A note on a generalization of Macdonald's identities for A_ℓ and B_ℓ

N STHANUMOORTHY and M TAMBA*
The Ramanujan Institute, University of Madras, Madras 600 005, India
*School of Mathematics, SPIC Science Foundation, Madras 600 017, India

MS received 18 June 1990; revised 4 September 1993

Abstract. Let $\eta(q)$ denote the Dedekind's η-function. Macdonald obtained identities for $\eta(q)^{\dim g}$ where g is complex simple finite dimensional Lie algebra. The aim of this paper is to obtain generalization of the above identities in the case of $g = A_\ell$ and B_ℓ. We also get new formulas for the generating functions of the Ramanujan's r-function and ψ_r-functions.

Keywords. Macdonald's multivariable identities; Dedekind's eta function;

1. Introduction

Let $\eta(q)$ denote Dedekind's η-function. Macdonald [7] obtained a formula for $\eta(q)^{\dim g}$ for every complex simple Lie algebra g which gives a generalization of the Jacobi's expansion for $\eta(q)^3$. These formulas are some specializations of the Macdonald's multivariable identities [7]. Many other identities involving Dedekind's η-function were also obtained by Lepowsky [4].

We shall need the following preliminaries. Let g denote the simple finite dimensional Lie algebra of the type A_ℓ or B_ℓ; \mathfrak{h} denotes its Cartan subalgebra; Let Δ, Δ_+ and Δ_+ be the root system, the set of positive roots and the positive dual roots respectively of g and ρ (respectively ρ') be the half-sum of the roots in Δ_+ (resp. Δ_+). W and M are the Weyl group of g and the lattice spanned over \mathbb{Z} by the long roots of g respectively. Let h and g denote the Coxeter and dual Coxeter numbers of g respectively.

Let $\langle \cdot , \cdot \rangle$ denote the pairing of the elements in \mathfrak{h} and \mathfrak{h}^* (cf. [3]). We introduce the following notations:

\[
\Delta_{m} = \{ \alpha \in \Delta_+ \mid \langle \rho, \alpha \rangle \equiv 0 \pmod{m} \}, \\
d_m(\lambda) = \prod_{\alpha \in \Delta_{m}^{\vee}} \frac{\langle \lambda + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle}, \quad (\lambda \in \mathfrak{h}^*).
\]

The aim of this paper is to prove the following:

Theorem 1. For $\ell \geq 1$, let $m \leq \ell + 1$ be any divisor of $\ell + 1$. Then

\[
\eta(q^{m})^{(\ell + 1)^2/m} \eta(q)^{-1} = \sum_{\alpha \in M} d_m((\ell + 1)\alpha)^{(1/2)(\ell + 1)||p + (\ell + 1)\alpha||^2}
\]
where
\[d_m(\lambda) = \prod_{\alpha \in \Delta_+^\vee} \frac{\langle \lambda + \rho, \alpha \rangle}{\langle \rho, \alpha \rangle}, (\lambda \in \mathfrak{h}^{\ast}). \]

Theorem 2. For \(\ell \geq 3 \), let \(m \) be any divisor of \((2\ell - 1)\). Then
\[
\eta(q)\eta(q^{m})^{(2\ell^2 + \ell - 1)/m} = \sum_{\alpha \in \mathcal{M}} d_m((2\ell - 1)\alpha)q^{(\ell^2(2\ell^2 - 1))/\rho + (2\ell - 1)m^2}.
\]

The above identities are generalizations of Macdonald's formula for \(\eta(q)^{(\ell^2 + 1)/2 - 1} \) and \(\eta(q^{2\ell^2 + \ell}). \)

The consequence of the above theorems are the following corollaries.

COROLLARY 1
\[
\eta(q)^{24} = \sum_{r_1, \ldots, r_{12}; r \in \mathbb{Z}} \left\{ (-1)^{r \cdot D_1(r_1, \ldots, r_{12})} q^{(1/44)(6r+1)^2} + \sum_{i=1}^{12} \frac{(13 - 2i + 24r_i)^2}{4}\right\}
\]
where
\[
D_1(r_1, \ldots, r_{12}) = \prod_{i=1}^{6} (2r_i - r_{i+6} + 1).
\]

COROLLARY 2
\[
q\{(1 - q^3)(1 - q^6)\ldots\}^8
\]
\[
= \sum_{r_1, \ldots, r_4; r \in \mathbb{Z}} \left\{ (-1)^{r \cdot D_2(r_1, \ldots, r_4)} q^{(1/16)(6r+1)^2} + \sum_{i=1}^{4} (5 - 2i + 8r_i)^2\right\},
\]
where
\[
D_2(r_1, \ldots, r_4) = (2(r_1 - r_3) + 1)(2(r_2 - r_4) + 1).
\]

COROLLARY 3
\[
q\{(1 - q^2)(1 - q^4)\ldots\}^{12}
\]
\[
= \sum_{r_1, \ldots, r_6; r \in \mathbb{Z}} \left\{ (-1)^{r \cdot D_3(r_1, \ldots, r_6)} q^{(1/36)(6r+1)^2 + (1/2)} \sum_{i=1}^{6} (7 - 2i + 12r_i)^2\right\},
\]
where
\[
D_3(r_1, \ldots, r_6) = (2(r_1 - r_4) + 1)(2(r_2 - r_5) + 1)(2(r_3 - r_6) + 1).
\]

COROLLARY 4

For \(\ell \geq 3 \), we have
\[
\eta(q)\eta(q^{2\ell - 1})^{\ell - 1} = \sum_{\alpha \in \mathcal{M}} d_{2\ell - 1}((2\ell - 1)\alpha)q^{(\ell^2(2\ell - 1))/\rho + (2\ell - 1)m^2}.
\]
Corollary 1 gives a new formula for the generating function $\eta(q)^{24}$ of the Ramanujan's τ-function. This is different from that of Dyson [1] and Lepowsky [4, 5]. Corollaries 2 and 3 give formulas for the generating function G_k of the Ramanujan's ψ_k-functions [8].

Now we briefly explain the techniques used to obtain the above results: The substitutions involved in these computations are actually generalizations of the substitutions used by Macdonald [7] and Lepowsky [4, 5].

2. Explanation of the techniques involved

We will use the following form of the Macdonald's identity for the affine Lie algebra of the type $A_{t}^{(1)}$ or $B_{t}^{(1)}$ (the identity is true for any $X_{t}^{(1)}$) (cf. [3]: pp. 168):

$$e\left(-\frac{|\rho|^2}{2g}\right) \prod_{\alpha \neq 1} ((1 - e(-n\delta)) \cdots (1 - e(-n\delta + \rho)))$$

$$= \sum_{\alpha \in \mathfrak{g}} \chi(g\alpha) e\left(-\frac{1}{2g} |\rho + g\alpha|^2\delta\right),$$

(2.1)

where, for $\lambda \in \mathfrak{h}$*

$$\chi(\lambda) = \frac{\sum_{w \in \mathcal{W}} e(w) e(w(\lambda + \rho) - \rho)}{\prod_{\alpha \in \Delta}} (1 - e(-\alpha)).$$

(2.2)

Let $\alpha_1, \ldots, \alpha_{\ell}$ denote the simple roots of \mathfrak{g}. For any divisor m of g, where g stands for the dual Coxeter number of \mathfrak{g}, let ϕ_m denote the specialization $\phi_m(e(-\delta)) = q$, $\phi_m(e(\alpha_i)) = w(i = 1, \ldots, \ell)$; here w denotes the primitive root of degree m of unity.

We require the following Lemma.

Lemma. For $\alpha \in \mathcal{M}$,

$$\phi_m(\chi(g\alpha)) = d_m(g\alpha).$$

(2.3)

Proof. Fix $\alpha \in \mathcal{M}$. We define the following homomorphisms:

$$F_1: \mathbb{C}[[e(-\alpha_i): 1 \leq i \leq \ell]] \to \mathbb{C}[[t, t^{-1}]]$$

by

$$F_1(e(-\alpha_i)) = t (i = 1, 2, \ldots, \ell).$$

(Here note that $F_1(e(\alpha_i)) = t^{<\alpha_i, \rho'>}$) and

$$F_2: \mathbb{C}[[e(-\alpha_i^\vee): 1 \leq i \leq \ell]] \to \mathbb{C}[[t, t^{-1}]]$$

by

$$F_2(e(-\alpha_i^\vee)) = t^{<\alpha_i^\vee, g\alpha + \rho>}. $$

Since ϕ_m is an homomorphism and since $\lim_{x \to w} F_1(e(-g\alpha)) = 1$, it suffices to prove that

$$\phi_m(e(-g\alpha)\chi(g\alpha)) = d_m(g\alpha).$$
Now,

\[
\phi_m(e(-gx)\chi(gx)) = \phi_m \left(\frac{\sum_{w\in W}\epsilon(w)e(w(gx + \rho) - (\rho + gx))}{\Pi_{\beta \in \Delta_+}(1 - e(-\beta))} \right) \\
= \lim_{t \to \infty} \left\{ \frac{\sum_{w\in W}\epsilon(w)t^{\langle gx + \rho, \rho \rangle} - \langle w(gx + \rho), \rho \rangle}{\Pi_{\beta \in \Delta_+}(1-t^{\langle \rho, \rho \rangle})} \right\} \\
= \lim_{t \to \infty} \left\{ \frac{F_2(\sum_{w\in W}\epsilon(w)e(w(\rho^0) - (\rho^0)))}{F_1(\Pi_{\beta \in \Delta_+}(1 - e(-\beta)))} \right\} \\
= \lim_{t \to \infty} \frac{F_2(\Pi_{\beta \in \Delta_+}(1 - e(-\beta)))}{F_1(\Pi_{\beta \in \Delta_+}(1 - e(-\beta)))}, \quad \text{(by [3], 10.4.4)} \\
= \lim_{t \to \infty} \frac{(\Pi_{\beta \in \Delta_+}(1 - t^{\langle \rho, \rho \rangle}))}{\Pi_{\beta \in \Delta_+}(1 - t^{\langle \rho, \rho \rangle})} \\
= \lim_{t \to \infty} \frac{\Pi_{\beta \in \Delta_+}(1 - t^{\langle \rho, \rho \rangle})}{\Pi_{\beta \in \Delta_+}(1 - t^{\langle \rho, \rho \rangle})} \\
= \lim_{t \to \infty} \frac{\Pi_{\beta \in \Delta_+}(1 - e(-\beta))}{\Pi_{\beta \in \Delta_+}(1 - e(-\beta))} \\
= d_m(gx) \quad \text{(by L' Hospital's rule)}
\]

Let \([x]\) denote the greatest integer contained in \(x\). Let \(\eta_p\) denote the number of roots in \(\Delta_+\) with height \(p\) [5] and for \(0 \leq j \leq m\), let \(N_j(m)\) denote the number of roots in \(\Delta\) with height congruent to \(j\) (mod \(m\)). It is not hard to see that

\[
N_0(m) = 2 \sum_{k=1}^{[h/m]} \eta_{km} \quad \text{(for } j = 0) \quad \text{(2.4)}
\]

and

\[
N_j(m) = \eta_j + \sum_{k=1}^{[h/m]-1} (\eta_{km-j} + \eta_{km+j}) + \eta_{[h/m]m-j}, \quad \text{(for } 1 \leq j < m) \quad \text{(2.5)}
\]

Now applying \(\phi_m\) to (2.1) and using (2.3), (2.4) and (2.5) along with the strange formula of Frendenthal de varies:

\[
\frac{|\rho|^2}{2g} = \frac{\dim g}{24} \quad \text{(cf. [3])}, \quad \text{(2.6)}
\]

we obtain

\[
q^{\dim g/24} \prod_{j=1}^{m} \left(1 - q^a x_j \right)^{\sum_{j=0}^{m-1} (1 - q^a x_j)^{N_j(m)}} = \sum_{m \in M} d_m(gx)q^{(1/2g)|\rho + \rho||^2}. \quad \text{(2.7)}
\]

Now, using the known facts about \(\eta_p\) (cf. [5; pp. 228]) one can easily compute \(\eta_p\):

\[
\eta_p = \ell + 1 - p \quad \text{for } g = A_\ell
\]

and

\[
\eta_p = \begin{cases}
\ell - p/2 & \text{if } p \text{ is even} \\
\ell - (p - 1)/2 & \text{if } p \text{ is odd}; \text{ for } g = B_\ell.
\end{cases}
\]

We shall discuss three cases:
Macdonald's identities

Case (i). \(g \) is of type \(A_\ell \). By (2.4) and (2.5) we have:

\[
N_0(m) = ((\ell + 1)^2/m) - (\ell + 1),
\]
and for \(1 \leq j < m \),

\[
N_j(m) = (\ell + 1)^2/m.
\]

Case (ii). \(g \) is of type \(B_\ell \) and \(m = 1 \).

In this case \(\left[\frac{h}{m} \right] = 2\ell \). Hence by (2.4) we have

\[
N_0(1) = 2 \left\{ \sum_{k=1}^{2\ell} \eta_k + \sum_{k=1}^{2\ell} \eta_k \right\}
\]

\[
= 2 \left\{ \sum_{k=1}^{2\ell} (\ell - (k - 1)/2) + \sum_{k=1}^{2\ell} (\ell - k/2) \right\}
\]

\[
= (2\ell)(2\ell) - (2\ell)(2\ell + 1)/2 + \ell + \ell^2
\]

\[
= 2\ell^2
\]

Case (iii). \(g \) is of type \(B_\ell \) and \(m > 1 \). In this case \(\left[\frac{h}{m} \right] = \frac{(2\ell - 1)}{m} \). Hence by (2.4) we have

\[
N_0(m) = 2 \left\{ \sum_{k=1}^{(2\ell - 1)/m} \eta_{km} + \sum_{k=1}^{(2\ell - 1)/m} \eta_{km} \right\}
\]

\[
= 2 \left\{ \sum_{k=1}^{(2\ell - 1)/m} (\ell - (km - 1)/2) + \sum_{k=1}^{(2\ell - 1)/m} (\ell - (km)/2) \right\},
\]

\[
= ((2\ell - 1)/m)(2\ell) - m((2\ell - 1)/m)(((2\ell - 1)/m + 1)/2) + ((2\ell - 1)/m + 1)/2
\]

\[
= (2\ell^2 + \ell - 1)/m - (\ell - 1).
\]

Furthermore, one can easily see that

\[
\eta_{km-j} + \eta_{km+j} = \begin{cases}
2\ell - km & \text{if } j \text{ is even and } k \text{ is even, or } j \text{ is odd and } k \text{ is odd.} \\
2\ell - km + 1 & \text{if } j \text{ is even and } k \text{ is odd, or } j \text{ is odd and } k \text{ is even.}
\end{cases}
\]

Hence we have by (2.5), that for \(1 \leq j < m \) and \(j \) even,

\[
N_j(m) = \eta_j + \left\{ \sum_{k=1}^{((2\ell - 1)/m) - 1} (\eta_{km-j} + \eta_{km+j}) + \sum_{k=1}^{((2\ell - 1)/m) - 1} (\eta_{km-j} + \eta_{km+j}) \right\}
\]

\[
+ \eta_{[h/m]m-j}
\]
\[N_s \sum_{k=1}^{\frac{(2\ell - 1) - (j - 1)}{2}} \sum_{k=1}^{\frac{(2\ell - 1) - (j - 1)}{2}} (2\ell - km + 1) + (\ell - (2\ell - 1) - j - 1)/2 \]
\[= (2\ell)(2\ell - 1)/m - \frac{1}{2}((2\ell - 1)/m - 1)(2\ell - 1)/m + (2\ell - 1)/m - \frac{1}{2}((2\ell - 1)/m - 1)2 - (\ell - 1), \]
\[= (2\ell^2 + \ell - 1)/m. \quad (2.12) \]

Similarly, for \(1 \leq j < m\) and \(j\) odd:
\[N_j = N_j + \sum_{k=1}^{\frac{(2\ell - 1) - (j - 1)}{2}} \sum_{k=1}^{\frac{(2\ell - 1) - (j - 1)}{2}} (2\ell - km + 1) + (\ell - (2\ell - 1) - j)/2 \]
\[= (2\ell^2 + \ell - 1)/m. \quad (2.13) \]

Now, using (2.4), (2.5) along with (2.9), (2.10), (2.12), (2.13) and the fact that
\[\prod_{j=1}^{n-1} (1 - a^{(j)}) = (1 - a^s)(1 - a)^{-1}, \quad (a \neq 1) \]
theorems 1 and 2 follow.

Note that for \(m = 1\) the identities of theorems 1 and 2 are precisely the Macdonald's identities for \(\eta(q)^{(\ell+1)^2-1}\) and \(\eta(q)^{2\ell^2+\ell}\) respectively.

Furthermore, using the following identity due to Euler (cf. [6]):
\[\eta(q) = \sum_{r \in \mathbb{Z}} (-1)^r q^{(1/2)^2(6r + 1)^2} \]
and by replacing \(q\) by \(q^{24\ell^2(\ell + 1)^2}\) in theorem 1, we obtain:
\[\eta(q^{24\ell^2(\ell + 1)^2})(\ell + 1)^2/m = \sum_{a \in \mathbb{Z} \cap \mathbb{Z}} (-1)^r d_m((\ell + 1)x)q^{(12/\ell^2(\ell + 1)^2)((s + (\ell + 1)a)^2 + 1/\ell + 1)^2(6r + 1)^2}. \quad (2.14) \]

Now the Corollaries 1, 2 and 3 follow by taking \(n = 12\) and \(m = 6, n = 4\) and \(m = 2,\)
and \(n = 6\) and \(m = 3\) respectively. Corollary 4 follows by taking \(m = 2\ell - 1, \) by Theorem 2.

Acknowledgement

The authors are very much thankful to the referee for valuable suggestions and helpful comments. The second author (MT) wishes to thank the National Board for Higher Mathematics for the financial support.
References