.4 of [S4], $\sup \lambda \subset xI(\mu) = I(\mu)x$, for some $x \in \operatorname{supp} \lambda \subset I_{\mu} \cap \overline{U}$. i.e. $\lambda \in I^0_{\mu}J_{\mu}$, a contradiction as $\lambda \notin W$. Now as in the proof of Lemma 2.5 in [S4], there exists n such that for any $m \ge n$, $\psi(\mu)$ cannot be expressed as $\psi(\mu) = \psi(\lambda_1) \cdots \psi(\lambda_m)\psi(\nu)$, where $\psi(\lambda_j)$ s commute with each other and also with $\psi(\nu)$ for any $\lambda_i \in S_{\mu} \cap \overline{U} \setminus W$, for all j.

Since $I_{\mu} \subset T_{\mu}$, $\psi(I_{\mu})$ is compact. Let $K = \psi(I_{\mu}^0 J_{\mu})$. Then K is a compact semigroup and $\psi(U \cap S_{\mu})$ and $\psi(W \cap S_{\mu})$ are neighbourhoods of K in S_{μ}^* .

Since $\psi(\mu)$ is a limit of a triangular system as above, as in Lemma 2.6 of [S4], given any neighbourhood U' of K in S^*_{μ} , one can choose small neighbourhoods U and W as above such that $\psi(U \cap S_{\mu}) \subset U'$ and show that there exists a U'-decomposition of $\psi(\mu)$ in $\psi(T_{\mu})$, namely, $\psi(\mu) = \psi(\mu_1) \cdots \psi(\mu_n)$, where each $\psi(\mu_i) \in U'$ is a limit of a subsystem of $\psi(\Delta)$.

Step 3. Let $\{U'_n\}$ be a neighbourhood basis of K in S^*_{μ} such that $U'_{n+1} \subset U'_n$ for all n and $\bigcap_{n \in \mathbb{N}} U'_n = K$. Now let $\psi(\mu) = \gamma_1 \cdots \gamma_n$ be a U'_1 -decomposition of $\psi(\mu)$ in $\psi(T_{\mu})$ obtained as above. Given any U'_k -decomposition of $\psi(\mu)$ as $\psi(\mu) = \nu_1 \cdots \nu_r$, $\nu_l = \prod_{j \in J_{il}} \psi(\mu_{k(i)j})$, where $\bigcup_l J_{il} = \{1, \ldots, n_{k(i)}\}$ we get U'_{k+1} -decomposition of each ν_l in such a way that $\nu_l = \nu_{l1} \cdots \nu_{ln_l}$, $\nu_{lm} \in U'_{k+1}$, where $\nu_{lm}\nu_{pq} = \nu_{pq}\nu_{lm}$, for all l, m, p, q, and all the ν_{lm} are limits of a subsystem of $(\psi(\mu_{(k+1)(i)j}))$, where $\{(k+1)(i)\}$ is a subsequence of $\{k(i)\}$. Clearly $\psi(\mu) = \prod_{l,m}\nu_{lm}$ is a U'_{k+1} -decomposition for $\psi(\mu)$.

For each $k \in \mathbf{N}$, let M_k be the subsemigroup of S^*_{μ} generated by U'_k -decomposition obtained in above manner. Then each M_k is abelian, $\mu \in M_k$ and $M_k \subset M_{k+1}$. Let $M = \overline{\bigcup_k M_k}$ and let $K' = K \cap M = \psi(I^0_{\mu} J_{\mu}) \cap M$. Then M (resp. K') is a closed (resp. compact) abelian semigroup. Also, given any neighbourhood U' of K' in M, there exists a neighbourhood U'' of K in S^*_{μ} , such that $U'' \cap M \subset U'$. Hence μ has a U'-decomposition in M for every neighbourhood U' of K'.

Step 4. We now show that $T_{\psi(\mu)}$ is compact in M. Let U, W and V be as in Step 2. Let $\nu \in S_{\mu}$ be such that $\psi(\nu) \in T_{\psi(\mu)}$ in M. Now $\mu = \nu\nu' = \nu''\nu$ for some $\nu', \nu'' \in S_{\mu}$. Arguing as in Step 2, there exists n (which does not depend on the choice of $\psi(\nu) \in T_{\psi(\mu)}$) such that for any $m \ge n$, $\psi(\nu)$ cannot be expressed as $\psi(\nu) = \psi(\lambda_1) \cdots \psi(\lambda_m)\psi(\beta)$ in M for $\lambda_j \in S_{\mu} \cap \overline{U} \setminus W$, for all j, and $\psi(\lambda_j)$ s commute and they also commute with $\psi(\beta)$. Here, $\psi(\nu)$ is a limit of a commutative K'-infinitesimal triangular system in M, i.e. $\psi(\nu) = \lim_{i\to\infty} \prod_{j=1}^{n_i} \psi(\nu_{ij})$ for some $\nu_{ij} \in S_{\mu}$. Again arguing as in Step 2, $\psi(\nu) = \psi(\nu_1) \cdots \psi(\nu_n)$ for $\psi(\nu_i) \in T_{\psi(\mu)} \cap \psi(\overline{U} \setminus W)$. That is, $\psi(\nu) \in (\psi(\overline{U} \setminus W)^n$. Since *n* does not depend on the choice of $\psi(\nu)$ in $T_{\psi(\mu)}$, $T_{\psi(\mu)} \subset (\psi(\overline{U} \setminus W))^n$. Hence it is easy to show as in the proof of Lemma 2.1 of [S4] that $T_{\psi(\mu)}$ is relatively compact.

Step 5. Let $J = \psi(J_{\mu}) \cap M$. Then J is a compact semigroup and there exists a maximal idempotent h_1 in J. Then $J' = Jh_1$ is a group. Let $H = \{x \in I(\mu) \mid \psi(x)h_1 \in J'\}$. It is easy to check that H is a compact group. Let $h = \omega_H$ and let $h^* = \psi(\omega_H)$. Then $Jh^* = J'h^* = h^*$ and $K'' = K'h^* = (\psi(I^0_{\mu}) \cap M)h^*$, which is a compact group. Let $M^* = Mh^*$. M^* is a closed abelian semigroup with identity h^* and $K'' \subset M^* \subset M$. Now if U is a neighbourhood of K'' in M^* then there exists a neighbourhood U' of K' in M such that $U'h^* \subset U$, and hence if $\psi(\mu) = \lambda_1 \cdots \lambda_n$ is a U'-decomposition of $\psi(\mu)$ in M, then since $\mu = \mu h = \mu h^n$, $\psi(\mu) = \lambda_1 \cdots \lambda_n \psi(h^n)$ and hence $\psi(\mu) = \lambda_1 h^* \cdots \lambda_n h^*$ is a U-decomposition of $\psi(\mu)$ in M^* . Now we define an equivalence relation \sim' on M^* as follows: For

$$\lambda, \nu \in M^*, \lambda \sim' \nu$$
 if $\lambda = k\nu$ for some $k \in K''$.

Let $S^* = M^* / \sim'$ and let $\phi : M^* \to S^*$ be the natural projection and let $\rho = \phi \circ \psi$. Then S^* is a Hausdorff abelian semigroup with identity $\phi(h^*)$, $\rho^{-1}(S^*) = S$ is a closed semigroup in $M_H^1(G)$, the relation \sim is defined by ρ on S, each $\rho(\lambda)$ in $T_{\rho(\mu)}$ is inifinite-simally divisible in S^* and by step 4, $T_{\rho(\mu)}$ is compact. Now if $a, b \in T_{\rho(\mu)}$ are associates then a = a'b and b = b'a. Let $\beta, \beta' \in S_1$ be such that $\rho(\beta) = b$ and $\rho(\beta') = b'$ and $\rho(\gamma) = a'$, then since b = b'a'b, $\psi(\beta) = k\psi(\beta')\psi(\gamma)\psi(\beta)$ for some $k \in K''$ and hence $\psi(\beta')^n \in T_{\psi(\beta)}$ for all n. As in step 2, $\sup \beta' \subset xI(\beta) = I(\beta)x$, for some $x \in I_{\mu}$, and since $\rho(\beta') = b'$ is infinitesimally divisible, it is easy to show that $x \in I_{\mu}^0$. Therefore b' is identity in S^* and b = a, i.e. $T_{\rho(\mu)}$ is associatefree.

Now if $\beta \in S_{\mu}$ be such that $\rho(\beta) \in T_{\rho(\mu)}$ is an idempotent then $\psi(\beta)^n \in T_{\psi(\mu)}$ for all *n* and hence as in step 2, supp $\beta \subset xI(\mu) = I(\mu)x$ for some $x \in I_{\mu}$. Since $\rho(\beta)$ is also infinitesimally divisible in S^* one can easily show that $x \in I^0_{\mu}$ and $\beta = x\omega_{H'} = \omega_{H'}x$ for some $H' \subset I(\mu)$ and hence $\psi(\beta) \in K''$ and hence $\rho(\beta)$ is identity in S^* . Therefore $\rho(\mu)$ is bald.

Step 6. Now let *G* be connected and nilpotent and let *Z* be the center of *G*. Then G/Z is simply connected and hence so are $N(Z(\mu))/Z$ and $N(Z(\mu))/Z(\mu)$, where $N(Z(\mu))$ is the normaliser of $Z(\mu)$, and both of them are connected. Therefore, $I_{\mu} = Z(\mu)$ as $I_{\mu}/Z(\mu)$ is compact. Hence, in the above equation $K'' = h^*$ and \sim' is a trivial relation, i.e. $S^* = M^*$ and also $\rho = \psi$.

Now we show that for $s \in T_{\psi(\mu)} \setminus \psi(h)$ in S^* , there exists a continuous *s*-norm f_s on T_s (in S^*) such that $f_s(s) > 0$, (an *s*-norm on T_s (in S^*) is a map $f_s : T_s \to \mathbf{R}_+$ which is continuous at the identity and it is a partial homoporphism, i.e. $f_s(s_1s_2) = f_s(s_1) + f_s(s_2)$ if $s_1, s_2, s_1s_2 \in T_s$). This would imply the embedding of $\psi(\mu)$ in a continuous real one-parameter semigroup $\{\gamma_t\}_{t\in\mathbf{R}_+}$ in S^* (cf. [S3], Theorem 2.3 or [S4], Theorem 4.1) and in particular, $\mu = \lambda_n^n x_n x_n \in Z(\mu) = Z^0(\mu)$.

Let $\lambda \in S$ be such that $\psi(\lambda) = s$. If λ is not a translate of an idempotent then as in the proof of Theorem 5.1 in [S3], there exists a continuous λ -norm f_{λ} on S such that $f_{\lambda}(\lambda) > 0$, (it is easy to see that one does not need the underlying semigroup to be abelian in that proof). Moreover, if $\psi(\nu_1) = \psi(\nu_2)$ then $\nu_1 = \nu_2 x$ for some $x \in Z(\mu)$. Then $\nu_1 \tilde{\nu}_1 = \nu_2 \tilde{\nu}_2$ and $f_{\lambda}(\nu_1) = f_{\lambda}(\nu_2)$ (see the proof of Theorem 5.1 in [S3]). Therefore, we can define a *s*-norm f_s on T_s in S^* such that $f_s(\psi(\nu)) = f_{\lambda}(\nu)$. Now if λ is indeed a translate of an idempotent, i.e. $\lambda = x\omega_K = \omega_K x$ for some compact group $K \subset I(\mu) \subset Z$,

then clearly $x \in I_{\mu} = Z(\mu)$ and hence $s = \psi(\lambda)$ is an idempotent. Now since $\psi(\mu)$ is bald $s = \psi(h)$, a contradiction.

The embeddability of $\psi(\mu)$ in particular implies that $\psi(\mu) = \psi(\lambda_n)^n$, and hence $\mu = \lambda_n^n x_n$, $x_n \in Z(\mu)$ for all *n*. Therefore, $\sup \lambda_n^n \subset G(\mu)Z(\mu)$. Here, $\sup p \lambda_n \subset y_n G(\mu)$ for some $y_n \in \sup p \lambda_n \subset N(\mu)$. Therefore, $y_n^n \in G(\mu)Z(\mu) \subset \tilde{G}(\mu)Z(\mu)$, where $\tilde{G}(\mu)$ is the Zariski closure of $G(\mu)$. Since $N(\mu)/\tilde{G}(\mu)Z(\mu)$ is simply connected, $y_n \in \tilde{G}(\mu)Z(\mu)$ for all *n*. That is, for each *n*, $\sup p \lambda_n \subset \tilde{G}(\mu)Z(\mu)$ and hence $\lambda_n = \beta_n z_n$ for some $z_n \in Z(\mu)$ and $\sup p \beta_n \subset \tilde{G}(\mu)$ and $\mu = \beta_n^n z'_n$, where $z'_n = z_n^n x_n \in Z(\mu)$. Now we have that $z'_n \in C = \tilde{G}(\mu) \cap Z(\mu)$, which is the center of $\tilde{G}(\mu)$. Therefore, $CZ \subset Z(\mu)$ is an abelian algebraic subgroup containing the center Z of G. Therefore CZ is connected, and hence it is divisible. In particular, each z'_n is infinitely divisible in CZ, and hence μ is infinitely divisible on G which is a connected nilpotent Lie group, therefore μ is embeddable (cf. [BM]).

Remark. As remarked in [S4], Theorem 4.1 also holds for $\mu \in M^1_H(G)$ which is infinitesimally divisible in $M^1_H(G)$.

We now state the following theorem for maximally almost periodic groups without a proof. A locally compact group G is said to be *maximally almost periodic* if its irreducible finite dimensional unitary representations separate points of G.

Theorem 4.2. Let G be a maximally almost periodic first countable group. Let Δ be a commutative infinitesimal triangular system of probability measures converging to μ in $M^1(G)$. Then there exists an $x \in G^0$ such that $x\mu = \mu x$ is embeddable.

If G is as above then there exists a normal vector subgroup V, such that G^0/V is compact and V centralises an open subgroup of finite index in G (cf. [RW], Theorems 1, 2]. The above theorem can be proven using the above fact, Proposition 2.5, Lemma 2.4, Proposition 3.3 and Theorem 4.2 of [S4] and the techniques developed above.

Acknowledgement

The author would like to thank the referee for useful suggestions.

References

- [BM] Burrell Q L, Infinitely divisible distributions on connected nilpotent Lie groups II. J. London Math. Soc. II 9 (1974) 193–196
- [DM1] Dani S G and McCrudden M, Factors, roots and embeddability of measures on Lie groups. Math. Z. 190 (1988) 369–385
- [DM2] Dani S G and McCrudden M, Embeddability of infinitely divisible distributions on linear Lie groups. *Invent. Math.* 110 (1992) 237–261
- [DM3] Dani S G and McCrudden M, Infinitely divisible probabilities on discrete linear groups. J. Theor. Prob. 9 (1996) 215–229
 - [H] Heyer H, Probability measures on locally compact groups (Berlin-Heidelberg: Springer-Verlag) (1977)
 - [M1] McCrudden M, Factors and roots of large measures on connected Lie groups, Math. Z. 177 (1981) 315–322
 - [M2] McCrudden M, An introduction to the embedding problem for probabilities on locally compact groups, in: Positivity in Lie Theory: Open Problems. De Gruyter Expositions in Mathematics 26, (Eds) J Hilgert, J D Lawson, K-H Neeb and E B Vinberg (Berlin-New York: Walter de Gruyter) (1998) pp. 147–164

- [P] Parthasarathy K R, Probability measures on metric spaces (New York-London: Academic Press) (1967)
- [RW] Robertson L and Wilcox T W, Splitting in MAP groups, Proc. Am. Math. Soc. 33 (1972) 613–618
- [S1] Shah Riddhi, Semistable measures and limit theorems on real and *p*-adic groups. *Mh. Math.* 115 (1993) 191–213
- [S2] Shah Riddhi, Convergence-of-types theorems on p-adic algebraic groups. Proceedings of Oberwolfach conference on Probability measures on groups and related structures XI (ed.) H Heyer (1995) 357–363
- [S3] Shah Riddhi, Limits of commutative triangular systems on real and p-adic groups. Math. Proc. Camb. Philos. Soc. 120 (1996) 181–192
- [S4] Shah Riddhi, The central limit problem on locally compact group, Israel J. Math. 110 (1999) 189–218