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Abstract. On a locally compact group G, if v ,’f" — p, (ky — 00), for some probabi-
lity measures v, and p on G, then a sufficient condition is obtained for the set
A = {v"|m < k,} to be relatively compact; this in turn implies the embeddability of a
shift of . The condition turns out to be also necessary when G is totally disconnected.
In particular, it is shown that if G is a discrete linear group over R then a shift of the
limit p is embeddable. It is also shown that any infinitesimally divisible measure on a
connected nilpotent real algebraic group is embeddable.
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1. Introduction

Commutative triangular systems of probability measures on locally compact groups have
been studied extensively and recently the embedding of the limit x (or a translate xpu,
x € G) have been shown on a large class of groups under certain conditions like infinite-
simality of triangular system and/or ‘fullness’ of the limit p (see [S4] for the latest results
and the literature cited therein for earlier results). Generalizing the techniques developed
in [S3,S4], we extend our earlier result to some particular triangular systems on algebraic
groups. We also discuss special triangular systems of identical measures, i.e. limit
theorems. In particular if 1/’,‘1" — p on G then we give a sufficient condition for the set
A= {v!|m<k,} to be relatively compact; this in turn would imply the embeddability
of a shift of the limit x. The condition turns out to be also necessary if G is totally
disconnected. We hereby generalize our earlier results on limit theorems on Lie groups to
general locally compact groups. We also show the embedding of a shift of the limit p if G
is a discrete linear group over R.

Let G be a locally compact (Hausdorff) group and let M'(G) be the topological
semigroup of probability measures with weak topology and convolution as the semigroup
operation. Let y, v be any measures in M'(G). Let the convolution product of x4 and v be
denoted by pv. For any compact subgroup H of G let wy denote the normalized Haar
measure of H. Let M},(G) = wyM'(G)wy, then M},(G) is a closed subsemigroup of
M'(G) with identity wy. For any x € G, let &, denote the Dirac measure at x and let
xp = 8y, (similarly, px = péy). Let I, ={x € G | xp = px} and let I(u) ={x € G|
xp = px = p}, then I, (resp. I(p)) is a closed (resp. compact) subgroup of G. Let J,, =
{\ € M'(G) | A\u = pX = u}. Clearly, J,, is a compact semigroup and for any A € M'(G),
X € J, if and only if supp A C I(p). Let G(u) be the smallest closed subgroup of G
containing supp u. Let N(p) (resp. Z(u)) be the normalizer (resp. centralizer) of G(u) in
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G. Let i denote the adjoint of j1, defined by fi(B) = u(B~"), for all Borel subsets B of G.
w is said to be symmetric if ;1 = fi. Let G° denote the connected component of the identity
in G. For a set A C M!(G) and a normal subgroup C C G, we denote A/C = 7(A), where
m: G — G/C is the natural projection.

A measure y € M'(G) is said to be infinitely divisible (resp. weakly infinitely divisible)
if for every n € N, there exists p1, € M'(G) such that p" = u (resp. p'x, = p for some
X, € G); and it is said to be embeddable if there exists a continuous one-parameter
convolution semigroup { i },-o such that ;1 = u. Since we aim to prove the embeddabi-
lity of a given measure under various conditions, the reader is referred to [M2], a survey
article on the embedding problem of infinitely divisible measures.

Let S be a Hausdorff semigroup with identity e and let s € S. Let T, denote the set of
two sided factors of s, that is, Ty = {t € S | tr = rt = s for some r € S}. Elements s,7 € S
are said to be associates if s and ¢ are two sided factors of each other, i.e. s € T, and
t € T,. A subset A of S is said to be associatefree if s,t € A are associates then s = r. An
element & in S is said to be an idempotent if h> = h. An element s is said to be bald (in S)
if e is the only idempotent contained in 7. For a subset A of S, a decomposition of s as
§ =518y, for some n € N, where s; € A and s;5; = s;5; for all i, j, is called an A-
decomposition of s. An element s (in S) is said to be infinitesimally divisible if s has a U-
decomposition for every neighbourhood U of ein S. Aset A = {s;; € S|i e N,1<j <
ni,n; — 0o as i — oo} is said to be a rriangular system in S; we will sometimes write
A = (si)itn ju1- A is said to be commutative if for every fixed i, 5;; commute with each
other, it is said to be infinitesimal if as i — oo, s;; — e uniformly in j. We say that A
converges to p if ;1 - - - Sip, = 5i — [

In § 2, we prove a limit theorem for general locally compact groups, (see Theorem 2.1).
In § 3, we show that if u’;" — p, (k, — 00), on a discrete linear group over R, then xpu is
embeddable for some x € G (see Theorem 3.1). In § 4, we show that any infinitesimally
divisible probability measure ;. on a connected nilpotent real algebraic group is embed-
dable, (more generally see Theorem 4.1).

2. Limit theorems on locally compact groups

Theorem 2.1. Let G be a locally compact group and let 7w : G — G/G° be the natural
projection. Let {v,} be a relatively compact sequence in M'(G) such that for any limit
point v of it, G(m(v)) is a compact group in G/G° and v — y for some . € M'(G) and
for some unbounded sequence {k,} C N. Suppose that for some connected nilpotent
normal subgroup N of G, the closed subgroup generated by supp ju and N contains GP.
Then the set A = {v | m < k,} is relatively compact and there exists x € 1,, such that xy.
is embeddable.

Remarks. (1) The above theorem generalizes Theorem 1.7(1) of [S4]. (2) If G is totally
disconnected then G° = {e} and hence the above theorem implies that if % — 4 and if
{vn} is relatively compact and for any limit point v of it, G(v) is compact then A is
relatively compact. Conversely, if A is relatively compact then so are {v,,} and {v*"}, and
for any limit point v of {v,}, G(v) is compact as {v"} C A. Thus, for totally
disconnected groups we get a necessary and sufficient condition for the set A as above to
be relatively compact.

We first prove a more general theorem for totally disconnected locally compact groups.
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Theorem 2.2. Let G be a totally disconnected locally compact group and let {v,} C
MY (G) be such that v, — v where G(v) is compact and v*v/, — p for some sequence
{v/} in M'(G) such that v,V = Vv, for all n. Then given any nelghbourhood U ofe and
an € > 0 there exists an I, such that for all large n, v"™(G()I(n)U) > (1 — €)', for all
m < ky. In particular A = {v"" | m < k,} and {V,} are relatively compact.

Proof. As G(v) is compact and v™ € T}, for all m, suppv C xI(p) = I(u)x, for all
x € supp v (cf. [S4], Theorem 2.4). Therefore G(v)I(1) is a compact group.

Let V be an open compact subgroup of G such that V is normalized by G(v)I(u), and
V CU. Since v, — v, v,(GWw)I(n)V) > 1 —¢, for all large n. Let V' = {\ | \(G(v)
I(w)VvV)> (1 - )'/2} and let U' = {\ | M(G(»)I(p)V) > 1 — 6} for some positive 6 < e.
Then V'V' C U'. Let J = {\ € M'(G) | supp A\ C G(v)I(n)V}. Clearly, J is a compact
semigroup and JV' = V'. Let A € U’ \ V'. If possible, suppose that X" € T}, for all n, then
by Theorem 2.4 of [S4], supp A C xI(u) = I(u)x, for all x € supp . Since A € U',
supp A C G(v)I(p)V,i.e. X € J C V', a contradiction. Hence for A € T, N U’ \ V’, there
exists n = n(\), such that \* ¢ T,,. By Lemma 2.1 of [S4], T, N U’ \ V' is compact. As in
the proof of Lemma 2.5 in [S4], one can find /, such that for any A€ T, N U\ V', u
cannot be expressed as 1 = A, for any \' which commutes with \.

Since v, — v, v, € V’, for all large n. Let such a large n be fixed. Then there exists
a, > 1, such that v € V', for all m < a, and v ¢V'. Therefore, v € V'V'\ V' C
U'\V'. Let b, =k, — la, if la, < k,, otherwise bn =0.If b, = O then S (U’) for
all m < k. Therefore for all large n, v™(G()I()V) > (1 —6)', and hence v(G(v)
I()U) > (1 — €)' for all m < k,, as V C U and § < e

We now show that b, =0, for all large n. If b, # 0 for infinitely many n, then
viaybiy) — . Since {v%} C U'\V/, by Lemma 2.1 of [S4], {v®} is relatively
compact and it has a limit point (say) A, such that ;1 = A"\, for some X', which is a limit
point of {v1/}, ie. A€ T, NU'\ V' and AN = X'\. This is a contradiction to the
choice of [ as above.

Now it is enough to show that A is relatively compact as this would also imply that
{v/} is relatively compact. Let u, = v*v/. Then y,, — p and for each n, v™ € T, for all
m < ky. Let F = G(v)I(w)V for V as above Then F is compact. Let A’ = {\ € M1 (G)]
MF) > (1—¢) /2} Then from above, A C A’. Since pu, — p, for every 6§ > 0 such
that § < (1 —€)'/2, there exists a compact set Ks such that j,(Ks) > 1 —§ (cf. [H],
Properties 1.2.20(2)). Therefore, for every n,m as above, there exists x,, such that
v (Ksxnm) > 1 — 6. Now since A C A', the above implies that x, , € K(;IF and hence
v™(K}) > 1 — 6, where K} = KsK; ' F which is a compact set. In particular A is relatively
compact (cf. [H], 1.2.20). This completes the proof.

We now prove several results which will be needed to prove Theorem 2.1.

Lemma 2.3. Let G be a locally compact first countable group and let {u,}, {\,} and
{v,} be sequences in M'(G) such that \v, = v\, = ln — u for some p € M'(G).
Then there exists a sequence {x,} such that x, € N(u,) for each n and { \,x,} and {x,\, }
are relatively compact and all its limit points are supported on supp [i.

The proof is quite similar to Proposition 1.2 in [DM] and Theorem 2.2 in ch. III of [P].

Proof. For any integer r > 0 there exists a compact set K, C suppu such that
w(K,) > 1 — 4=+ Without loss of generality, we may assume that K, C K, for all
r. Let {U,} be a neighbourhood basis of ¢ in G such that each U, is relatively compact,
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U,y1 C U, for all r and N, U, = {e}. Since u, — u, there exists n, € N, such that
wn(K-U) >1 =277 and p,(U,K,) >1-27", for all n>n,. Let E,={xec G|\,
(K,Ux™') > 1 =277} and let F,, = Ny, <ny EL-

A simple calculation as in Theorem 2.2 of ch. III in [P] shows that for n > n,,
va(G\ E") > 27*+2) and hence v, (G \ F,) > 1/4. Similarly, we define B’ = {x € G |
M(x"'UK,) > 1 —27"} for any r and C, = Ny, <pyBj. Then v, (G \ C,) > 1/4.

Therefore v, (F, N C,) > 1/2. For each n, we pick x, € F, N C, Nsuppv, as it is
nonempty, X, € supp v, C N(u,). Then for any r > 0, A\,x,(K,U,) > 1 —27" and x,\,
(U,K;) > 1 —27" for all n > n, and hence by tightness criterion, {\,x,} and {x,\,} are
tight. Also, since K, C supp  for all r, \,x,((supp #)U,) > 1 — 27", for all n > n,. Since
N, U, = {e}, it easily follows that for any limit point A of {\x,}, supp A C supp p.
Similarly, the limit points of {x,\,} are also supported on supp p.

Lemma 2.4. Let G be a locally compact group and let i, — p in M'(G). Let B be a
subgroup which centralizes an open subgroup H containing supp u. Then the following
hold:

1. For any sequence {x,} in B, {x;'u,x,} is relatively compact and it converges to pu.

2. Let p, = M\yvy = Upy, for all n. If for sequences {x,} and {y,} in B, {x,\,yn} is
relatively compact then its limit points belong to T,; in particular if \,a, — X for
some {a,} C B, then A € T,, and the limit points of {x,\yy.} are of the form z\ = \Z,
for some 7,7 € Z(p).

Proof. Let U be any open set contained in H and let K C supp p be any compact set such
that 44(K) > 0. Then given 0 < € < u(K), there exists N such that p,, (KU) > u(K) — e for
all n > N. Since x, centralizes KU, x, ' 11,%,(KU) = p,(KU) > p(K) — e. Since this is
true for all K and U as above, {x, ! 11,,x, } is relatively compact and it converges to . Let N
be a limit point of a relatively compact sequence {\, = x,\,y, }, where x,,y, € B. Since
{Xap1nx; 1} converges to p, {y, 'v,x, '} is relatively compact and there exists a limit point
v/ of it such that X't/ = p. Also, /X is a limit point of {y, ! p,y,}, which converges to .
Therefore, /X' = 1 and hence X' € T,,. Now suppose \,a, — A, {a,} C B, then from
above \ € T),. Therefore, A = x(3, for some x € N (1) and 3 supported on G(x) C H. Then
x~'\ya, — . Let K’ be any compact subset in H such that 3(K’) > 0. Then for any open
subset U contained in H, \,a,(xK'U) = z,\,(xK'U), where z, = xy,'a,x"'x ! € Z(p),
as B C Z(u) and x € N(u) which normalizes Z(u). Since this is true for all n and all
compact subsets K’ of supp [ it implies that {z, } is relatively compact in Z(1). Therefore,
N =z, for X' as above, where z is a limit point of {z,'}. Now since A € T, and z € Z(p),
A=z =xZB=xB7 =\, where 7 = x"'zx € Z(p).

PROPOSITION 2.5

Let G be a locally compact group and let C be a closed normal (real) vector subgroup of
G. Suppose that {j,} C M'(G) be a sequence such that yi, — pi, the closed subgroup
(say) H, generated by the centralizer Z(C) of C and supp p, is open in G. Suppose that
there exists a sequence {x,} in C such that {x,'u,x,} is relatively compact. Then
{x}/(Z(1) N C) is relatively compact. In particular I, N C = Z(p) N C.

Proof. Suppose C C Z(u) then there is nothing to prove. Now let V = Z(x) N C, which
is a proper closed subgroup of C. Since C is normal in G, for any x € G, i, : C — C,
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ix(c) = xex™! for all ¢ € C, is a continuous homomorphism of C and hence it is a linear
operator in M(d,R), where d is such that C is isomorphic to RY. Now V = Z(u)n
C = Nyesupp Ker(ix) and hence V is a (possibly trivial) vector subspace and C =V x W,
a direct product. Now for each n, x, =z, + y,, where z, € V and y, € W. Let pu, =
2, ! 1inzn, for each n. Since V centralizes G(u1) and hence H which is open, by Lemma 2.4,
Hy = H

Now it is enough to show that {y,} is relatively compact. If possible, suppose it has a
subsequence, denote it by {y,} again, which is divergent, i.e. it has no convergent
subsequence. We know that {y,'u/y, = x, 'u,x,} is relatively compact. Passing to a
subsequence if necessary, we get that y,/ Hy,,|| — y in W, where || || denotes the usual
norm in the vector space C. Since i/, — p, arguing as in Proposition 9 in [M1], we get
that G(u) C Z(y), the centralizer of y in G, a contradiction as y¢Z(u) N C =V, for
y € W and ||y|| = 1. Therefore, {y,} is relatively compact. If x € I, then xux~' = p
therefore, (I, N C)/(Z(pn) N C) is a compact group, but since C and Z(p) N C are both
vector groups so is C/(Z(u) N C) and hence has no nontrivial compact subgroups.
Therefore, I, N C = Z(p) N C.

PROPOSITION 2.6

Let G and C be as above. Let {v,} be a relatively compact sequence in M'(G) such that
vk — 1 and the closed subgroup (say) H, generated by the centralizer Z(C) of C and
supp u, is open in G. Let A = {v' | m < k,}. If A/C is relatively compact then so is A.

Proof. Let A/C be relatively compact. If possible, suppose that A is not relatively
compact That is, there exists a subsequence of {v,}, denote it by same notation, such
that {yn } is divergent, where I/(n) < k, for all n. Passing to a subsequence if necessary,
we get that v, — v (say). Let 7: G — G/G" be the natural projection. Since {m(v)" |
n € N} C m(A) which is compact, G(7(v)) is compact. Also, since {v" | n € N} C T,
by Theorem 2.4 of [S4], suppv C xI(u) = I(u)x, for any x € suppv. Since A/C is
relatively compact, there exists a sequence {x,,m} in C such that {v"'x, ,} is relatively
compact and {x, } 1s dlvergent Also since vk — p (resp. v& ™ — pv =wvp) the
above implies {x, vk} (resp. {x, ) vit!" ’”}) and hence {x’1 kaxym} (resp.
{1 vktlx, , 1) is relatively compact. Now by Proposition 2.5, {x,.}/(Z(1) N C)
(resp {x,,_’m}/( (uv)N C)) is relatively compact. As Z(u) N Z(uv) = Z(p) N Z(v), the
above implies that {x,,}/(Z(1) NZ(v) N C) is relatively compact. Without loss of
generality we may assume that {x,,,} C C' =Z(u) NZ(r) N C, which is a vector group
centralizing G(v) and H. Therefore, H' = Z(C’) contains H and hence it is an open
subgroup in G containing supp p and supp v. We may also assume that x,,; = x,x, = e for
every n as {v,} and {v*} are relatively compact.

Let n€ N and let 1 <m <k, From Theorem 2.2, v"(H') > 6> 0 and hence
vy m(H') > 6. Since {v)'x, ,} is relatively compact, there exists a compact set L C H’,
such that vx,,,(L) > §/2. Let 0 < e < min{6/2,1/4}. There exists a compact set
K C supp s such that u(K) > 1 —e. Let U C H' be such that U is open in G. Then there
exists N, such that for all n > N, v%(KU) > 1 —e. Let n > N and let 1 < m < k,. Then
there exists {y,m} C G, such that v7y,,,(KU) > 1 —e. Since €< §/2, KUy, !n m

w7 0. That is, y, ), € K'x, ), where k= (KU)™'L ¢ H' and hence v xnm(Kl)
1 ¢ and each Xnm commutes with all the elements of K; = KUK’ C H’ Now for
m,l <k, such that m+1[<k, we get that v""(Kx, lle H> —6)2. Since
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V:l"H(le;}nH) >1—eand e < 1/4, we get that Kyx, ), ., N le;}nle;,} # (). Therefore
xnvmxnle;’,ln € K?K;'NC'. Since C' is a vector group, C' is strongly root compact by
3.1.12 of [H] and hence by the definition of strong root compactness (see 3.1.10 of [H]),
there exists a compact subset K” such that x,,,, € K”, for all m, n. This is a contradiction
to the fact that {x,l,l(n)} is divergent. Therefore A is relatively compact. This completes the
proof.

Let A € M!'(G). For some o = (ri,b,..., r,,lblm), where m € N, and r;,[; € N U {0}
fixed, let a(X\) = A" X" ... M\, where A\’ = X\ = §,. For any such «, the map A+ a(\)
on M'(G) is continuous. Also, G(\) = U,, supp a(\) (over all possible choices of « as
above).

Proof of theorem 2.1. Without loss of generality we may assume that {v,} is convergent,
thatis v, — v (say). From the hypothesis, G(7(v)) is compact, and hence by Theorem 2.2,
m(A) is relatively compact. It is enough to show that A is relatively compact as by
Theorem 3.6 of [S1], there exists x such that xy = px is embeddable.

Step 1. Let K be the maximal compact normal subgroup of G, then K is characteristic in
G and hence normal in G. Since A is relatively compact if and only if its image on G/K
is relatively compact, without loss of generality we may assume that G° has no nontrivial
compact normal subgroups. In particular, G° is a Lie group. Let L be any open Lie
projective subgroup of G. Let M be any compact normal subgroup of L such that L/M is a
Lie group, then G’M = G° x M, a direct product, as both G° and M are normal in L and
G’ NM = {e}. Moreover H = G°M is an open subgroup in G. Since I() is compact,
without loss of generality, we may assume that /(1) normalizes H.

Step 2. Now we prove the assertion by induction on the dimension of the Lie group G°.
Let dim G° = 0. Then G is totally disconnected and the assertion follows from above.
Now suppose that for any k > 1, the assertion holds for G such that dim G° < k. Now let
dim G° = k.

Step 3. Suppose that there exists a subsequence of {v,}, denote it by {v,} again, such
that {v'"»} is divergent. By Theorem 1.2.21 of [H], there exists a sequence {x,} C G, such
that {v!x,} and hence {x;'v*~"} and {x,'vhx,} are relatively compact and we may
assume that {x,} is divergent. Since 7(A) is relatively compact, {7 (x,)} is relatively
compact in G/G° and hence we may choose {x,} to be in G°.

Without loss of generality we may assume that the subgroup N, as in the hypothesis, is
the nilradical. Suppose that N is trivial. Then G° is a connected semisimple group.
Suppose that the center of G is trivial. Then G° is an almost algebraic subgroup of
GL,(R). By Propositions 4-6 of [M1], there exists a proper closed subgroup G’ of G°
such that given any relatively compact sequence {z,} C G°, the limit points of {x,z,x, '}
are contained in G'. Now since G° C G(u), there exists an x € G(u) N (G° \ G'). Since
G°\ G’ is open in G°, there exists a set U which is open in G° such that x € U,
U cC G\ G and U is compact. Then for some a = (r1,11,...,7n,L,), we have that
a(p)(UM) =6 >0, as UM = U x M is open in G, for a compact group M as above.
Since a(vh) — a(p), a(b)(UM) > §/2 for all large n. Now since {x;'vhix,} is
relatively compact, so is {x, 'a(v*)x,}. Therefore, there exists a compact set K such that
(x; 'a(vf)x,)(K) = a(vb)(x,Kx, ') > 1 —§/4 for all n. From the above equation
UM N x,Kx, ! # 0, for all large n. Therefore, there exists a sequence {a,} C K, such that
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for all large n, x,a,x, ' = u,v,, where u, € U and v, € M and hence XnQnV, lx; L—y,.
For each n, put z, = anv;I, then since x,, u, € G°, z, € G°. Also {zx} C KM is relatively

compact. Therefore the limit points of {x,z,x,' = u,} belong to G'. But {u,} C U and
UcG® \ G, a contradiction. Therefore, A is relatively compact.

Step 4. Now suppose G° is a semisimple group with nontrivial center Z. Then Z is a
discrete group normal in G and Z = Z", for some n, as we have assumed that G° has no
nontrivial compact subgroups normal in G. The action of G on Z" extends to the action of
G on R”. Therefore, we can form a semidirect product G; = G - R". Let D = {(z,2) |
z € Z"}. Then D is normal in G;. Now G can be embedded as a closed subgroup in
G» =G,/D and G) = (G’ x R")/D. 1t is easy to see that the center C of G) is
isomorphic to R". Also, C is normal in G, and Gg /C is a semisimple group with trivial
center. Let ¢ : G, — G,/C be the natural projection. It is easy to see that G(¢(u))
contains Gg /C, the connected component in G,/C, and hence by the above argument,
(A) is relatively compact. Since H centralizes G’ in G, H' = H x R" = G* x M x R”"
is open in G; and hence H'/D is an open subgroup in G, which centralizes C. Now the
assertion in this case follows from Proposition 2.6.

Step 5. Now suppose the nilradical N of G is nontrivial. Let C be the center of N. Since
G° does not contain any compact subgroups normal in G, C is a vector group, i.e. C is
isomorphic to R", for some n. Since N is normal in G, so is C. Let ¢ : G — G/C be the
natural projection. Then since dim G°/C < k, we have that 1)(A) is relatively compact.
Now since C centralizes N x M, M as above, and supp x and N generate a subgroup
containing G°, the assertion follows from Proposition 2.6.

Remark. Theorem 2.1 continues to hold if the conditions in it are replaced by the
following: 1/,’;" — U, the closed subgroup generated by supp i and N is whole of G (where
N is as in the hypothesis of the theorem), {v,} /G is relatively compact and for any limit
point v of it, G(v) is compact in G/G°. For the proof, A/G° is relatively compact by
Theorem 2.2 and the first three steps of the proof of the above theorem will apply word
for word. Also, for a normal subgroup C in steps 4 and 5 above, Z(u) N C is a central
vector group in G by the above condition and hence by Proposition 2.5, the relative
compactness of A/C implies that of A/(Z(u) N C). Therefore A is relatively compact by
Lemma 3.2 of [S1]. The above variation of Theorem 2.1 generalizes Theorem 3.1 of [S1].

3. Limit theorems on discrete linear groups over R

Theorem 3.1. Let G be a discrete linear group over R.. Let {v,} be a sequence in M' (G)
such that v* — p, for some p € M'(G) and some unbounded sequence {k,} in N. Then
there exists x € I, such that xy is embeddable.

Remark. So far, in the limit theorems on discrete groups, one had either the support
condition or the infinitesimality condition imposed (see [S4] and Theorem 2.2 above).
The above theorem gives a generalization of Theorems 1.5, 1.7(1) of [S4] for this special
class of discrete groups. It also generalizes Theorem 1.2 of [DM3]. One cannot get an
embedding of p itself or an element x as above to be infinitely divisible as in
G =GL(1,Z) = {-1,1}, forx = —1, §, = "1, for all n, but &, is clearly not infinitely
divisible and hence not embeddable.
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To prove the theorem, we need preliminary results.

Lemma 3.2. Let V be a finite dimensional vector space over R.. Let {7,} be a divergent
sequence in GL(V) such that for some b > 0, |det(7,)| > b for all n. Then there exists a
proper subspace W of V such that the following holds: if {j,} C M'(V) is such that
tn — poand {7,(u,)} is relatively compact, then supp u C W.

The proof of the Lemma is exactly same as the proof of Proposition 3.2 in [S2] using
Proposition 1.4 in [DM1]. We will not repeat it here.

PROPOSITION 3.3

Let G be a discrete linear group over R and let {u,} be a sequence converging to i in
MY (G). Let \, € T, for each n. Then there exist sequences {z,} and {z,} in Z(u) such
that {\,z,} and {z,\,} are relatively compact and all their limit points belong to T,.

Proof. There exists a sequence {\,} in M'(G), such that \,\, = A\, = u, — p. By
Lemma 2.3, there exists a sequence {x,} in G such that {\,x,} and {x,\,} are relatively
compact and all its limit points are supported on supp u. Therefore, by Theorem 1.2.21 of
[H], {x; '\ }, {\.x; '} and hence {x;'1,x,} and {x,p,x, '} are all relatively compact. If
v is a limit point of {x, ' X"} then there exists a limit point A of {\,x,} such that \v = p.
Since supp A C supp g = supp A supp v, supp v C G(u). Therefore all the limit points of
{x;'X'} and also of {x,'u,x,} are supported on G(1).

Similarly, the limit points of {x,s,x, '} are also supported on G(u), and {x, ' a(pz,)x, }
and {x,a(u,)x, '} are relatively compact and their limit points are supported on G(p), for
any « (where o and «(p,) are defined as in §2). Also, for any e > 0, there exists a
compact set K such that (x,!s,x,)(K) > 1 — € for all n. Now for any limit point v of
{6, uxn }, Y(K N G(p)) > 1 — €. Therefore it is easy to see that (x; ! p,x,)(K') > 1 — e,
for all large n, where K’ = K N G(p).

We know that G C GL(n,R) C M(n,R). Let V, be the vector space generated by
G(p) in M(n,R). There exists a finite set {y;,...,y,} C G(u) such that {y;,...,yn}
generates V. Since G(u) = U,supp o (), where o and a(ye) are as defined in § 2, there
exist i, ..., q, such that y; € supp o;(u), for each i. Therefore, as G is discrete, for
some 6 >0, a;(p){y;} > 6 for all i. Since a;(u,) — «;(p), there exists N such that
a;i(pn){yi} > 6/2, for all n > N, for all i.

Now since {x, 'c;(p,)x,} is relatively compact and all its limit points are supported on
G(u), arguing as above we can get a compact set K C G(u), such that (x; " cv;(p1,)x,)
(K1) > 1 — /2 for all i, for all large n. That is, c;(p,) (x,K1x, ') > 1 — §/2 for all i, for
all large n. Therefore, y; € anlxrjl, or x;ly,-xn € K, C G(u) C V,, for all large n. Since

18 generated by {y1,--,Ym}, the above implies that x 1Vﬂxn =V,, for all large n.

Let G be the Zariski closure of G in GL(d,R) and let N(V,,) (resp. Z(V,)) be the
normaliser (resp. centraliser) of V,, in G. Then Z(V,,) and N(V,,) are algebraic subgroups
of G and Z(V,) is normal in N(V,). Now N(V,) acts on V, linearly and the map
p:N(V,) — GL(V,) is a rational morphism, as in the proof of Theorem 3.2 in [DM2].
Therefore, the image of p, Im(p) is closed in GL(V,) and since kerp = Z(V,),
¢ :N(V,)/Z(V,) — Imp is a topological isomorphism.

We know that {x,} C N(V,). Now if possible, suppose that {x,}/Z(V,) is not
relatively compact. Going to a subsequence if necessary, without loss of generality, we
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may assume that {x,}/Z(V,) is divergent; i.e. it has no convergent subsequence, and for
some 6 > 0, either | det p/(x,Z(V,))| = | det p(x,)| > 6 or |detp/(x,'Z(V,))| > 6.

Suppose '(xaZ(V,,))| = | det p(x,)| > 6 for all n. By Lemma 3.2, there exists a
proper subspace W of V,, such that suppa(p) C W for all o, as a(p,) — a(p) and
{0 (xaZ(V))) (atn)) = xnce(pan)x;, '} is relatively compact. This implies that G(u) =
Uqsupp a(p) C W, a contradiction as G(y) generates V,, and W is a proper subspace.

Now suppose |detp/(x;'Z(V,))| > 6. Now using the fact that for every a,
{0 (x5, ' Z(V))) (aptn)) = x;, ' ae(an)x, } is relatively compact and replacing {x,} by
{x,;'} in the above argument we arrive at a contradiction. Therefore, {x,}/Z(V,) is
relatively compact.

Clearly, N(V,) NG normalizes Z(V,). Let H= (N(V,) N G)Z(V,) and let x € H.
Then x(VlL N G)x’1 =V, NG. Let G, be the closed subgroup generated by V,, N G in G.
Then G(p) C G, and x normalizes G,. Therefore H is a closed subgroup (in G)
normahzlng G,. Since G, is discrete, the connected component H ' of H, centralizes G
and hence H' C Z(V,) C H as V, is generated by G(u) and G(u) C G,,. Since " is
open in H, it follows that H is open in H. That, is H = H and H is a closed subgroup This
implies that ((N(V,) NG)Z(V,))/Z(V,) is isomorphic to (N(V,)NG)/(Z(V,)NG).
Therefore {x,}/Z(n) is relatively compact as Z(V,)NG = Z(p). Therefore
Xn = Zn@y = anz,, for some relatively compact sequence {a,} in G and some sequences
{zx} and {2} in Z(p). Also, since {\,x,} and {x,)\,} are relatively compact, so are
{M\zn} and {Z,\,}, and all their limit points belong to 7,, by Lemma 2.4.

Proof of Theorem 3.1. Since v — 1, by Proposition 3.3, for any m, there exists a se-
quence {zm .} C Z(1) such that {v"z,,,} is relatively compact. Passing to a subsequence
if necessary, without loss of generality, we may assume that {v,z;,} is convergent,
with the limit v. Then v € T, by Lemma 2.4. Also, for any m, {v,,, = Z;}nl/nZWH,l,n}
is relatively compact and its limit points are of the form zv = vZ, for some z,7 € Z(u)
(cf. Lemma 2.4).

Suppose for any fixed m, the limit points of {v"'z,,,} are of the form v"z,, for some
Zm € Z(u). Then combining the above two statements, we get that the limit points of
{v" 2,11} have the form v™z,zv = v™ 1z, 4, for some z,.; € Z(p). By induction,
for any m, the limit pomts of {vz,,} are of the form v"z,, for some z, € Z(u).
Moreover, by Lemma 2.4, v™ € T, as it is a limit point of {1/ ZmnZom } for each m. Also
suppv C N(p).

Now by Proposition 3.3, {v"}/Z(u) is relatively compact. Therefore G(v)Z(u)/Z(u)
is compact and hence finite of order (say) s, as G is discrete. Let x € supp v, then
x* €Z(p). Let f =v'z =z’ forz =x"* € Z(n). Then e € supp 3 and " € T}, for all n.
Therefore by Theorem 2.4 of [S4], suppS C I(u) and, furthermore, 5" — wy, where
H = G(B) C I(y). Hence supp v C xH N Hx. Therefore xp = vy = puv = px, and hence
x €1, for all x € suppv.

Now we show that p has a shift which is infinitely divisible. Let / € IN be fixed. Let
a, = [ky/l] and b, = k, — la,. Then for any, m < [, v"™y*—ma — 1 and hence there
exist sequences {z,,} in Z(p) such that {v7*z 1 are relatively compact. Arguing as
above, we get that the limit pomts of {v!mz) ) are of the form Alz, for some z € Z(u) and
some limit point \; of {v;z) ,}. Letr € N be fixed. Since a, — oo, for large n such that
ap > r, VP, = ViZea T, where { =z vi~ ’z’l n} which is relatively compact and
hence \; = v"y for some 7. Also 1%z 2=V 'v)Z,,. By Proposition 3.3, there exists
{yn} in Z(u) such that {9 "y,} is relatlvely compact and hence so is {y,'v;z},}
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and all its limit points are of the form 7'v" for some 7' € Z(u) (cf. Lemma 2.4). That
is, Ay =~/v’, for some ' and hence for 3 = v’z = zv® defined as above, \, = 3"
= 3"/3" for some /', 3". Since this is true for all r, wy € T),. That is, Nwy = wyl; = N
for all .

For each n, let z, = (z;’n)_l. Then the sequence {z,v/?} is relatively compact. Clearly,
b, <l for all n. Let r <[ be such that r = b,, for infinitely many n;. Then clearly the
limit points of {z,v/?} are contained in {gv" | r <I,g € Z(n)} and hence if p; is any
such limit point then supp p; C G(v)Z(p) C I, and pwu = xwy (1€Sp. wWyp; = WHX)),
where x] € Z(1), where s is the cardinality of G(v)Z(u)/Z(1).

Combining the above we get that u= Np, = Mwyp; = Mxi(= xAl) for some
x; € supp p; C 1, for each [. That is, p is weakly infinitely divisible. As )\ € T},
supp \; C y:G(u) for some y; € supp Ay C N(p). Since for each I, u = Ax; and x; € G(v)
Z(p), we get that y} € G(v)Z(1)G(n). Hence (y))" € G(n)Z (1), as G(v)Z(p)/Z(p) is a
finite group of order s. Since T}, /Z(1), is relatively compact, arguing as in Theorem 3.1 of
[DM3], we get that F =T,/G(n)Z(p) is finite and it obviously consists of dirac
measures. Also, the above implies that the image of \; on G’ = N(p)/G(p)Z () is &,
where ¥, = y,G(1)Z(11) in G' and 3, = e, the identity in G'. Let B={y € F |y = &;
for some r € N}. Since F is finite, so is B and there exists an element of maximal order
in B; let i be the maximal order. Then " = &; for all v € B. Since the image of )\; on
N(11)/G(p)Z(1) belongs to B, we have that supp AI' C G(u)Z(p), for all I. Now for each
m, let B, = N , where y = Ai"x, for some x € I,,. Then p = B"x and supp 3, C G(u)
Z(u). Also, since supp S, C yG(p) for some y € supp By, y =2y =Yz, for some
Yy € G(u),z € Z(w). Then B8, = z7' B, = Buz ' is supported on G(u). Also, = ["x =
(B,)"2"x = (B,,)"x', where x' =z"x € 1,NG(u) as supp 3, C G(u). That is, p is
weakly infinitely divisible on G(p). Moreover, from the above equation, we have that
{8,}/Z, is relatively compact, where Z, = G(u) NZ(p) is the center of G(u) (cf.
[DM3], Theorem 2.1). In fact, {3,z } is relatively compact for some sequence {z,} in
Z,. Let v, = B,zm. Then ()" = (3,,)"z" and hence p = (v,)"xn for some x,, €
1, N G(p), for all m. Now if 4/ is a limit point of {7} then (7/)" € T, for all n and hence,
as earlier, suppy’ C xI(p) = I(p)x, for some x € I, N G(p). Since (I, NG(w))/Z, is
finite (cf. [DM3], Theorem 2.1), if a is its cardinality then supp (7')* C zl() = I(p)z for
some z € Z,,. Therefore limit points of {(v},)*} are supported on zI(u) = I(p)z, z € Z,,.
Let v, = (7,,,)". Then p = v x4y, wWhere x4, € 1, N G(1). Let {7, } be a convergent
subsequence of {71} converging to ~. Then from above, supp~ C zI(u) = I(u)z for
some z € Z,. Therefore, for each m, replacing ., by 7.,z ' (and using the same nota-
tion), we get that y1 =¥y, Y € I, N G(p) and 7y, — v and G(v) C I(u), which is
compact. Also {y,}/Z, is finite, and hence passing to a subsequence again, we may
assume that y, =az, =z,a, where a€l,NG(u) and z, € Z,. Therefore,
Yerz, = a 'y = pa~'. Now applying Theorem 2.2, we get that A = e In<cm}
and {z],} are relatively compact. Now if / is a limit point of {7} then a~'u = Bz’ for
some 7 € Z,. Since for all m, ¢,, = l,,!, where [,, — oo, any n divides c,, for all large m.
Also since A is relatively compact, it is easy to see that 3 has an n-th root in A, namely,
any limit of the sequence {73:/ "}. Therefore, yu = (3 is infinitely divisible in the compact
set A, where y = () 'a~' € I, N G(11). Now as in the proof of Theorem 3.1.32 of [H],
yH is rationally embeddable, i.e. there exists a homomorphism f : Q% — M'(G) such that
£(10,1[NQ7%) C A is relatively compact and f(1) = p. Now since G is discrete, any
compact connected subgroup of G has to be {e}. Therefore, as in the proof of Theorem
3.5.4 of [H], f extends to R, and hence yyu is embeddable.
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4. Infinitesimally divisible measures on algebraic groups

We first recall that an element s, in a Hausdorff semigroup S with identity e, is said to be
infinitesimally divisible if for every neighbourhood U of e in S, s has a U-decomposition,
i.e. there exist sy,...,s, € U such that s;’s commute and s = s; - - -5,,. The following
theorem generalizes Theorem 1.2 of [S3] in a certain sense.

Theorem 4.1. Let G be a real algebraic group and let y € M'(G) be infinitesimally
divisible in M'(G). Then there exist a closed semigroup S C M},(G), with identity wy for
some compact subgroup H of (1), and an equivalence relation ~, such that p € S and if
p: S — 8 =S/ ~is the natural map then p(u) is bald and infinitesimally divisible in S*,
and T, is compact and associatefree in S*. Moreover, if G is connected and nilpotent
then p is embeddable.

Before proving the above theorem, we define an equivalence relation on a certain kind
of subsemigroup of M'(G), for any locally compact (Hausdorff) group G. For a
w € M'(G), let S, be the closed subsemigroup generated by T, in M'(G). Since
T,CM'(N(w)), S, C M"(N(u)). In fact, for any X\ € T,, supp A C xG(u), for some
x € supp A C N(u). Therefore, it easily follows that for any 3 € S,,, supp 3 C xG(p), for
any x € supp 8 C N(p). We also know that Z(u) C T, C S, and Z(p)T,, = T, Z(p) = T,.
Let us define an equivalence relation ‘~’ on S, as follows: for any

B,A€S,, BrNif [ =z forsome z€Z(p).

For {8,},{M\} C S, suppose 3, = \,, i.e. B, = z,\, for some z, € Z(p), for each n.
Now if 8, — (8 and X\, — )\, then we have that {z,} is relatively compact and for any
limit point z of it, z € Z(u) and 8 = z\. Therefore, 5 ~ A.

Now for A € S, for any fixed x € supp \, supp (\x~') C G(u). For any z € Z(u),
7 =xzx~' € Z(u) as Z(u) is normal in N(p) and hence

Az= (A az= (D=7 =2

Similarly, one can also show that zA = A7’ for some 7" € Z(u).

Now fori € {1,2}, i, \i € S, let §; = \;, i.e. there exist z; € Z(11), such that §; = z;\;,
Then from the above equation, 56, = z1\iz2\2 = 2125 A1 A2 for some 2z, € Z(p). That is,
Bifr = M. Letyp: S, — S; =S,/ = be the natural projection. Then v is a continuous
open homomorphism and it is also easy to show that 7 is Hausdorff.

In case of a real algebraic group G, we define an analogous equivalence relation =
with respect to Z°(11), the connected component of the identity in Z (1), i.e. for 3, \ € Sus
B~ Nif B=z)\ for some z € Z°%u). It is easy to verify as above that this is an
equivalence relation using the fact that Z°(y) is normal in N(u).

/

Proof of Theorem 4.1. Let G be a real algebraic group and let p be infinitesimally
divisible in M'(G). Since G is metrizable, so is M'(G).

Step 1. Let S, =, S; and ¢: S, — S; be as above. Clearly, §,, and S; are second
countable and () is infinitesimally divisible in S},

Since G is algebraic, by Theorem 3.2 of [DM2], T,/Z°(p) is relatively compact.
Clearly, 1(T,) C Ty,). Now for any {\,} C T, there exists a sequence {z,} C Z%(p),
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such that {\,z,} is relatively compact and hence {¢(\,) = ¥(Ayz,)} is also relatively
compact. Since T,Z(p) = T, {\za} C T, and the above implies that ¢)(7,) is compact
in S

S{nce w is infinitesimally divisible so is 1(u) in S7,- We can choose a neighbourhood
basis {U; };cn Of 8. in M'(G). For any i, there exist i, . . ., ftin, € U; N T, such that y;;s
commute and g =y - - - ;- Therefore (u) = (i) -+ (i) 18 a w( ;)-decom-
position of ¥(u) in P(Ty,). Let A = (u;j)iin =1 and Y(A) = (P(ij))ien j=1- Then A
(resp. (A)) is a commutative infinitesimal triangular system in S, (resp. in S;)
converging to x (resp. (). In fact, pu = II}", 1y and h(p) = IIZ, b (pui).

Step 2. Since IO is open in I, one can choose U and W to be neighbourhoods of ° e
such that U = {1/ e M'(G) | V(Iol(u) ) > 6}, for some § >0, UNI,J, =1° s "for
some relatively compact nelghbourhood V of e in G° and WW C U. Now let )\ € S,,ﬁ
U\ W be such that ¢(\") € Ty, in S, for all n, then = X'v, = v, X", for some v, 1},
in §,, for all n. Then the concentration functlons of both A and \ do not converge to zero.
Slnce A commutes with u, as in the proof of Theorem 2.4 of [S4], supp A C xI(u) =
I(p1)x, for some x € suppA C I, NU.ie. X € ISJ/,,, a contradiction as A ¢ W. Now as in
the proof of Lemma 2.5 in [S4], there exists n such that for any m > n, ¥)(u) cannot be
expressed as ¢(p) = P(A1) - - - Y(An)¥(v), where ¥();)s commute with each other and
also with ¢(v) for any \; € S, N U \ W, for all j.

Since 1, C T, ¥(1,) is compact. Let K = w(ngu)' Then K is a compact semigroup
and (U N'S,) and (W N S,,) are neighbourhoods of K in S

Since () is a limit of a triangular system as above, as in Lemma 2.6 of [S4], given
any neighbourhood U’ of K in S,,» one can choose small neighbourhoods U and W as
above such that (U N S,) C U’ and show that there exists a U’-decomposition of (1)
in ¢(T,), namely, () = ¥(1) - - - ¢(un), where each ¥(y;) € U’ is a limit of a sub-
system of (A).

Step 3. Let {U,} be a neighbourhood basis of K in S}, such that U, ,, C U, for all n and
MuenU,, = K. Now let (1) =~1---7, be a Uj-decomposition of (p) in (7))
obtained as above. Given any Uj-decomposition of 1(u) as ¢¥(u) = vy ---v,., v; =gy,
Y(piyj), where Updy = {1,...,m;)} we get U;, -decomposition of each v, in such a
way that v, = vy -V, Vim € U1/<+1’ where v, = VgV, for all I,m, p,q, and all
the v, are limits of a subsystem of (1t +1)(i);))» Where {(k + 1)(i)} is a subsequence of
{k(i)}. Clearly ¥(p) = Iy is a Uy, -decomposition for t)(s).

For each k € N, let M be the subsemigroup of S, generated by U}-decomposition
obtained in above manner. Then each M, is abelian, yu € M, and M; C M;;. Let
M=UM,; and let K' =KNM = z/)(ngu) N M. Then M (resp. K') is a closed (resp.
compact) abelian semigroup. Also, given any neighbourhood U’ of K’ in M, there exists a
neighbourhood U” of K in §7, such that U" N M C U'. Hence y has a U’-decomposition
in M for every neighbourhood U’ of K'.

Step 4. We now show that Ty, is compact in M. Let U, W and V be as in Step 2. Let
v €S, be such that ¢(v) € Ty, in M. Now p = v/ =1v"v for some /,v" €S,.
Arguing as in Step 2, there exists n (which does not depend on the choice of ¥)(v) € Tyy,,))
such that for any m > n, 1)(v) cannot be expressed as ¥(v) = (A1) - - - Y(An)(8) in M
for \; € S, NU\ W, for all j, and ¢();)s commute and they also commute with ().
Here, (v ) is a limit of a commutative K’-infinitesimal triangular system in M, i.e.
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P(v) = lim; o0 I 19h(v4;) for some v;; € S,. Again arguing as in Step 2, ¢(v) =
Ywy) - Y(vn) for 1/)(1/,) € Ty NY(U\ W). That is, ¢(v) € (¢(U \ W)". Since n does
not depend on the choice of 1/)( ) in Ty, Typuy € (W(U \ W))". Hence it is easy to show
as in the proof of Lemma 2.1 of [S4] that Ty, is relatively compact.

Step 5. Let J = 9(J,) N M. Then J is a compact semigroup and there exists a maximal
idempotent & in J. Then J' = Jh; is a group. Let H = {x € I(p) | ¥(x)hy € J'}. Tt is easy
to check that H is a compact group. Let & = wy and let &* = ¢)(wy ). Then Jh* = J'h* =
h* and K" = K'h* = (’(/J(Ig) N M)h*, which is a compact group. Let M* = Mh*. M* is a
closed abelian semigroup with identity #* and K” C M* C M. Now if U is a neigh-
bourhood of K” in M* then there exists a neighbourhood U’ of K’ in M such that
U'h* C U, and hence if () = A; - - - A, is a U'-decomposition of () in M, then since
w=ph=ph", Pp(u) =X A\p(h") and hence ¥(u) = \Mh*--- \,h* is a U-decom-
position of 1(p) in M*. Now we define an equivalence relation ~' on M* as follows: For

MNvEM AN~ vif \=kv for some k€K

Let S* = M*/ ~' and let ¢ : M* — S* be the natural projection and let p = ¢ o 1. Then
S* is a Hausdorff abelian semigroup with identity ¢(h*), p~'(S*) =S is a closed
semigroup in M};(G), the relation ~ is defined by p on S, each p(X) in T, is inifinite-
simally divisible in §* and by step 4, T,,,) is compact. Now if a,b € T, are associates
then a—a’b and b ="ba. Let 8,4 € S| be such that p(3) =b and p(f') =b" and
p(v) = d, then since b = b'a'b, (8) = k(8 )(v)y(B) for some k € K” and hence
P(3)" e TL/, for all n. As in step 2, supp 3’ C xI(8) = I(3)x, for some x € 1,,, and since

p(B)=10"is 1nfinitesimally divisible, it is easy to show that x € 12. Therefore b is
identity in S* and b = q, i.e. Ty is associatefree.

Now if 3 € S, be such that p(3) € T, is an idempotent then 1(3)" € Ty, for all n
and hence as in step 2, supp 5 C xI(p) = I(p)x for some x € I,,. Since p(/3) is also in-
finitesimally divisible in $* one can easily show that x € IB and 8 = xwy = wypx for some
H' C I(1) and hence 9(5) € K" and hence p(03) is identity in S*. Therefore p(y) is bald.

Step 6. Now let G be connected and nilpotent and let Z be the center of G. Then G/Z is
simply connected and hence so are N(Z(u))/Z and N(Z(w))/Z (1), where N(Z(1)) is the
normaliser of Z(y), and both of them are connected. Therefore, I, = Z(u) as I,/Z(p) is
compact. Hence, in the above equation K” = h* and ~/ is a trivial relation, i.e. $* = M*
and also p = .

Now we show that for s € T, \ ¥(h) in S*, there exists a continuous s-norm f; on T
(in $*) such that f;(s) > 0, (an s-norm on T (in S*) is a map f; : Ty — R which is
continous at the identity and it is a partial homoporphism, i.e. f;(s152) = f;(s1) + f;(s2) if
$1,82,8182 € Ty). This would imply the embedding of ¢(u) in a continuous real one-
parameter semigroup {Vt}teR in §* (cf. [S3], Theorem 2.3 or [S4], Theorem 4.1) and in
particular, = \'x, x, € Z(p 1) = Z%Q).

Let A € S be such that ¢»(\) = s. If A is not a translate of an idempotent then as in the
proof of Theorem 5.1 in [S3], there exists a continuous A-norm fy on § such that
F(A) > 0, (it is easy to see that one does not need the underlying semigroup to be abelian
in that proof). Moreover, if ¥ (v) = ¥(v,) then v = vx for some x € Z(u). Then
v = v and fi(v1) = fa(v2) (see the proof of Theorem 5.1 in [S3]). Therefore, we
can define a s-norm f; on T in S* such that f;(¢)(v)) = fa(v). Now if X\ is indeed a
translate of an idempotent, i.e. A = xwg = wgx for some compact group K C I(u) C Z,
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then clearly x € I, = Z(u) and hence s = () is an idempotent. Now since (1) is bald
s = 1(h), a contradiction.

The embeddability of (u) in particular implies that t(u) = 1(\,)", and hence
= Ny, x, € Z(u) for all n. Therefore, supp N C G(u)Z (). Here, supp A, C y,G()
for some y, € supp \, C N(y). Therefore, y' € G(11)Z (1) C G(1)Z (1), where G(p) is
the Zariski closure of G(y). Since N(j1)/G(u)Z(1) is simply connected, y, € G(11)Z (1)
for all n. That is, for each n, supp A, C G(u)Z(u) and hence A\, = (,z, for some
2n € Z() and supp B, C G(u) and p = 37, where , = z'x, € Z(1). Now we have that
7, € C = G(u) N Z(p), which is the center of G(). Therefore, CZ C Z(p) is an abelian
algebraic subgroup containing the center Z of G. Therefore CZ is connected, and hence it
is divisible. In particular, each z, is infinitely divisible in CZ, and hence p is infinitely
divisible on G which is a connected nilpotent Lie group, therefore ;1 is embeddable
(cf. [BM]).

Remark. As remarked in [S4], Theorem 4.1 also holds for p € M} (G) which is
infinitesimally divisible in M}, (G).

We now state the following theorem for maximally almost periodic groups without a
proof. A locally compact group G is said to be maximally almost periodic if its
irreducible finite dimensional unitary representations separate points of G.

Theorem 4.2. Let G be a maximally almost periodic first countable group. Let A be a
commutative infinitesimal triangular system of probability measures converging to [ in
M'(G). Then there exists an x € G° such that xu = px is embeddable.

If G is as above then there exists a normal vector subgroup V, such that G°/V is
compact and V centralises an open subgroup of finite index in G (cf. [RW], Theorems
1, 2]. The above theorem can be proven using the above fact, Proposition 2.5, Lemma
2.4, Proposition 3.3 and Theorem 4.2 of [S4] and the techniques developed above.
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