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Abstract. We investigate the commutation between a continuous linear random operator and
a continuous linear deterministic operator on a Banach space. From this we obtain probabilis-
tic versions of theorems by Fuglede and Putnam, both of them dealing with the commutation
between continuous linear operators with continuous normal operators on a Hilbert space.
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1. Introduction

Operator commutators are a classical topic appearing in several branches of functional
analysis and operator theory [1,6].

In this paper we investigate the commutation of a continuous linear random
operator ® and a continuous linear deterministic operator F both of them acting on
a Banach space X. This commutation may be understood in a very broad sense;
namely, for each element x in X and each continuous linear functional f on X, the event
[f(®Fx)=f(F®x)] can happen, that is the set{w: f((® Fx)(w)) = (F(Px)(w))} has
a positive probability which depends upon the element x and the functional f. In such
a case, there exists a measurable set A with a positive probability in such a way that, for
every xe X, the random variables @ Fx and F®x coincide almost surely.

Fuglede solved in [3] an outstanding problem in functional analysis, proposed by von
Neumann, namely that every continuous linear operator 7 commuting with a continuous
normal operator F on a Hilbert space, also commutes with the adjoint operator of F. Also
the study of the commutator [ 7, F ] when [ [T, F ], F] equals zero, and the operators T and
F act on a Banach space, has received considerable attention. A fundamental result in this
area was the theorem of Kleinecke [4] and Sirokov [9] who proved independently that in
such a case [T, F] is generalized nilpotent operator. A special case of this with the
additional assumption that F is a continuous normal operator on a Hilbert space, was
solved by Putnam [5] by stating that, in such a case the operator [ 7, F] equals zero. We
show several probabilistic versions of those theorems by Fuglede and Putnam.

Finally we show that if there is a sufficiently large probabilistic commutation
between a random operator @ and a compact normal operator on a Hilbert space, then
P[® = ¢(K)] > 0 for a suitable random function ¢ acting on the spectrum of K.

2. On the continuity of linear random operators

Throughout the paper, (Q,X,P) denotes a complete probability space. Every measurable
subset A of Q is considered as a new probability space with the inherited structure from Q,
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whose induced probability on A is the conditional probability P,. Asit is usual the expecta-
tion of a given real random variable £, denoted by E(£), is defined to be the number j‘, EdP.

A mapping ¢ from Q into a given Banach space Y, over either the real or the complex
field, denoted by I, is said to be a Bochner random variable on Y if it is the almost sure
limit of a sequence of simple random variables on Y. We denote, by #Z,, (P, Y) the linear
space of all Y-valued Bochner random variables, which with the almost sure identifica-
tion becomes a metrizable complete linear topological space L,(P, Y) for the conver-
gence in probability. This topology can be derived from the paranorm given by
[ Ello=ECFEIAL + || £]))). Relevant subspaces of £, (P, Y) are the spaces Z.(P, Y)=
{EeZo(P, Y): E|&|"< o0} of all Y-valued Bochner random variables having rth
moment. Besides the inherited topology from %,(P, Y), the space .Z,(P, Y) has its
appropriate topology, namely that associated to convergence in r-mean, which can be
derived from the paranorm given by || €I, = E|| ||, when 0 <r < 1, whileif 1 < r it can
be derived from the seminorm given by | &, = (E| &|")Y". Given e Z(P, Y), [£]
denotes the equivalence class of ¢ for the usual almost sure identfication. The space
L(P,Y)={[¢(]:teZ, (P, Y)} becomes a metrizable complete linear space.

Given Banach spaces X and Ydenote by BL( X, Y) the linear space of all continuous
linear operators from X into Y endowed with the usual operator norm given by
| F |l =sup, .| Fx|.Toshorten notation we write BL(X ) instead of BL(X, X) and X"
instead of BL(X, [K).

A map ®: X x Q- Y is said to be a random operator from X to Y if, for each xe X,
the map w— ®O(x, ), noted Px, lies in F,(P, Y). For a full discussion of random
operators the reader is referred to [2] and [10]. Such an operator is said to have rth
moment if the maps w—®(z,w) lie in Z(P, Y) and is said to be linear if
PO (x;x; +a,x,) =0, Px; +a,Px,] =1,forall x,,x,eX and a,,a, e K. The continu-
ity in probability of @ at x,e€ X means thatlim _,, P[|®x —®x,| >¢]=0,Ve>O0.1If
® has rth moment, then there is a notion of continuity more convenient than the
continuity in probability introduced above; namely the continuity in r-mean, which
means that lim E|®x —®x, " = 0. We define the conditional operator, ®,, of ® as

X-+Xo

the restriction of @ to X x A.

Theorem 2.1. Let X and Y be Banach spaces and ® be a linear random operator from
X to Y. Then the following assertions are equivalent:

1. @ is continuous in probability at every point in X.
2. lim P[||®x| >&]=0 for every e > 0.
x-0
3. lim P[|f(®x)|>¢e]=0 forevery £¢>0.
x./)~©00)

Furthermore, if in addition ® has rth moment, then the preceding conditions are
equivalent to the following ones:

4. @ is continuous in r-mean at every point in X.
5. imE|Dx|"=0.

x—=0

6. lim E|f(®x)] =0.
wdm, | |f(®x)|
7. IM > O:E||@x|" < M|x|" VxeX.
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Proof. tis clear that 1 implies 2, 4 implies 5, and 6 implies 3.
Since | f(@x)| < [|f || |Dx]l, we have lim, ;o 0,1/ (®X)| = 0 whenever 2 is fulfilled.
Assume that ® satisfies condition 3. To deduce assertion 1, in view of the closed
graph theorem, it suffices to show that the graph of @ is closed in X x Z (P, Y). To
this end, consider a sequence {x,} converging to 0 in X with {®x,} converging in
probability to £. For every feY’ we have f(£) =f(lim,_,  ®x,)=lim,_ _ f(®x,) =0.
This gives P[ éekerf ] = 1. Since {kerf: fe Y’} is a family of closed subsets in Y, we can
apply [11; Lemma 3.1] in order to obtain

Pl:fe N, kerf]=inf{[F°[€e ker fyn---nker fi]:keN, f,,....fieY'}=1
fey’

By Hahn-Banach theorem, n ., ker f=0, and thus we get P[¢{=0]=1. This

establishes 1. To prove 4 we only need to show that @ has closed graphin X x .Z,(P, Y).

Let {x,} be a sequence in X converging to zero with {®x,} converging in r-mean to &.

Forevery feY',wehave E| f(&)I" =lim,_, E|f(®Px,)|"=0.Therefore P[{e kerf]=1.

Arguing as above we get P[£ =0] =1 and this gives 4.

Assume that @ satisfies 5. Since E|f(®x)|" < ||f |"E || ®x|", it may be concluded that
lim, ;) 0,0 Elf(TX)"=0. '

It is clear that 5 follows from 7. Conversely, assume that 5 holds and we claim that
thereare N,6 > Osuchthat E||®x|" < Nif | x || = 6. Otherwise for every neN we choose
x,€X with ||x,| = 1/n and E|®x,||" > n which contradicts assertion 5. If xe X\ {0},
then E[|®(J)x|)” *x||" < N and therefore E || ®x||" < 5" N| x||", as desired.

We leave it to the reader to state the notion of continuous multilinear random
operator.

3. Commutation probabilities

To investigate the commutation properties between a random operator and a deter-
ministic one we first require an improvement of [11, Theorem 4.1]. To do this we
establish a technical result in the following.

Lemma 3.1. Let X and Y be Banach spaces and ® a continuous linear random opera-
tor from X to Y. Then the set C;={xeX:P[®x=0]>0} is closed, for every
0okl

Proof. Let {x,} be a sequence in C, converging to an element x in X. The sequence
{®x,} converges in probability to ®x and consequently lim,_, _ E(|| ®x, | /(1 + | ®x, 1))
=E(||®x[|/(1 + || ®x])). Let Q, = {weQ:®x, # 0}. For every neN, we have E(|| Ox, ||
M1+ [ ®x, 1)) = fo, | ©x, [ A1 + [[@x, [)dP < P[Q,] <1—0. Therefore, E(||®x]/(1
+ | ®x|)) < 1—4. Given keN, it is clear that kx,eC; for every neN and {kx,}
converges in probability to kx. Accordingly E(k ||®x| /(1 +k|®x|))<1— 4. Letting
k — oo, we deduce that P[®x #0] <1 -6 and xeC;. O

Theorem 3.2. Let X,,...,X,, Y be Banach spaces and ® a continuous multilinear
random operator from X, x .- x Xyto Y. If, forall xeX, x- x Xyand feY'

PLf(@x)=0]>0,
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then the set
{PLf(®x)=0]:xeX; x - x Xy, feY"}

has a nonzero minimum, say 9, and there exists a measurable set A with P[A] = 6 in such
a way that, for every xe X, X -+ x Xy,

®x = 0 almost surely on A.

Proof. For simplicity we assume N = 1. For each neN, let C, be the closed subset of
X, xY given by C,={(x,p)eX, xY": P[f(®x)=0]>1/n}. Then X, x Y =
wX_,C,. From Baire theorem C, has an interior point, say (x’, f*), for a suitable natural
number n. Note that, if (x, f)e X, x Y’ and A, ueK\ {0} with | 4| and | x| small enough,
then

1
P[(f’—uf)®(>€’—£>€)=0]>;-
Therefore
%S PLf —u)Px —Ax)=0]=P[f'®(x' — Ax) — uf ®(x' — Ax)=0]

=P[f'®(x ~ Ax) = fO(x' — 1x)=0]
F PO —Ax) = pf O(x' — x), f' B — Ax) #0],

and letting u —0 we have
1
;g PLA DX — Ax)= fD(x' — Ax)=0]

SPLfOxX=f"Px=0, fOx'=fDx=0]
+PLOX =Af"Ox, f[Ox#A0]+P[fOXx' =AfDx, fOx #0].
Further, letting 4 - 0 we get

%SP[(]"(DX’:f’d)x:O, fOxX' =fOx=0]<P[fOx=0].

This shows that inf{P[f®x=0]: xeX,, feY'}>0. Therefore we can apply
[11, Theorem 4.1] to show that there exists a measurable set A with

P[A]=min{P[f®x=0]:xeX,feY'}
=max{P[A]: f®x =0 almost surely on AVxeX,, feY'}.
For each xeX, x--- x Xy we have
P, [®,x=0]= [P’Al:d)Axe N kerf]
feY’

Since {ker f:feY'} is a family of closed subsets of Y we can apply [11, Lemma 3.1]
to deduce that P,[®,x=0] equals inf{P,[f,(®yx)="""= f(®,x)=0]:keN,
fis-- €Y'} = 1. Consequently ®x = 0 almost surely on A. O
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The preceding theorem is used in the following to compute the equivalence of two
continuous linear random operators.

COROLLARY 3.3

Let @ and ¥ be continuous linear random operators from a Banach space X to a Banach
space Y. If P[f(®x)= f(¥x)]>0 for all xeX and feY', then the set {P|f(®x)
= f(Wx)]:xeX, feY'} has a nonzero minimum, say 0, and there exists a measurable
setAwith P[A] =46 in such a way that, for every xe X, ®x =¥ x almost surely on A.

Two random operators ® and W from a Banach space X to a Banach space Yare said
to be equivalent, written ® = W, if P[ f(®x) = f(¥x)] =1 VxeX, VY feY’. The preced-
ing result shows that ® =¥ if and only if, P[®x = W x] = | V xe X. The quantity min
{PLf(@x)=f(¥x)]:xe X, feY'} is considered as the probability of ® and ‘¥ being
equivalent and it is denoted as P[® = V]

If F and G are continuous linear deterministic operators on Banach spaces X and Y,
respectively, and @ is a continuous linear random operator from X to Y, then the
operators (x,0)—®(F x,) and (x,0)— G(P(x,w)) from X x Qinto Yare continuous
linear random operators from X to Yand we denote them by ® F and G®, respectively.
Given a continuous linear random operator ® and a continuous linear deterministic
operator F, both of them acting on a Banach space X, we define the commutator of @
and F as the continuous linear random operator [®,F | = OF — FO. If P[ f([D,F ]x)
=0]>0 for all xe X and feX’, then it is reasonable to consider the quantity
P[®F=F®] as a measure of the commutation likelihood between both of the
operators. To determine the existence of a measurable set on which @ behaves as an
operator commuting with F, it suffices to check the quantities P[f([®,F ]x) =0].Ifall
of them are nonzero, then it is likely that ® commutes with F and we measure the likeli-
hood that can be expected by computing the minimum of all of them. In such a case, by
Corollary 3.3, there exists a measurable set A with P(A) = P[®F = F®] and satisfying
for every xe X the equality ® Fx = F®x almost surely on A, that is @, F = FO,.

In the next we apply Theorem 3.2 to study a large commutation.

COROLLARY 34

Let ® be a continuous linear random operator and F be a norm-closed subspace of
continuous linear deterministic operators, all of them acting on a Banach space X.
If, for all xeX, feX’, and Fe#F, P[f(®Fx) = f(FOx)]>0 then the set
{PLf(@Fx)=f(FOx)]:xeX, feX', FeZ } has a nonzero minimum, say 6, and there
exists a measurable set A with P[A] =0 in such a way that, for all xeX and Fe#F,
O F x = F®x almost surely on A.

Proof. Consider the continuous bilinear random operator (x,F)— [®, F]x from
X x # to X and apply Theorem 3.2. 0

4. Commutation with normal operators

Commutation theory is concerned mostly with operators acting on a Hilbert space.
This has its origin in the commutation relations occurring in quantum mechanics. For
a deeper discussion of this topic we refer the reader to [6].
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Fuglede theorem (see [8, Corollary 2.2.6]) states that, if a continuous linear operator
T on a Hilbert space H commutes with a continuous normal operator F on H, then
T also commutes with the adjoint operator of F, from now on denoted by F*.
Unfortunately we don’t know whether Fuglede theorem remains true if we replace T
by a continuous linear random operator ®. However we state some relevant results
about this. To do this we first require a number of technical results.

Lemma 4.1. Let ® be a continuous linear random operator from a finite-dimensional
Banach space X to a Banach space Y. Then @ is equivalent to a Bochner random variable
on BL(X,Y).

Proof. Let{x,,...,x,} beabasisin X and,foreachi=1,...,n,let {y,} be a sequence of

simple random variables on Y converging almost surely to ®x;. For each keN, we
define a simple random variable ¥, on BL(X,Y) by

‘I’k<z lixi> =Y LyuVi,..,AeK.
i=1 i=1

Forall p,geN and 4,,...,4,€ K, we have

(lP,,—m@ Aix.) (= s(;u.-l)_‘; 13,5 Y41

Since the map 4,x, + - + 4,x,—{4,]+ -~ +|4,| defines a norm on X necessarily
equivalent to the original one ||, there exists a positive constant M satisfying
A4+ A SMAix, + -+ 4,x, |, VAq,..., 4,61 Therefore

“(‘Pl,—‘l’q)<i/1,~xi> gM(i”yj,p—-yj,q“> i'lixi
i1 i=1

i=1
and |¥,- ¥, II<M 235:1 1Y, , = ¥, 41l, which shows that the sequence {¥,} converges
almost surely to a random variable ¥ on BL(X,Y). Moreover, for every xeX the
sequence { ¥, x} converges almost surely to ®x and therefore ® = 'P. 0

Y A, = Vi)
i=1

H

We can now formulate a Fuglede type theorem dealing with the random commuta-
tion with a compact normal operator.

Theorem 4.2 Let @ be a continuous linear random operator and K be a compact normal
deterministic operator, both of them acting on a complex Hilbert space H. Then

P[®K = K®] = P[@K* = K*®].

Proof. Let {4,} denote the sequence of spectral values of K with 1, =0 and, for each
neNu {0}, n, denote the projection from H onto ker (4,1 ~ K). By [1, Theorem 3.2],
K=Y im,and Y2  n, =T pointwise.

Fix ameasurableset A with P[A] = P[®K = K®]and ®,K = K®,. GivenneN, we
have ®,K n,= K®,n, and therefore (®,7,) K= K(®,n,). Since =, has finite rank [1,
Theorem 2.4], ®,7, is equivalent to a random variable on BL(H). From this it may be
concluded that (®,7,) K* = K* (®,7, ), and consequently [®,, K*]x, = 0. Further we
note that Kn, = 7, K = 0 and therefore K(®,n, ) = ®,Kn, = 0. Since @, 7, maps every
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element almost surely into ker K and ker K = ker K*, we have K*®, 1, = 0. According-
ly [®,, K*]n,=0. Since [®,, K*]n, =0 VneN u{O} and Y  m, =1, it follows that
[®,, K*¥] =0. Therefore P[®K* = K*®] > P[®K = K®]. Replacing K by K* we
have P[®K = K®] = P[® K* = K*®], as required.

In order to avoid the compactness condition, we require the random operator to
have 1st moment.

Theorem 4.3. Let @ be a continuous linear random operator having 1st moment and F be
a continuous normal deterministic operator, both of them acting on a complex Hilbert
space H. Then

P[®F = F®] = P[®F* = F*®].

Proof. Our proof follows on the same lines as given by Rosenblum (see [8, Theorem
2.2.5]). Let A be a measurable set with P[A] = P[®F = F®] and ®,F = F®,. For all
neN and ieC, we have (I>A(,1F )" =(AF)"®,. Since ®, is continuous in mean, for every
xe H, we have the almost surely equalities

®,exp(AF)x=®, Z iF X= Z(D —(AF)"

© ] _ _
= Z E(AF)"(DAx = exp(AF)®,x.

Hence ®,exp(AF)=exp(AF )®,, which implies @, =exp (AF)®, exp(— AF) and
exp(— lF*) @, exp (AF*) = exp(AF — AF*)®, exp(— AF + AF*). Since exp(AF — AF¥)
and exp(— iF + AF*)are unitary operators we have || exp.(AF — AF*) || = | exp(— AF
+ AF*)| =1.Givenx, y € H, we define a complex L, (PP,, C)-valued function ¢ holo-
morphic on the whole complex plane by

@(A) =[(®,exp(AF*)x|exp(— AF)y)] = [(exp(— AF*)®,exp(A F*)x|y)]
=[(exp(AF — AF*)®,exp( — AF + AF*)x|y)]
=[(®, exp(— AF + AF*)x|exp( — AF + AF*)y)].

From Theorem 2.1 we have E|®,x|| < M |[x||VxeX for a suitable M > 0. Therefore
El@(A)| < M |exp(AF — AF*)x | | exp(— AF + AF*)y | < M| x| |ly|l, for a suitable
M > 0. Liouville theorem [7, Theorem 3.32] assures that the vector-valued function
¢ is constant. Hence ¢(4) = ¢(0) = [(®,x|y)] (Which mean that, for every A€ C, ¢(4) =
(®x|y) almost surely on A) and 0= ¢@'(d)=[(P,exp(AF¥*)F* x|exp(— AF)N]
+ [(®, expAF*)x|exp(— AF)(— F)y)]. Accordingly 0= ¢(0) = [(@F*x|y) — (@x|Fy)]
almost surely, for all x, ye H. This shows that F*® = ®F*. Therefore P[®F* = F*®]
> P[®F = F®], and replacing F by F* we have P[OF=F®] > P[®F* = F*®],
which ends the proof. i

For a continuous linear operator T and a continuous normal operator F on
a Hilbert space H, for which the commutator [T, F] commutes with F, Putnam
theorem [8, Corollary 2.2.9] shows that [T, F ] = 0. It seems to be unknown whether
Putnam theorem remains true for a continuous linear random operator T, We establish
several probabilistic versions of that theorem.
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In order to translate Putnam theorem to random operators we first restrict our
attention to compact deterministic operators.

Theorem 4.4. Let ® be a continuous linear random operator and K be a compact normai
deterministic operator, both of them acting on a complex Hilbert space H. Then

P[[[®,K],K]=0]=P[[® K]=0].

Proof. As in the proof of Theorem 42 we put K =% (A m,.

It is clear that P[[[®,K ], K]=0] = P[[®,K ]=0].

Let A be a measurableset with [[®,,K ], K ]=0and P[A] =P[[[®,K ],K]=0].
ForeveryneN,wehave [[®, =, K], K]=[[®,,K ], K ]n, =0. Since ®, =, is equival-
ent to a random variable on BL(H), it may be concluded that [®,7,, K] =0 and
therefore {®,,K]n, =0. Since [0, K]K=K[D,,K], we have 0=[®,,K]K 7,
=K [®,,K]n, Consequently [®,, K ]7, maps every element almost surely into ker
K, which gives n,[®,, K ]n, =0V neN. Further n,[®,, K]n,=0 and therefore
[®,, K]n, =0, since Y ©_,m, =I. Accordingly [®,, K]1=0 and so P[[®,K ]=0]
= P[[[®,K ],K] = 0], which concludes the proof. O

Now compactness condition may be omitted by requiring the expectation property
on the random operator.

Lemma 4.5. Let ® be a continuous linear random operator having 1st moment and F be
a continuous normal deterministic operator, both of them acting on a complex Hilbert
space H. Assume that F = jsz(z) for a suitable spectral measure E on the spectrum sp
(F) of F. Then ® F=F® and ®F* = F*® if and only if, DE(A)= E(A)® for every
measurable set A in sp (F).

Proof. f ®F = F ® and ®F* = F*®, then ®p(F, F*)= ®p(F, F*) for every complex
polynomial p in F and F*. Given a measurable subset. A of sp(F), the projection E(A)
can be obtained as the strong limit in BL(H) of a suitable sequence {p,(F,F*)} of
complex polynomials p,(F, F*}in F and F* with p,(F, F*)* = p (F, F *). Therefore, for
every xe H, we have

QEAN)x=|"Il; — liIED(I)p,,(F,F*)x =, - }Lxgpn(F,F*)d)x =E(A)®x

(where ||-{|; — lim denotes the limit in mean) and thus ®E(A) = E(A)®.

We now assume that, ® E(A) = E(A)® for every measurable subset A of sp(F). Let
¢ be a positive number, A,...,A, measurable subsets of sp(F), and z,€A,,...,z,€A,
such that [[F — Y% _,z,E(A,) | <& Then

I[P, F]x| = H<D<F~ 2": zkE(Ak)>x— (F— i zkE(Ak)>(I)x
k=1 k=

1

< +

£l

(F- zn: zkE(Ak)><I)x

k=1

@ (F - 2 zkE(Ak))x

almost surely, for every xe H. Since [®@,F ] is a continuous linear 1st order random
operator, Theorem 2.1 shows that there exists M > Osuch that E||[®, F x| < M || x|V xeX.
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Accordingly

E|[®,F]x]| <2MHF Z 2, E

x| <2Mell x|,

for a suitable M > 0. Letting ¢ >0 we have E||[®, F ]x || = 0 and therefore [®,F ] =0.
In the previous argument, just replace z,,...,z, by Z,,...,Z,, and it follows that
[LF*]=0. O

Theorem 4.6. Let ® be a continuous linear random operator having 1st moment and F be
a continuous normal deterministic operator, both of them acting on a complex Hilbert
space H. Then

PI[[®,F], F]1=0]=P[[® F]=0].

Proof. Itis clear that P[[[®,F], F]=0] > P[[®,F]=0].

Let A be a measurable set with P[A}=P[[[®,F], F]=0] and [[®,,F],F]=0.
Since [®,,F] F=F[®,,F], Theorem 4.3 shows that [®,, F]F*=F*[®,,F]. Let
E be a spectral measure on sp (F) such that F = | zdE(z). By applying the preceding
lemma, for every measurable subset A in sp (F), we have [®,, F] E(A)= E(A)[®,, F].
Since

[®,, E(A)]JF =®, E(A)F — E(A)®, F=®, FE(A)~ E(A)— ®,F
=[®, F]1E(A)+ F®, E(A)— E(A)®,F
= E(A)[®, F]+ F®,E(A)— E(A)®, F
=F®, E(A)— E(AF®,= F[®,, E(A)].

Theorem 4.3 shows that [®,, E(A)]F* = F*[®,, E(A)] and the preceding lemma
gives [@,, E(A)]E(A)= E(A)[®,, E(A)]. Accordingly &, E(A)—E(A)®, E(A)=E(A)D,
E(A) — E(A)®,. By multiplying on the left and on the right by E(A) we obtain
®,E(A)=EA)®,. By Lemma 4.5 [®,, F]=0 and therefore P[[®,F]=0]
2 P[[[® F], F1=0] O

5. Commutation with compact normal operators

Throughout this section, K stands for a compact normal deterministic operator on
a complex Hilbert space H. It decomposes into a pointwise sum K = Zn oA T, Where
{4,} is the sequence of its spectral values with A, = 0 and, for each n, r, is the projection
onto ker (1, I — K).

It is well known that any continuous linear deterministic operator F that commutes
with K can be decomposed into a pointwise sum F=)%_ ¢(4,)n, for a suitable
complex valued bounded function acting on sp (K). Actually for every such function the
above series converges pointwise to a continuous linear deterministic operator, usually
denoted by ¢(K), satisfying that commutation property.

In this section we study whether the above assertions remain true in the random
setting, replacing F by a random operator and ¢ by a random function.

Theorem 5.1. Let @ be a continuous linear random operator on H. If

PL([®,F]x|y})=0]>0
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for every continuous linear deterministic operator F on H commuting with K and all x,
y € H, then there exists a sequence bounded in probability {£,} of complex-valued random
variables such that, for every x € H, the random series ¢, m,x converges in probability
and

o0
IPI:CDx =y f,,n,,xil >0.
n=0
Furthermore, if ® has rth moment, then the random variables £, have rth moment, the
sequence {&,} is bounded in r-mean and the series £ &,m,x converges in r-mean.

Proof. By considering the closed subspace # = {FeBL(H):FK = KF} of BL(H) we
can choose a measurable set A with P[A] >0and [®,,F] =0,VFe#. For every 4, we
fix u, € ker (4,1 — K) with||u, || = 1 and we define the random variable &, to be (du,|u,)
on A and 0 otherwise. Since @ is continuous { &, } is bounded in probability. For every
neN and every ueker (4,I — K'), we consider the continuous linear operator F on
Hgivenby Fx = (x|u,)u. Then F commutes with K andso ®, F = F ®,. Forevery yeH,
(@yuly) = (@, Fu,ly) = (F®,u,]y) = (@4u,|[ F*y) = £,,,(uly). Therefore @, is equival-
ent to {,,m, on ker (4,1 — K). For every xeH, X7_,m, x converges in probability (in
r-mean if ® has rth moment) to x and consequently ®,x =XZ*_ @, 7, x. From this we
deduce ®,x =X ¢, m,x. Therefore the random series ¢, 7,x, and consequently
X ¢, m,x, converge in probability. Further, for every xe H the equality &x =X% & m,x
holds almost surely on A. If @ has rth moment, then E}¢,|" < E|| ®@u,||” < 0. Further
{®u,} is bounded in r-mean, since otherwise we could choose a subsequence
{u,} of {u,} such that p, =E|®u, | — +cc. Accordingly {u,/p;"*} -0 and
Ell®(u, /ps™)|I” = El|®u, ["/p, = 1 which contradicts the continuity of ®. m

Theoren5.2. Let{n,} be a sequence of pairwise orthogonal projections on a Hilbert space
H and let {¢,} be a sequence of complex-valued random variables having rth moment with
r = 2. Then the following assertions are equivalent:

1. For each xeH the random series L&, m, x, converges in r-mean.
2. The sequence {&,} is bounded in r-mean.

Furthermore, in such a case the pointwise sum of the series X &, , defines a continuous
linear random operator on H having rth moment.

Proof. Assume that the sequence {£,} is bounded in r-mean. We show that, for each
xeH, the series Z|,|*||m, |I? in L, ,(IK) converges. To this end we note that

Y &P Imx 12 ,,= Y I mx 12 1E17 <@6upl &7 Y x|
n=1 n=1 n=1

= (sup | &, I 1 x 1%

Therefore the series Z|&,/% || =, ||* converges absolutely in L, ,(IK). Furthermore

< (sup &, 1D x 2.
r/2

Given m. neN we have E|| 7™, mx | = E(ZiE™ &% | mex ||2)7?, which converges

k=n k=n

to zero when n— oo, for every meN. So the series &, 7, x converges in &, (P, H)

S &, )
n=1
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and

e o)

Y Emx

n=1

E <(supl& D",

which shows that the linear random operator given by the pointwise sum of the series
X¢,m, is continuous.

Conversely assume the series £&,n, to be pointwise convergent. Then {&,n,} gives
a sequence of continuous linear operators from H into L{P, H) which is pointwise
bounded. Banach—Steinhaus theorem shows that there is a positive number M such
that sup,,, ., I, m, x|, < M VneN. Since sup,,,_, €, 7,% ||, = [I€,]l,, it follows that the
sequence {&,} is bounded in r-mean. O

Unfortunately there exist sequences of complex-valued random variables {&,}
bounded in r-mean with 0 < r <2, and sequences {r,} of pairwise orthogonal projec-
tions for which the random series ¢, n, x does not converge in probability for a suitable
xeH. We illustrate this fact in the following.

Examples 5.3. Let e, be an orthonormal sequence in a Hilbert space H. Consider the
sequence {m,} of pairwise orthogonal projections on H given by =,(x) =(xle,)e, for every
xeH. Also consider the interval [0, 1] endowed with the Lebesgue measure. Given a
measurable set A, y, stands for the characteristic function of A. If 0 < r < 2, then we consider
the sequence {¢,} of random variables, given by &1, = 2 Yot m+ 1y2p M =0,...,2— 1,
k>0. The sequence {£,} is bounded in r-mean. Further the sequence {«,} given by
Upe iy =2""",m=0,...,2*— 1,k >0, satisfies that £2_, |a,|* < oo and therefore the series
¥>_, a,e, defines an element xe H. The random series £ &, 7, x satisfies

2K+

n=1"n
k
Z CaTtuX =Z
n=1 =0

and therefore it does not even converge in probability.

The random series X ¢(4,), defines (up to equivalence) a continuous linear random
operator having rth moment whenever ¢ is a random function acting on sp (K)
bounded in r-mean with r > 2. We write ¢(K) to denote it.

2'—1 k
Z |2’/rX[m/2',(m+ 1)/2‘[2~Ur|2 = Z X = (k + DXpox
m=0 =0

COROLLARY 54

Let @ be a continuous linear random operator having 2nd moment. Then the following
assertions are equivalent:

1. For every continuous linear deterministic operator F on H commuting with K we have
P[®F =F®]>0.

2. There exists a random function ¢ on sp(K) bounded in mean square such that
P[P =¢(K)]>0.

Proof. Assume that assertion 1 holds. By Theorem 5.1 there exists a random function
¢ acting on sp(K) bounded in mean square such that P[® = ¢(K)] > 0.

Conversely if 2 is fulfilled, then there exists a measurable set A with P[A] = P[®
= ¢(K)] and @, = ¢ (K). Given a continuous linear deterministic operator F com-
muting with K it is known that =, F = F =, for every neN. From this it is easy to check
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that ¢,(K)Fx = Fg,(K)x almost surely for every xeH. Thus P[®F =F ®] > P[A].
Therefore assertion 1 follows. 0
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