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Abstract. We investigate the commutation between a continuous linear random operator and 
a continuous linear deterministic operator on a Banach space. From this we obtain probabilis- 
tic versions of theorems by Fuglede and Putnam, both of them dealing with the commutation 
between continuous linear operators with continuous normal operators on a Hilbert space. 
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1. Introduction 

Opera tor  commutators  are a classical topic appearing in several branches of functional 
analysis and operator theory [1,6]. 

In this paper we investigate the commutat ion of a continuous linear random 
operator  �9 and a continuous linear deterministic operator  F both of them acting on 
a Banach space X. This commutat ion may be understood in a very broad sense; 
namely, for each element x in X and each continuous linear functional f on X, the event 
[f(dPFx) =f(F~x)]  can happen, that is the set{co:f((aPFx)(co)) =f(F(r~x)(co))} has 
a positive probability which depends upon the element x and the functional f .  In such 
a case, there exists a measurable set A with a positive probabili ty in such a way that, for 
every x~X, the random variables ~}Fx and Frbx coincide almost surely. 

Fuglede solved in [3] an outstanding problem in functional analysis, proposed by von 
Neumann, namely that every continuous linear operator T commuting with a continuous 
normal operator F on a Hilbert space, also commutes with the adjoint operator of F. Also 
the study of the commutator [T, F ]  when [[T, F] ,  F]  equals zero, and the operators T and 
F act on a Banach space, has received considerable attention. A fundamental result in this 
area was the theorem of Kleinecke [4] and Sirokov [9] who proved independently that in 
such a case [T, F]  is generalized nilpotent operator. A special case of this with the 
additional assumption that F is a continuous normal operator on a Hilbert space, was 
solved by Putnam [5] by stating that, in such a case the operator [T, F ]  equals zero. We 
show several probabilistic versions of those theorems by Fuglede and Putnam. 

Finally we show that if there is a sufficiently large probabilistic commutat ion  
between a random operator  �9 and a compact  normal  operator  on a Hilbert space, then 
P [ ~  = go(K)] > 0 for a suitable random function go acting on the spectrum of K. 

2. On the continuity of linear random operators 

Throughout the paper, (~,Z,0 z) denotes a complete probability space. Every measurable 
subset A of f~ is considered as a new probability space with the inherited structure from t ,  
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whose induced probability on A is the conditional probability Pa. As it is usual the expecta- 
tion of a given real random variable ~, denoted by E(r is defined to be the number Sa~dP. 

A mapping r from ~ into a given Banach space Y, over either the real or the complex 
field, denoted by ~, is said to be a Bochner random variable on Y if it is the almost sure 
limit of a sequence of simple random variables on Y. We denote, by Leo (P, Y) the linear 
space of all Y-valued Bochner random variables, which with the almost sure identifica- 
tion becomes a metrizable complete linear topological space Lo(P, Y) for the conver- 
gence in probability. This topology can be derived from the paranorm given by 
II ~ II0 = n:(If ~ II/(1 + II ~ II)). Relevant subspaces of Leo(P, Y) are the spaces Le,(P, Y) = 
{ ~ L e o ( P ,  Y): ~: II ~ II" < oo} of all Y-valued Bochner  r a n d o m  variables having rth 
moment. Besides the inherited topology from Leo(P, Y), the space Set(P, Y) has its 
appropriate topology, namely that associated to convergence in r-mean, which can be 
derived from the paranorm given by II ~ II r = ~ II ~ I1', when 0 < r < 1, while if 1 ~< r it can 
be derived from the seminorm given by II ~ lit = (n: II ~ I1') 1/'. Given CeLeo(P, Y), [Q 
denotes the equivalence class of ~ for the usual almost sure identfication. The space 
L,(P, Y) = { [~]:~e Le,(P, Y)} becomes a metrizable complete linear space. 

Given Banach spaces X and Ydenote by BL(X,  Y) the linear space of all continuous 
linear operators from X into Y endowed with the usual operator norm given by 
II F II = sUp,xt~ ~ x II Fx II. To shorten nota t ion  we write BL(X) instead of BL(X, X) and X' 
instead of BL(X,  K). 

A map @:X x f2 ---, Y is said to be a random operator from X to Y if, for each x e X ,  
the map o~F--,@(x, co), noted @x, lies in Leo(P, Y). For a full discussion of random 
operators the reader is referred to [2] and [10]. Such an operator is said to have rth 
moment if the maps ~o~--~(I)(z, co) lie in Le,(P, Y) and is said to be linear if 
~[~ [(I)  (0~ 1X 1 -~- 0C2X2) = O( 1 ( I )x  1 -~- 0~2 ( I )x2"  ] = 1, for all XI,X2~:X and 0C1,0~2~ ~'~. The continu- 
ity in probability of @ at x o eX means that limx~o P 1- [[ ~ x  - (I)x o [1 > e] = O, Ve > O. If 
@ has rth moment, then there is a notion of continuity more convenient than the 
continuity in probability introduced above; namely the continuity in r-mean, which 
means that lim . . . .  ~: [[ tI)x - Ox o [[' = O. We define the conditional operator, @a, of(I) as 
the restriction of @ to X x A. 

Theorem 2.1. Let X and Y be Banach spaces and �9 be a linear random operator from 
X to Y. Then the following assertions are equivalent: 

1. 60 is continuous in probability at every point in X.  

2. lim Pl-lf~xll >~-1 =Oforeverye>O.  
x ~  0 

3. lim P l - l f ( ~ x ) l > ~ 3 = 0  forevery e > 0 .  
(x,f)~ (0,0) 

Furthermore, if in addition 6~ has rth moment, then the preceding conditions are 
equivalent to the following ones: 

4. t~ is continuous in r-mean at every point in X.  

5. lim Elf@xll'= 0. 
x ~ 0  

6. lim EIf (@x)l '=0 .  
(x.jO~(0,0) 

7. 3M>O:Efl~xll" <~Mflxll" Vx~X. 
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Proof. It is clear that 1 implies 2, 4 implies 5, and 6 implies 3. 
Since If(q)x)l ~< [If II II~xll, we have limtx,;)_.to,o)[f(~x)l = 0 whenever 2 is fulfilled. 

Assume that �9 satisfies condition 3. To deduce assertion 1, in view of the closed 
graph theorem, it suffices to show that the graph of �9 is closed in X x ~ o ( P ,  Y). To 
this end, consider a sequence {x.} converging to 0 in X with {~x.} converging in 
probability to ~. For  every f e  Y' we have f(r = f ( l i m . ~  Ox~) = lim.~ ~f(epx.) = O. 
This gives P [ r e ker f  ] = 1. Since {kerf: f E  Y'} is a family of closed subsets in Y, we can 
apply [11; Lemma 3.1] in order to obtain 

P [  ~ f ~ , ,  ker f  l =  inf {P[ ~e ker f l  c~ "" c~ ker fk ]:k~N, f ~ .. . .  , f  ke Y'} = l. 

By Hahn-Banach theorem, c~i~ r, ker f = 0 ,  and thus we get P [ ~ = 0 ]  = 1. This 
establishes 1. To prove 4 we only need to show that �9 has closed graph in X x &a(p, y). 
Let {x.} be a sequence in X converging to zero with {~x.} converging in r-mean to ~. 
For  every f e  Y', we have n:l f(~)l '  = l im. .~  E l f ( ~ x . ) r  -- 0. Therefore P [~e ke r f ]  = 1. 
Arguing as above we get P [~ =0 ]  = 1 and this gives 4. 

Assume that �9 satisfies 5. Since ~:lf(~x)l' ~< IIf II '~: II ~x  II', it may be concluded that 
limCx, i~r ~ l f (  r 3 0 r  = 0. 

It is clear that 5 follows from 7. Conversely, assume that 5 holds and we claim that 
there are N,6 > 0 such that ~: II ~x I1' ~< N if II x II = 6. Otherwise for every ne N we choose 
x . e X  with II x~ II = 1/n and ~: [I Ox. I[' > n which contradicts assertion 5. If x e X \  {0}, 
then ~: II ~(~ IIx II)- ~ x I1' ~< N and therefore ~: I[ ~x  I1' ~< 6"g II x I1', as desired. 

We leave it to the reader to state the notion of continuous multilinear random 
operator. 

3. Commutation probabilities 

To investigate the commutation properties between a random operator and a deter- 
ministic one we first require an improvement of [11, Theorem 4.1]. To do this we 
establish a technical result in the following. 

Lemma 3.1. Let X and Y be Banach spaces and gP a continuous linear random opera- 
tor from X to Y. Then the set C~={xeX:P[r is closed, for every 
0~<6~<1. 

Proof. Let {xn} be a sequence in C~ converging to an element x in X. The sequence 
{Ox.} converges in probability to Ox and consequently lim..o~ n: (110x. II/(1 + II Ox. II)) 
= n:(llOx II/(1 + II~x II)). Let fl.  = {coefl:~x. #0}. For every neN, we have n:(ll r II 
/(1 + I I O x . l l ) ) = ~  IIOx.ll/(1 + IIOx. ll)dP ~< PUff.] <~ 1 - 6 .  Therefore, E(llOxll/(1 
+ II~xll))~ 1 - 6 .  Given keN, it is clear that kx.eC~ for every h e n  and {kx.} 
converges in probability to kx. Accordingly E(k II ~x  II//(1 + k II l ,x II)) ~ 1 - 6. Letting 
k ~ 0% we deduce that P [Ox # 0] ~< 1 - ~  and xeC~. [] 

Theorem 3.2. Let X 1 . . . . .  X N, Y be Banach spaces and r a continuous multilinear 
random operator from X 1 x ... x X N to Y. If, for all x e X  1 • ... x X N and f e  Y' 

P[ f (Ox)  = 0] > 0, 
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then the set 

{ P [ f ( ~ x ) = 0 ] :  x e X  1 x ""  x XN, f 6 Y ' }  

has a nonzero minimum, say 6, and there exists a measurable set A with P [ A ]  = 6 in such 
a way that, for every x e X  1 x ... x XN, 

rbx = 0 almost surely on A. 

Proof For  simplicity we assume N = 1. Fo r  each n e N ,  let C, be the closed subset of  
X a x Y '  given by C , = { ( x , p ) e X  i x  Y': P[f(~x)=O]>>.l /n} .  Then X i x  Y ' =  
w,~ 1C,. F r o m  Baire theorem C, has an interior point, say (x ' , f ' ) ,  for a suitable natural  
number  n. No te  that, i f ( x , f ) e X  1 x Y' and 2,/~e ~; \  {0} with 121 and Ipl small enough, 
then 

Therefore 

1 
P [ ( f '  - I ~ f ) ~ ( x ' -  2x) = 0] />  - .  

n 

1 
- ~< P [ f ' -  ~f)q~(x' - 2x) = 0]  = P [ f ' @ ( x '  - 2x) - # f @ ( x ' -  2x) = 0]  
n 

= P [ f ' ~ ( x ' -  2x) = f @ ( x ' -  2x) = 0]  

+ P[ f ' rb (x '  - 2x) = I ~ f r ~ ( x ' -  2x), f ' r b ( x ' -  2x) r 0],  

and letting/~--+ 0 we have 

1 
- <. P [ f ' @ ( x ' -  2x) = f@(x '  - 2x) = 0 ]  
n 

< ~ P [ f ' @ x ' = f ' r b x = O ,  f @ x ' = f @ x = O ]  

+ P [ f ' @ x '  = 2 f ' @ x , f ' @ x  r 0] + P [ f r b x '  = 2 f r b x , f ~ b x  r 0]. 

Further,  letting 2 --+ 0 we get 

1 
-<.  P [ ( f ' * x '  = f ' * x  = O, f @x' = f  * x  = 0]  ~< P [ f  @x = 0]. 
n 

This shows that  i n f { P [ f q ~ x = 0 ] :  x e X  1, f e Y ' } > 0 .  Therefore we can apply 
[11, Theorem 4.1] to show that  there exists a measurable set A with 

P [ A ]  = m i n { P [ f @ x  = O ] : x e X l , f e  Y'} 

= max {P [A] : fq~x  = 0 a lmost  surely on A V x e X  1, f e  Y' }. 

For  each x e X  1 x ...  x X N we have 

P a [ * ~ x = O ] = P A [ ~ x ~  O k e r f ] .  
L l e g '  _l 

Since {ker f : f e  Y'}  is a family of closed subsets of  Y we can apply [11, Lemma 3.1] 
to deduce that  PA[q~X = 0]  equals inf{P~[fi(@A x) . . . . .  f k ( ~ X )  = 0 ] : k e N ,  
f l  . . . . .  fk e Y'} = 1. Consequent ly  (I)x = 0 almost  surely on A. [] 
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The preceding theorem is used in the following to compute the equivalence of two 
continuous linear random operators. 

C O R O L L A R Y  3.3 

Let �9 and tp be continuous linear random operators from a Banach space X to a Banach 
space Y. I f  P [ f ( ~ x ) =  f(U/x)] > 0  for all x e X  and f e Y ' ,  then the set { P I f ( ~ x )  
= f ( ~ x ) ]  :xeX,  f e  Y'} has a nonzero minimum, say 6, and there exists a measurable 
setAwith P[A]  = b  in such a way that, for every x c X ,  C~x = tPx almost surely on A. 

Two random operators �9 and �9 from a Banach space X to a Banach space Yare said 
to be equivalent, written ~ - ~ ,  if P [ f (@x)  = f(hVx)] = 1 V x e X ,  V f e  Y'. The preced- 
ing result shows that q~ - q '  if and only if, P [q )x  = ~ x ]  = 1 Y x e X .  The quantity min 
{P[f(qbx) =f(Wx)] :xe  X,  f e Y ' }  is considered as the probability of @ and W being 
equivalent and it is denoted as P [ ~  - qJ]. 

I f F  and G are continuous linear deterministic operators on Banach spaces X and Y, 
respectively, and @ is a continuous linear random operator from X to Y, then the 
operators (x,e))~-,d~(Fx, o)) and (x,o~)~--~G(~(x,og)) from X x ~ into Yare continuous 
linear random operators from X to Yand we denote them by qbF and G~,  respectively. 
Given a continuous linear random operator q5 and a continuous linear deterministic 
operator  F, both of them acting on a Banach space X, we define the commutator of 
and F as the continuous linear random operator  [@,F]  = q)F - Fqb. If ~P[f([Cb, F]x)  
= 0 ]  > 0  for all x e  X and f e X ' ,  then it is reasonable to consider the quantity 
P [ ~ F - F ~ ]  as a measure of the commutat ion likelihood between both of the 
operators. To determine the existence of a measurable set on which q) behaves as an 
operator  commuting with FI it suffices to check the quantities P [ f ( [ ~ , F ] x )  = 0]. If all 
of them are nonzero, then it is likely that �9 commutes with F and we measure the likeli- 
hood that can be expected by computing the minimum of all of them. In such a case, by 
Corollary 3.3, there exists a measurable set A with P(A) = P [ ~ F  - F ~ ]  and satisfying 
for every x e X  the equality @Fx = F ~ x  almost surely on A, that is ~AF -- F@~. 

In the next we apply Theorem 3.2 to study a large commutation.  

C O R O L L A R Y  3.4 

Let �9 be a continuous linear random operator and Z be a norm-closed subspace of 
continuous linear deterministic operators, all of them acting on a Banach space X. 
If, for all x e X ,  f e X ' ,  and F e Z ,  P [ f ( @ F x ) = f ( F ~ x ) ] > O  then the set 
{P [ f ( ~ F x ) =  f ( F @ x ) ] : x e X ,  f e X ' ,  F e Z  } has a nonzero minimum, say ~, and there 
exists a measurable set A with P[A]  = b in such a way that, for all x e X  and F e Z ,  
@Fx = Fg~x almost surely on A. 

Proof. Consider the continuous bilinear random operator (x,F)~-~[t~,F]x from 
X x Z to X and apply Theorem 3.2. [] 

4. Commutation with normal operators 

Commutat ion theory is concerned mostly with operators acting on a Hilbert space. 
This has its origin in the commutat ion relations occurring in quantum mechanics. For  
a deeper discussion of this topic we refer the reader to [6]. 
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Fuglede theorem (see [8, Corollary 2.2.6,]) states that, ifa continuous linear operator 
T on a Hilbert space H commutes with a continuous normal operator  F on H, then 
T also commutes with the adjoint operator  of F, from now on denoted by F*. 
Unfortunately we don' t  know whether Fuglede theorem remains true if we replace T 
by a continuous linear random operator O. However  we state some relevant results 
about this. To do this we first require a number  of technical results. 

Lemma 4.1. Let �9 be a continuous linear random operator from a finite-dimensional 
Banach space X to a Banach space Y. Then �9 is equivalent to a Bochner random variable 
on BL(X, Y). 

Proof. Let { x l , . . . , x~  } be a basis in X and, for each i = 1 ... . .  n, let {Yi.k} be a sequence of 
simple random variables on Yconverging almost surely to Oxi. For  each keN,  we 
define a simple random variable Wk on BL(X,  Y) by 

~k  ~'iXi = E "~'iYi, k g'~'l . . . . .  "~'n e~'~" 
i=1 

For  all p, qe ~ and 21 . . . . .  2~e E, we have 

(Wp-- ~lq •iXi = ~'i(Yi.t,-- Yi.q) <'% 12i Yj.,-- Yj.qlI" 
\ i=1  "= 

Since the map 2~x~ + ... + A~xn~[2~l + " - +  IA~l defines a norm on X necessarily 
equivalent to the original one 11"11, there exists a positive constant M satisfying 
1211+ "'" + I,~l <<.Ml121xl + "'" + 2nx, II, VAx . . . . .  2 , eK.  Therefore 

(~F, -  W~ 2ix ~ <~ M II Y j . , -  Yj.q AiXi , 
\ j= l  

and 11 q'~ - ~ II ~< MZT=~ II Yj,, - Yjq I1, which shows that  the sequence {~Fk} converges 
almost surely to a random variable ~F on BL(X,  Y). Moreover, for every x e X  the 
sequence {~//kX} converges almost surely to Ox and therefore �9 = W. [] 

We can now formulate a Fuglede type theorem dealing with the random commuta-  
tion with a compact  normal operator. 

Theorem 4.2 Let  �9 be a continuous linear random operator and K be a compact normal 
deterministic operator, both of them acting on a complex Hilbert space H. Then 

PI-OK = K O ]  = P [ O K *  - K*O].  

Proof. Let {2n} denote the sequence of spectral values of K with 20 = 0 and, for each 
nEN u {0}, nn denote the projection from H onto ker (2~I - K). By [1, Theorem 3.2], 
K = ~ff=02~rc~ and ~n=0 , = I pointwise. 

Fix a measurable set A with P I-A] = P [ O K  = K O ]  and OAK = K O  A. Given ne N, we 
have OaK ~, = KO~Xn and therefore (OAnn) K = K(O~n,). Since r~ has finite rank [1, 
Theorem 2.4], OArc , is equivalent to a random variable on BL(H). From this it may be 
concluded that (O~nn)K* = K* (O~n,), and consequently [O~, K*]  nn - 0. Further we 
note that Kno = ~o K = 0 and therefore K(O~r~ o ) = OAKn o = O. Since OArc o maps every 
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element  a lmost  surely into ker  K and ker  K = ker  K*,  we have K*OArc o = 0. According-  
oo 7Z ly [O~, K*]rc  o = 0 .  Since [O A, K*]Tt, =0 Vn~M w{0} and ~n=0 , = 1 ,  it follows tha t  

[OA, K*]  = 0. Therefore  P [ O K *  =- K * O ]  >i P [ O K  - K O ] .  Replacing K by  K* we 
have  P [ O K  = K r  > / P [ O K *  = K * ~ ] ,  as required. 

In  order  to avoid the compac tness  condition,  we require the r a n d o m  ope ra to r  to 
have  1st moment .  

Theorem 4.3. Let �9 be a continuous linear random operator having 1st moment and F be 
a continuous normal deterministic operator, both of them acting on a complex Hilbert 
space H. Then 

P [(I)F - F(I)] = P [(I)F* - F* (I)]. 

Proof. O u r  p roof  follows on the same lines as given by Rosenb lum (see [8, T h e o r e m  
2.2.5]). Let  A be a measurab le  set with • [A] = P [ O F  - F O ]  and OAF - F O  a. For  all 
n~ N and 2eC,  we have  (I)A(~-F)" -- (2-F)"(I)A. Since (I)~ is cont inuous  in mean,  for every 
xEH, we have the a lmost  surely equalities 

1 - ~ 1 
OAexp(XF)x = O A ~ ~ ( 2 F ) " x  = ~ r 

,=o n] ,=0 n: 

oo 1 - -  

= ~=on--i.(2F)"Oax = exp (-f.F)Oax. 

Hence  Oaexp() . -F)=exp(~.-F)O a, which implies O a = e x  p (~.-F)O a e x p ( - - 2 - F )  and  
exp( - 2F*)  O a exp (2F*) = exp(2-F - 2F*)O a exp( - 2-F + 2F*). Since exp(2-F - 2F*) 
and  exp( - 2 F  + 2F*)are  uni ta ry  opera tors  we have II exp. (2-F - 2F*)  II = II exp( - 2-F 
+ 2F*)]1 = 1. Given  x, y ~ H,  we define a complex  L 1 (Pa, C)-valued funct ion ~o holo-  

morph ic  on the whole complex  plane by 

tr = [ (Oaexp(2F*)xlexp(  - J .F)y)]  = [(exp( - 2F*)a~aexp(2F*)x[y)] 

= [ (exp(2-F-  2 F * ) O a e x p ( -  -XF + 2F*)xly)] 

= [(O a exp( - X F +  2F*)x lexp(  - 2-F + 2F*)y) ] .  

F r o m  Theorem 2.1 we have  ~: LI Oax II -< M II x II Vx~X for a suitable M > 0. Therefore  
~:1 ~o(~.)1 ,< M II exp (2 -F -  2f*)x  [I II exp( - ~-f + 2F*)y  I[ ~< M II x II IlY II, for a suitable 
M > 0. Liouville theorem [7, Theo rem 3.321 assures that  the vector-valued function 
t# is constant.  Hence  ~o(2) = ~o(0) = [(OAxly)]  (which mean  that,  for every 2~ C ,~(2 )  = 
(Oxly) almost  surely on A) and 0 = ~ 0 ' ( 2 ) = I ' ( O A e x p ( 2 F * ) F *  xlexp(--~.F)y)] 
+ [(Oa exp2F*)xl  exp ( - 2-F)( - F)y)] .  Accordingly 0 = ~0'(0) = [ (OF*x lY) - (r 
a lmost  surely, for all x, y e H. This shows that  F* �9 = OF*. Therefore  P [O F* = F* �9 ] 
>~ P [ O F  = FO] ,  and replacing F by F* we have P [ O F  =__ F O ]  /> P [ O F *  = F*O] ,  
which ends the proof.  [] 

F o r  a cont inuous linear opera to r  T and a cont inuous  no rma l  ope ra to r  F on 
a Hi lber t  space H, for which the c o m m u t a t o r  [T, F ]  commutes  with F, P u t n a m  
theorem [8, Corol la ry  2.2.9] shows that  IT, F ] = 0. It  seems to be u n k n o w n  whether  
P u t n a m  theorem remains  t rue for a cont inuous  linear r a n d o m  opera to r  T. We  establish 
several probabil ist ic  versions of  that  theorem. 
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In order to translate Putnam theorem to random operators we first restrict our 
attention to compact  deterministic operators.  

Theorem 4.4. Let  ~ be a continuous linear random operator and K be a compact normai 
deterministic operator, both of them acting on a complex Hilbert space H. Then 

P EEE~,K], K]  _ 03 = PEE~, K]  _= 0]. 

Proof As in the proof  of Theorem 4.2 we put K = ~ , ~  02,g, .  
It is clear that P [ [ [ q ~ , K  ], K ]  - 0 ]  >~ P [ [ ~ , K  ] - 0 ] .  
Let A be a measurable set with [[~A, K ], K ] = 0 and P[-A] = P [ [ [ ~ ,  K ], K ]  - 0]. 

For  every n~N, we have [[tI) A g,, K] ,  K ]  - [[~A, K ], K ]g.  -- 0. Since ~A g, is equival- 
ent to a random variable on BL(H), it may  be concluded that [~6 g., K ] -= 0 and 
therefore [~a,  K ] g. -= 0. Since [~A, K ] K -= K [OA, K ], we have 0 - [~A, K ] K go 
-- K [~A, K ] go" Consequently [~A, K ] go maps every element almost surely into ker 
K, which gives g, [~A, K ] go -= 0 V n~ N. Further go [~A, K ] ~o -- 0 and therefore 

oo g [~A, K ] go -= 0, since ~ ,  = 0 , = 1. Accordingly [ ~ ,  K ] - 0 and so P [ ]-~, K ] - 0] 
~> P [ [ [ ~ , K  ] , K ]  --- 0], which concludes the proof. [] 

Now compactness condition may be omitted by requiring the expectation property 
on the random operator. 

Lemma 4.5. Let �9 be a continuous linear random operator having 1st moment and F be 
a continuous normal deterministic operator, both of them acting on a complex Hilbert 
space H. Assume that F = SzdE(z) for a suitable spectral measure E on the spectrum sp 
(F) of F. Then ~ F--- F<b and O F * - F * ~  if and only if, ~E(A)_= E(A)~ for every 
measurable set A in sp (F). 

Proof I f ~ F  -- F ~  and ~ F *  -= F * ~ ,  then r - <bp(F,F*) for every complex 
polynomial p in F and F*. Given a measurable subset. A of sp(F), the projection E(A) 
can be obtained as the strong limit in BL(H) of a suitable sequence {p,(F,F*)} of 
complex polynomials p. (F, F*) in F and F*  with p. (F, F*)* = p, (F, F*). Therefore, for 
every x~H, we have 

�9 E(A)x = I1"111 - lim~Pn(F,F*)x = Jl'lll - lifnp.(F,F*) qbx = E(A)~x  

(where II'lll - lim denotes the limit in mean) and thus ~E(A) - E(A)~. 
We now assume that, ~E(A) -- E(A)~ for every measurable subset A of sp(F). Let 

e be a positive number, A 1 . . . . .  A, measurable subsets of sp(F), and zl ~A1,. . .  ,zneA, 
such that 11F - ~k = 1 2 k E ( A k ) I ]  < ~3. Then 

t , [O , f ]x l ,  = r 

<<, ~ ( F - - ~  ZkE(Ak))X + (F- -~=fkE(Ak) )~x  ], 

almost surely, for every xeH. Since [ ~ , F ]  is a continuous linear 1st order random 
operator, Theorem 2.1 shows that there exists M > 0 such that ~:]l [~, F ] x l[ ~< M ll xN g xeX. 
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Accordingly 

" II P;II[~,Flx[I ~<2M F--k~=ZkE(Ak) xl] ~<2Me[Ixll, 

for a suitable M > 0. Letting e-~0 we have EII lob, F i x  II = 0 and therefore [O ,F]  - 0. 
In the previous argument, just replace zl . . . . .  z. by ~ . . . .  ,~., and it follows that 

[T,F* ] =0 .  [] 

Theorem 4.6. Let ~ be a continuous linear random operator having 1st moment and F be 
a continuous normal deterministic operator, both of them acting on a complex Hilbert 
space H. Then 

P[[ [ ( I ) ,F] ,  F ]  =- 0] = P [ [ ~ , F ]  -= 0]. 

Proof It is clear that P [[[(I) ,F] ,  F ]  -= 0]/> • [[cI),F] - 0]. 
Let A be a measurable set with P[A]  = P [ [ [ O , F ] ,  F ] -  0] and [[~A, F ] , F ] -  O. 
Since [(I) A, F ]  F -- F [(I) A, F] ,  Theorem 4.3 shows that [OA, F]  F* - F*  [(I)A, F].  Let 
E be a spectral measure on sp (F) such that F = ~ zdE(z). By applying the preceding 
lemma, for every measurable subset A in sp (F), we have [(I)A, F ]  E(A) - E(A) [(I)A, F ]. 
Since 

[~A, E (A)]F = cI) a E(A)F - E (A) (I) A F -  (I) a FE(A) - E ( A ) -  (I)AF 

-- [(I)A, F ]E (A)  + F(I) a E(A) - E(A) OAF 

-- E (A) [(I) a, F ] + F~AE (A) - E(A) (I)a F 

---f(I) A E(A) - E(A)F ~A -- F [CI)A, E(A) ]. 

Theorem 4.3 shows that [(I) A, E(A)]F*  = F* [(I)A, E(A)] and the preceding lemma 
gives [(I)A, E (A)]E(A) - E (A)E~, E(A)]. Accordingly O6 E(A) - E (a)(I) A E(A) - E (a)(I) A 
E(A)-E(A)(I)A. By multiplying on the left and on the right by E(A) we obtain 
(I)AE(A)-E(A)~ A. By Lemma 4.5 [(I) a, F ] - 0  and therefore PEE( I ) ,F ] -0 ]  
~> P [[[(I) ,F],  F ]  - 0 ] .  [] 

5. Commutation with compact normal operators 

Throughout  this section, K stands for a compact normal deterministic operator on 
a complex Hilbert space H. It decomposes into a pointwise sum K = ~ , ~  0 2, n, where 
{2,} is the sequence of its spectral values with 2 o = 0 and, for each n, ~z, is the projection 
onto ker (2, I - K ). 

It is well known that any continuous linear deterministic operator F that commutes 
with K can be decomposed into a pointwise sum F = ~=0~o(2,)~z, for a suitable 
complex valued bounded function acting on sp (K). Actually for every such function the 
above series converges pointwise to a continuous linear deterministic operator, usually 
denoted by ~o(K), satisfying that commutation property. 

In this section we study whether the above assertions remain true in the random 
setting, replacing F by a random operator and ~o by a random function. 

Theorem 5.1. Let �9 be a continuous linear random operator on H. If  

P[([~ ,F]x ly )  = 0] > 0 
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for every continuous linear deterministic operator F on H commuting with K and all x, 
y ~ H, then there exists a sequence bounded in probability {~} of complex-valued random 
variables such that, for every x ~ H, the random series E 4~z.x converges in probability 
and 

X ~ nT~nX > O. 

Furthermore, if  r has rth moment, then the random variables ~ have rth moment, the 
sequence {4. } is bounded in r-mean and the series ~ ~, rc~ x converges in r-mean. 

Proof. By considering the closed subspace ~" = {FeBL(H):FK = KF}  of BL(H) we 
can choose a measurable set A with P[A]  > 0  and I(I)a, F]  - 0, V F ~ .  For  every 2 n we 
fix u, e k e r  (2hi - K)  with II u.  II = 1 and we define the random variable 4, to be (Ou, [u,) 
on A and 0 otherwise. Since �9 is cont inuous { 4n} is bounded in probability. For  every 
n~N and every ueke r  ( 2 ~ I -  K ), we consider the continuous linear operator  F on 
H given by Fx = (xlu,)u. Then F commutes  with K and so (b A F = F (1)a. For  every ye l l ,  
( ~ u l y )  = (r ly) = (FdPAu~Iy) = (r lF*y) = r Therefore (I) A is equival- 
ent to 4,1Ann on ker ( 2 , I -  K). For  every xeH,  E~=0rc . x converges in probability (in 
r-mean if �9 has rth moment)  to x and consequently ~ax  - Z~= 0 OAn, x. F rom this we 
deduce ~Ax = Z~04,1an,  x. Therefore the random series Y~4,1An, x, and consequently 
E 4~ n~x, converge in probability. Further,  for every x ~ H  the equality ~ x  = E ~  04n n~x 
holds almost surely on A. If �9 has rth moment ,  then N:] 4,1"~< 0: II Oun I I '<  ~ .  Further  
{~u,} is bounded in r-mean, since otherwise we could choose a subsequence 

{u,JPk } ~ 0  and {u,~} of {u,} such that  Pk = 0: ]j r ]J '~ + ~ .  Accordingly ~/k 
~-11 r ~ = ~: [I On,, II'/Pk = 1 which contradicts the continuity of @. [] 

TheorenS.2. Let { n,} be a sequence of pairwise orthogonal projections on a Hilbert space 
H and let {4~} be a sequence of complex-valued random variables having rth moment with 
r >>, 2. Then the following assertions are equivalent: 

1. For each x e H  the random series Y-,4~rc~x, converges in r-mean. 
2. The sequence {4,} is bounded in r-mean. 

Furthermore, in such a case the pointwise sum of the series E 4~ ~t, defines a continuous 
linear random operator on H having rth moment. 

Proof. Assume that  the sequence {4,} is bounded in r-mean. We show that, for each 
xeH,  the series E I4n 12 II ~. If 2 in Lr/2(• ) converges. To this end we note that 

IJl .l Jl .xrl flr   -- Jl . lf fJ .lf:-< suplf .flr   Jr .xfl 
n = l  n = l  n = l  

= (sup II 4, I1~)II x rl 2 

Therefore the series E I4~ 12 [1 z~ II 2 converges absolutely in Lr/2(K ). Fur thermore  

[ ~__~114,12 112 / 2 IIn~ ~< (sup II ~, [l~)rlx 112, 

n+m , _ n+m 12 Given m. ne N we have n: II Y~ ~ n 4k rCkX II -- n:(Y.k =~ I Ck II r~kX II 2),/2 which converges 
to zero when n ~  ~ ,  for every m e ~ .  So the series Er converges in Ae r (P, H)  
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and 

~: ~ , n , x  <(supll~,ll~)llxll', 
1 

which shows that the linear random operator given by the pointwise sum of the series 
E~nn, is continuous. 

Conversely assume the series Y~ ~,n~ to be pointwise convergent. Then {~,n~} gives 
a sequence of continuous linear operators from H into L,(P, H) which is pointwise 
bounded. Banach-Steinhaus theorem shows that there is a positive number M such 
that supl~ll= ~ IIr  II, -< M VneN. Since supll~lt= ~ II~dc.x II, = I1~.11,, it follows that the 
sequence {~.} is bounded in r-mean. [] 

Unfortunately there exist sequences of complex-valued random variables {~} 
bounded in r-mean with 0 < r < 2, and sequences {n,} of pairwise orthogonal projec- 
tions for which the random series E~, zt, x does not converge in probability for a suitable 
x e H .  We illustrate this fact in the following. 

Examples 5.3. Let e, be an orthonormal sequence in a Hilbert space H. Consider the 
sequence {nn} of pairwise orthogonal projections on H given by n,(x) = (xlen)e ~ for every 
x e H .  Also consider the interval E0, 1] endowed with the Lebesgue measure. Given a 
measurable set A, Xa stands for the characteristic function of A. If 0 < r < 2, then we consider 
the sequence {~,} of random variables, given by ~2k+m = 2 k/' X lrn/2L(rn + 1)/2'[ ,  m = 0 , . . .  , 2  k - -  1, 
k >/0. The sequence {r is bounded in r-mean. Further the sequence {~n} given by 
~V+m = 2-k/', m = 0 . . . . .  2 k 1, k >1 O, satisfies that Z ~ ~ 12 - n= ~ n < oo and therefore the series 
E~=l ~.e ~ defines an element x~H.  The random series E~.n~x satisfies 

2 ~  - 1 [ k 2~-1 k 
~ . n . x  = ~, ~ o'/,~ o-l/ ,  2 _ (k + 1)Z[o,l[ 

"r A [ m / 2 , ( r a + l ) / 2 [  ~" --  E ~[0,1[ = 
n=l I=0 m=0 l=0 

and therefore it does not even converge in probability. 
The random series E ~0(2,)n, defines (up to equivalence) a continuous linear random 

operator having rth moment whenever ~o is a random function acting on sp (K) 
bounded in r-mean with r > 2. We write q~(K) to denote it. 

COROLLARY 5.4 

Let  �9 be a continuous linear random operator having 2nd moment. Then the following 
assertions are equivalent: 

1. For every continuous linear deterministic operator F on H commuting with K we have 
P[dPF =- F ~]  > O. 

2. There exists a random function rp on sp(K) bounded in mean square such that 
P[@ = ~0(K)] >0 .  

Proof. Assume that assertion 1 holds. By Theorem 5.1 there exists a random function 
~p acting on sp(K) bounded in mean square such that P [ ~  = ~0(K)] > 0. 

Conversely if 2 is fulfilled, then there exists a measurable set A with P[A] = P [ ~  
--- q~(K)] and ~A = ~0A(K). Given a continuous linear deterministic operator F com- 
muting with K it is known that n,F = F n n for every ne N. From this it is easy to check 
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that ~pA(K)Fx = F~p6(K)x almost surely for every xeH.  Thus P[q)F = F ~ ]  _> P[A]. 
Therefore assertion 1 follows. [] 
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