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Abstract. The Green's function solution of the Helmholtz's equation for acoustic scattering 
by hard surfaces and radiation by vibrating surfaces, lead in both the cases, to a hyper singular 
surface boundary integral equation. Considering a general open surface, a simple proof has 
been given to show that the integral is to be interpreted like the Hadmard finite part of 
a divergent integral in one variable. The equation is reformulated as a Cauchy principal value 
integral equation, but also containing the potential at the control point. It is amenable to 
numerical treatment by conventional methods. An alternative formulation in the better 
known form, containing the tangential derivative of the potential is also given. The two 
dimensional problem for an open arc is separately treated for its simpler feature. 

" Keywords. Finite part; hyper singular integral; integral equation; Cauchy principal value; 
acoustic scattering; acoustic radiation; open smooth surfaces. 

1. Introduction 

It has been recognized in recent years that the Green's function formulation of 
scattering and radiation of acoustic or elastic waves by surfaces on which Neumann 
boundary condition holds, leads to hyper singular integral equations. In the acoustic 
case, the surfaces are non-soft, that is, hard or partially absorbing, open or closed. 
References to and regularization of the hyper singular nature by conversion to Cauchy 
principal value (CPV) integral equations involving (tangential) derivatives of the 
unknown potential or integro-differential equations have been made in diverse litera- 
ture (Burton and Miller [1], Meyer et al [-9], Terai [11], Martin and Rizzo [-7], 
Krishnasamy et al [5]). In the context of vector elastic waves, the surfaces are usually 
stress-free crack surfaces in the solid and considerable literature exists generally 
without direct reference to hyper singularity. References to the few which treat hyper 
singularity may be found in Martin and Rizzo E7] and Krishnasamy et al [5]. 

The hyper singularity in the boundary integral equation arises when the normal 
derivative implied by the boundary conditions is carried into the Cauchy principal 
value integral containing normal derivative of Green's function. Validation of the 
hyper singular integrals in different contexts as Hadamard finite part (HFP) [2] is 
generally obtainable (Krishnasamy et al [-5]). In view of the straightforward formula- 
tion, there have been several suggestions following Iokimidis [31 to treat these 
numerically, using Gaussian quadrature formula developed by Kutt [6] for integrals in 
one dimension. 

Herein, we treat the hyper singular integral equation that arises in the context of 
acoustic scattering or radiation by a hard open surface (three as well as two dimen- 
sional, that is, an arc). By adopting a definition of finite part of the hyper singular 
surface integral as a generalization of the usual HFP of a curvilinear integral stated in 
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The geometry of the problem. N is the foot of the perpendicular from P on the surface S. 

Martin and Rizzo [7], we present a short validation of the equation. The proof of 
Krishnasamy et al ['5] based on the original definition of Hadamard for one dimen- 
sional integral is somewhat longer. Next the equation is transformed in a straightfor- 
ward way to derive CPV linear integral equations, which can be numerically treated in 
conventional ways. Familiar type, containing the (tangential) derivative of the potential 
is also derived. The case of two dimensional arc is separately treated for its simplicity 
and elucidation. 

2. The hy~r singular integral equation 

The acoustic field potential ~b satisfies Helmholtz's equation 

V2~ + k2t~ = 0, (1) 

where k is the wave number co/c, co/2~ = frequency and c = wave velocity. By Green's 
identity (cf. figure 1), the solution of (1) can be written as 

[,oG_G l + 
Tv 0vl_ ds' (2) 

where ~ = -  27r or 4~r with regard to the (open) surface S being two or three 
dimensional, and G is the free space Green's function (izc/2)H~o2)(kr) or e-~'/r, H~(.) 
being the Hankel function of second kind and zero order. For an acoustically hard 
surface scattering problem, the normal component of velocity at the variable point Q, 
namely cgt~/Ov is zero while it is prescribed ( -  ipcov(Q)) and is continuous across S for 
the radiation problem. Hence (2) simplifies to 

lfsO dS, (3) 

Boundary integral equation for @, completing the solution of(3), is obtained by again 
invoking the boundary condition on S. For the radiation problem c3c~/an = v(N) as the 
control point P tends to N where v(N) is the amplitude of the normal component of 
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Figure 2. Local coordinates for circular region S c. 

displacement. We thus get 

f s  r  = qJ(N), as P ~ N, (4) vv 

where q' = xv(N). In the scattering problem, r can be considered as the scattered field 
in a total field ~b t~ and incident field ~b 1"r For acoustically hard surface ~r176 = 0 as 
P tends to N and we again have eq. (4), where qJ(N) = - x~dpi"r In the surface 
integral of eq. (4) as P tends normally to the point N on S, ~G/~vdS becomes 0(l /r)  
singular. Hence the CPV of the integral denoted by :~ has to be taken. If further, the 
derivative ~/~n is taken within the integral sign, there results 

fS  t~2G r = ~F(e), as P~N. (5) 

Now a2G/~navdS becomes O(I/r 2) singular as P--* N and the integral is divergent. 
Justification and meaning in the sense of Hadamard fnite part (HFP) denoted by =~ has 
been provided by Krishnasamy et al [5]. In the following we give a shorter justification. 

Lemma 1. For infinitesimal region S O with centroid N 

fs  2G o ~-~vdS-~0, as S O shrinks to N. 

Let 2e be the diameter of the smallest circular region with centre N containing S o. Then 
the integral in magnitude, is less than or equal to that over Sr Now introducing local 
coordinates with centre N as origin (figure 2). 

Hence 
\--?-). 

,c~nc~v o=odO '=oe L~ ~-t ~-$ r ] ~  ~ ~ r'dr' 

Je=oJ= drL-----~1(l+ikr)~-%-I dr 
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= - 2 =  L ~ ( , / ~ + z  = ~2+z 2 ike -'J'; 

--*0 as e ~ 0 .  

(Terai [11]). 
Reverting to the hyper singular integral, we define its finite part in the manner of the 

integral in one variable (eq. (22)) 

t~ 2 G def  (Q 8 2 G 
O(Q)~--~v dS + O(N) Jso ~--~vdS' 

f: 02G 
= ~_SoO(Q)~-~ovdS, asSo-*N 

by lemma 1. Hence, 

S 02 G 
= -So ~(Q)0--n~vdS' 

= f s O ( Q ) ~  dS. 

as So ~ N 

as So ~ N 

as So--, N 

(6) 

In the case of an open arc in two dimensions, the above does not hold. It can however be 
proved more easily as indicated in Remark of w 6. 

Referring to figure 1, the hyper singular kernel can be written in view of 

dr 
G=G(r)  and ~vv=c~ 

t~2r cos(a, v) 1 
= + -Cos(r, n)cos(r, v) 

anav r r 
as loG) log 

OnOv = \ Or 2 r-&r cos(r, n) cos(r, v) -- r ~ r  cos(n, v). (7) 

In the following we consider reduction of the finite part integral of eq. (5) to CPV 
and ordinary integrals. We need separate treatment for three- and two-dimensional 
c~ses. 

3. Three dimensional case 
In this case, G = e-~k'/r and eq. (7) becomes 

82G (3 3ik ]'x e- 2'/1. ~ )  k2/cos(r,.)coslr, v)§ § = - e - ~ ' k r  3 + V  r 
(8) 

The O(r- 3) terms give rise to finite part hyper singular integrals in eq. (5), while O(r- 2) 
and Off-  i) terms yield CPV singular and regular integrals respectively. For the left 
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hand side of the equation we can write 

f s  g2 G ~2 G 
r a--~vdS = f s [~(Q)-O(N)] ~-~vdS + ~(N) ~s 02G d-~v dS. (9) 

Significantly, by Lemma 1, the singularity in the last integral can in fact be ignored and 
it is possible to transform the integral by Stokes theorem. Noting that G = G(r) with 
r 2 = ( x  - -  ~)2  + ( y  _ t / )2 + (z  - -  ( ) 2 ,  Vx G = _ VG, where Vx is the divergence operator in 
the space of P(x, y, z) and V is the same operator in the space of the variable point 
Q(~, t/, 0 of S. Hence 

c32G 
gntgv = n'Vx(v'VG) 

= 

where (l, m, n) and (2,/a, v) are respectively the projections of n and v on the coordinate 
axes. Since V,,(dG/d~) = - V(dG/~) .... we can rearrange to obtairi 

~2G 
dndv- (n'v)V2G +v 'cu r l [n  x VG]. (10) 

Thus, noting that V2G = - k 2 G and applying Stokes theorem to the second term 

sO--~vdS=k 2 (n'v)GdS + c [n x VG]'d{, (11) 

the right hand side of which consists of regular integrals. 
In the first integral on the right hand side of eq. (10), there is a large part in the 

integrand which yields regular integrals. To separate the Cauchy principal value 
integral in it, we introduce the potential G o = 1/r for which 

c~2Go 3 + ~cos(n,  v). = - ~cos(r ,  n)cos(r, v) (12) 

We can then write 

[~,(Q) - , ( N ) ] o - ~ - g v d S  = [~,(Q) - ~,(N)] - a o ) d S  
O2(G 

s ~ OnOv 
O 2 Go 

+ [~(Q) - ~(N)] ~-S~.. dS. (13) 
S ur[uv 

The full integrand of the first integral on the right hand side ofeq. (12) can be explicitly 
2 written down from eqs (8) and (13). For the second we use identity (10) with V G O = 0 

and VG o calculable explicitly, we get 

OnOv -~- + l rl r - m r ~,t ~ - # ~ ) 

+ ( m ~ -  - n~l - Y'~ ] .#  : -  - v~l ~ Y ) 

+ ( n ' - X - l ~ - ' ) ( v ' ~ X - 2 ~ 7 ~ - ) ]  (14, 
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The  first term on the right hand side leads to CPV integral while the second leads to 
a regular integral since 

(x - ~ )/r:(y - q)/r:(z - O/r---, ;t:~:v:--* l:m:n 

as Q ~ N ,  P - , N .  
With the above procedure  (eqs (10)-(14)), eq. (9) in the limit P--*N, yields for the 

original hyper  singular integral equat ion (5), the linear CPV singular integral equat ion 

[k 2 /' e-ik, 
Js(n'v) r dS+fclnXV(e-~')l'd~ ~(P) 

1_ 

k 2 + fs[*(Q)-~(P)][-{(e-'k'-l)~+e-~"(3ik-r)}C~176 r" 

+ {,. ,.. qdS 

+ 3 ~ [q)(Q) - * ( P ) ]  [ {/(q - y) - m(~ - x)} { 2(q - y) - #(~ - x)} 
d, 

+ {m(~ - z) - n ( .  - y)} {#(~ - z) - v ( t / -  y)} + {n(~ - x) - I(~ - z)} 

ldSf * ( P ) ] ~ d S = W ( P ) ,  P ~ N .  {v(~ - x) - 2(( - z)} -~- - 2 [(I)(Q) - 
S 

05) 

A feature to note, is the occurence of O(P) inside integrals of the equation. This does not  
pose much numerical difficulty when the integrals are replaced by quadra ture  for- 
mulae. 

4. A simple integral equation in tangential derivative 

Integral equat ions of this type were first obtained by Maue  [8] for the scattering 
problem. Using eq. (11) 

fS ~ a 2 G = k2 (Q) ~n-~v dS f s  (n .v)G~(Q)dS 

v.{curl[O(Q)(n x VG)] - V O ( Q )  • (n x VG)}dS. + 
J S 

By Stokes theorem, the second integral on the right hand side is equal to 
t* 

j ~(Q)(n x VG) 'd~- -0 ,  
C 

since ~(Q) = ~b + - ~b - = 0 on the rim C. Hence eq. (5) becomes 

; (' s VO(Q) • (n x Vr)e-lkr ~ + dS 

f S e - ikr + k  ~ (n.v),X,(Q) dS=W(P) ,  P - , N .  (16) 
r 
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Figure 3. The geometry in two dimensions. 

This equation does not contain @(P) inside the integrals. 

5. Two dimensional case 

In view of the fact that the surface integral degenerates into a line integral along a plane 
arc, the two dimensional case needs separate treatment. Denoting the inclinations of 
the tangents at N and Q to OX by 4~, ~ and that of r by X (figure 3), 

L _ ( r , n ) = ~ + q ~ - ~ ,  / _ _ ( r , v ) = ~ + 0 - X ,  /__(n,v)=~b-q~ 

in eq. (7). Also since 

i~ r4(2~tkr ~ ~3G irck 
G =  2 " ' ~  , ,, ~ r -  2 Hltz)(kr)' 

~ G - ink2 [1H~2)(kr)_ H~o2,(kr) 1 
~r 2 2 

Thus, (7) takes the form 

02G _ ink~ [H~o2)(Kr)sin(q~ _ Z) sin(~O - Z) 
?m~v 2 

+ IH]2)(kr)cos(49 + q~ - 2X)]. (17) 
Kr 

If we assume that the equation of S is given parametrically 

x ~ f ( t ) ,  y~o(t);  ~ = f ( z ) ,  q = 9 ( 0 ,  a<~t, ~<~b (18) 

then the trigonometric expressions in the limit P --, N can be written as 

K 1 (t, z) (19) 
sin(q~ - Z) sin(~b - X) = ~/x'~ + v,2 ,=-=.~/(,, q,~ + 
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K2(t, z) (19a) 
cos(r + Ip - 2Z)= x / / ~  + y,S x / ~  + r/,2 

where, tan r = y'/x', tan $ = r/'/4', primes denoting the derivatives and sin Z = ( r / -  y)/r, 
cos)c = (4 - x)/r. Also if r < n/2 and ~ < 7r/2, 

1 
gt(t,  r) = ~ [(4 - x)Srl'Y ' + (rl - y)2 4' x' - (4 - x)(~l - y)(~' y' + r/'x')]. (20) 

1 Ks(t, r) = ~ [{(~ - x) 2 - ( r / -  y)2 }(4'x' - r(y') + 2(4 - x)(~/- y)(~'y' + ~/'x')]. 

(20a) 

If however, 4) > ~r/2 or ~ > u/2, x', 4' are to be replaced by - x', - ~'. In the limiting case 
P, Q --, N, r ~ 0 and ~ ~ ~b, X --* - ((n/2) - ~b) and the left hand sides of (19) tend to 1 or 
- 1 respectively. Hence, as z ~ t ,  Kl(t,z) = - K2(t,T)~x 's + y,2. With eqs (17), (19) 
and (20), eq. (5) becomes after a little rearrangement 

1 (2) 2i 
~b t~(z) [ Hto2)(kr) K~ (t, z) + -~r { H, (kr) - -~r } K 2(t, z) 

2i 1 2i /27-f 
+ n--~-~r2 K2(t, z) d r =  -~x / x -+y '2W(P) ,  P--*N. (21) 

. . I  

The first term of the kernal within the square brackets is logarithmically singular and 
hence integrable; the second regular and the third hyper singular. In fact it can be 
shown from definition (20) that 

Ks(t, ~) 
r2 * - � 8 9  -2, a s ~ - , t .  (22) 

To extract the finite part of the hyper singular integral, we may use the following. 

Lemma 2. 

~b a ( 't-- t) 2f( t ' r )  dz fb f(tL~z t ~ t , t ) d z  + f(t,t)(t b _  a 
= - b )  

From definition of the finite part of the hyper singular integral 

f: f ;~  g(z) 2dz= -~ g(z) b g(z) dz+g(t) dz 
J o  - t )  s + - t )  s , _ ,  

The proof follows from the particular case g(r) = 1: 

f f b o d T _ l  1 
( z -  02 t -  b t -  a 

(Kaya and Erdogan [4]). 
The integral equation can thus be rewritten as 

�9 (t)-t (b-t)( t -a)[xk2fb~dP(T){ 

~ --o, 0. 

(23) 
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+ - + -- ~-~ 7 ~_-- y)2 

+ 2(t- t) ~ J ] 

t)(t 
a)v/~-;-i + y,2 W(P), P -*  N. (24) = - 2 ( b  - b - a  

1 

As in the three dimensional case, O(t) occurs inside the (CPV) integral, in this 
formulation. From the equation we find that in the neighbourhood of the extremities of 
the arc t --* a or t --* b, O(t) ~ 0, but the law of approach is not apparent. 

6. Alternative formula containing derivative 

Lemma 3. 

f bf(t ,  z)O(*). ;b f ( t , , ) - -  f(t, 
o ~ _ - ~  .ur = j o  / , -  0 = t)*(r)d* 

+ f(t,t)[ ft'oO'(~)d, + ~ r - t  t - b  

The proof follows from (Kaya and Erdogan [4]) 

It'. (tO(z)-- t) z dz = d ~ba ff(T)t dz 

o(b) dfl o(a) ~ O'(z)lnl~- t ldz 
t - - a  t - b  dt 

(a) ] 
~a3" 

_ 9(a l )  + 9(b) + ('jr b 9'(~)dr (25) 
t - a  t - b  d , z - - t  

where the second line is obtained by splitting (a, b) into (a, t - e) and (t + e, b), e--* 0 and 
integration by parts. 

Remark. Equation (25)justifies the validity of (5) in two dimensional case. 
With the aid of the above lemma and eq. (21), the hyper singular integral in it can be 

written as 

fbo K2r~,z)r = fb  [ K z ( t , z )  1 ] l f :  r (26, 
L r2 +2(r  t)-----  ~ @(r)dr-~ z - t  

The term contributed by @(a), @(b) drop out according to what has been stated at the 
end of the previous section. Equation (21) thus takes the form 

~ ( r ) d z _ 2  ~ K2( t , z  ) 1 
- t . ) ,  i~ - x) 2 + (rt - y)Z + 2(z t)--------- ~ dr 
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= 2 x / ~  + y,2 W(P), P ~ N. (27) 

This does not contain O(t) inside the integral. 
The behaviour of~(t)  at t = a, b depends on the nature of solution ofeq. (25) which is 

of the form 

~'*'(z___~)= F(t) ,  a < . t ~  b. (28) 
J .  

If we think of ~(t) as displacement discontinuity across S, ~'(t) will represent a quantity 
proportional to stress and must become unbounded at t = a, b. Hence from the theory 
of singular integral equation of the above form (Sih [10]), the fundamental solution of 
(28) must be of the form 

w(t)  = {(t - a)(b - t)}-tl/2) 

Thus, as t-* a or b 

t~'(t) = { (t - a)(b - t)} -,/2~ x a bounded function 
or  

q)(t) = {(t - - a ) ( b -  0} 1/2 x a b o u n d e d  func t ion ,  

which  verifies a w e l l - k n o w n  fact. 
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