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Abstract. We review existence and uniqueness results, recently obtained for three of the 
most important linear two-dimensional shell models: Koiter's model, the bending model 
and the membrane model. They rely on a crucial lemma of J L Lions, used in an essential 
way for establishing in each case a generalized Korn's inequality, which is then combined 
with a generalized rigid displacement lemma of a geometrical nature. 
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1. G e o m e t r i c a l  a n d  m e c h a n i c a l  p r e l i m i n a r i e s  

In what  follows, Greek indices and exponents vary in the set {1,2}, Latin indices 
and exponents vary in the set { 1, 2, 3}, and the repeated index or  exponent  convent ion 
for summat ion  is used. The Euclidean inner product ,  the vector p roduc t  and the 
Euclidean norm,  of  vectors u, v e R  3 are denoted as u .v ,p  x v, and lul. 

Let to be an open, bounded,  connected subset of  R 2 with a Lipschi tz-continuous 
boundary  ),, the set to being locally on one side of  y. Let y = (yl ,y2) denote  a genetic 
point  of  the set o3 and let d= = ~/~y'. We consider a surface S i n  R 3, of  the form 
S = qp(t3), where q~:t3 ~ R 3 is a given, injective, smooth  enough mapping.  We assume 
that the two vectors a= = d=~ are linearly independent  at all points of  o3. 

The vectors a= form the covariant  basis of  the tangent  plane, and the vectors a =, 
defined by the relations a=.as = ~ ,  form its cont ravar iant  basis. The three vectors a ~, 
where a 3 =  a3 = ( a l  x az)/la~ x a21 form the cont ravar iant  basis at each point  of  S. 
The Christoffel symbols are defined by 

F~S = aP.c3=as, 

and the first, second and third fundamental  forms of  S are defined by 

a=s = a=.a s or  a .s = a = ' a  s, 

b=s = - a=-c3sa3, 

- Pb where b p = aP~b,=. c=s-b~ ps' 

Note  that FP=s = F~~ a s  = as=, b B = bs=, c B = cs~ Finally, we let 

a = det(a=p). 
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270 Philippe G Ciarlet 

We consider a linearly elastic shell, with middle surface S and thickness 2e, clamped 
along a portion of its lateral face, and we let 2 > 0 and /~ > 0 denote the Lam6 
constants of its constituting material. In each one of the two-dimensional shell models 
considered here, the unknowns are the three covariant components (1:03--* R of the 
displacement (la I of the points of S, and we let ~ = (~t):~3--,R 3. With an arbitrary 
vector field q = (rh):cb--* R 3, we associate the (linearized) strain, or change of metric, 
tensor and the (linearized) change of curvature tensor, whose covariant components 
are respectively given by 

~,#(q) = ~ (c~r/# + 0#r/~) - F~pr/p - b~pr/3, 

Ya q ~(q )  = C3~,# f73 - -  V ~ # 0 p ~ 3  - -  C~#173 

/~ o 

+ + r ,  b : -  r.- �9 ~ p P �9 

We shall also use the fourth-order elasticity tensor of a two-dimensional shell, 
whose contravariant components are given by 

a~#p ~= 42p a,#a ~ + 2p(a:Pa# o + a~aapp). 
(2 + 2/z) 

2. The two-dimensional shell model of W T Koiter 

The fundamental work of John [17] has led Koiter [18] to propose the following 
two-dimensional shell model, called Koiter's model: The unknown ~ = (~l) solves the 
following variational problem: 

~V(o~) and B ( ~ q ) =  L(q) for all lilY(co), 

where (0, denotes the outer normal derivative along y, and Yo is a subset of the 
boundary y): 

V(co) = {q = (vh); v/~H~(co), ~/36HZ(co), r/i = s = 0 on Yo}, 

L(q) 

The linear form L takes into account the applied forces. The given functions pt are 
assumed to be in L2(o~). 

The symmetric bilinear form B and the linear form L are continuous over the space 
V(o~). Hence the existence and uniqueness of the solution of the above variational 
problem follow, by the Lax-Milgram lemma, from: 
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Theorem 1. Assume that q~e~3(a3) and that length ~o > O. There exists a constant [3 
such that 

[3 > O and B(11, q) >~ [3 2 

for all q6V(co). []  

Theorem 1 was first established by Bernadou and Ciarlet [3]. The proof relied on 
various equivalences of norms involving covariant derivatives (also due to Roug~r 
[23]), on a rigid displacement lemma (cf. (iii) below), and on technical inequalities 
combined with weak lower semi-continuity properties of the associated quadratic 
functional; an outline of this proof was also given in Ciarlet [6]. A notable simpli- 
fication of this proof was recently proposed by Ciarlet and Miara [10]. It is this 
proof that we sketch here; the full, detailed, proof is given in Bcrnadou et al [4]. 

Outline of the proof of Theorem I: 

(i) There exists a constant C1 > 0 such that 

a'P(Y)aP'(Y)tp, t,~ >1 C1 ~ It,p[ 2 
~t,p 

for all yea3 and all symmetric tensors (tp). Since 

a~(y)aa*(y)t ~,t,~ >>. 0 

on the other hand, it suffices to show that there exists a constant C2 > 0 such that 

{ ~  "~'o(q) 11~2 + ~ 'l~',#(q) 11~ } a/e ~> c2 ''~lllw" w ' ' ' '  ,., 

for all lleV(co), where, here and subsequently, we let L z = L2 (co), H"  = H"(co) at some 
places, for the ~ake of conciseness. 
(ii) Define the space 

E(co) = {q = in,); n ,e  L 2, r/36H', r ,p (~e  L 2, T p(~e  L 2 }, 

where both relations ?,p(q)e L 2 and T,p(q)e L 2 are to be understood in the sense of 
distributions. We show that 

E(co) = HI(co) x HI(r x H2(r 

Let a l = (Yh) be an arbitrary element of the space E(r The relations 

I 
e,p(q): = ~(d,t/p + ~p~/,) = ), p(q) + r~p% + b,pn3 

imply that the functions e,p(q) belong to the space L2(w). Hence the identities (in the 
sense of distributions) 

#p% --- #.epp(r/) + #F.p(q) - #pe,p(q) 
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show that dp(d,~/p)eH-l(co) (the assumption r is used here). Since 
c3,r/peH- 1 (co) (recall that r/pe L 2 (co)), a lemma of d L Lions (first mentioned by Magenes 
and Stampacchia [19,1 and proved in Duvaut and Lions ([15-1, p. 110), then extended 
to Lipschitz-continuous boundaries in Borchers and Sohr [5,1 and Amrouche and 
Girault [2,1 implies that the distributions d~r/p are in the space L2(co); hence r/pert ~ (co). 
The definition of T p(~3) then implies that ff3eH2(co), and the inclusion 

E(co) ~ H I (co) • HI(co) • H2(co) 

is thus established; the other inclusion clearly holds. 
When equipped with the norm II'llt defined by 

Ill]liE : ~ [l'~t~,(~)1122 q- Z I[~t,(l])1122 "Jr Z 1llT~l[ 22 -4-111731121 ~1/2, 
La.# ) 

the space E(co) becomes a Hilbert space. Since the identity mapping from the space 
H 1 (co) x H 1 (co) x HZ(co) into the space E(co) is continuous and onto (we just showed 
that the two spaces are identical), and since both spaces are complete, the open 
mapping theorem implies that the identity mapping from E(co) onto H1 (co) x H 1 (co) 
H2(co) is also continuous. Hence there exists a constant C3 > 0 such that the following 
generalized Korn's inequality holds: 

IIqlIE >~C3{~ [Irt, ll~, + lira3 I1~ }1/2 

for all q~Hl(co) • HI(co) • H2(co). 
In other words, the norm II'llv is a norm over the space Ht(~o) x HI(co) • H2(co), 

equivalent to its product norm. 
(iii) We next show that the semi-norm I'lg defined by 

Iql~ = II'f=p(q)ll2~ + ~ 113'.p(q)[l~= , 

is a norm over the space V(co). To this end, it suffices to show that 

qeV(co) and I*IIE = 0=~l  = 0. 

The generalized displacement lemma (cf. Bernadou and Ciarlet [[3,1, th. 5.1-1] or 
Bernadou, et al [ [4], lemma 2.5,1) shows that, if an element q ~ H 1 (w) x H 1 (to) x H 2 (co) 
satisfies T p(q) = 3'~p(11) = 0 in o9, there exist two vectors aeR 3 and beR a such that 

r/i(y)ai(y) = a + d x q~(y) for all yeco. 

The conclusion then follows by taking into account the boundary conditions satisfied 
by the functions r/i along 3'0 (the assumption length )'o > 0 is needed here). 
(iv) We finally show that, over the space V(co), the norm I ' lr  is in fact equivalent to 
the product norm II'tl,~,• i.e., that there exists a constant C2 such that the 
inequality announced in (i) holds. Otherwise, there exists a sequence (qk) of elements 
in V(w) such that 

Iqk~E--,0 as k--* ~ ,  IIqkllw x w  x .~  = 1 for all k. 
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By the Rellich-Kondragov theorem, there exists a subsequence (11 ~) that converges 
in the space L2(co) x L2(co) x Ha(co). Since IqtlE--,0 as l--, or, the subsequence (if) is 
a Cauchy sequence with respect to I!'IIE, whence also to II.llwxn,~,2 by (ii). Let 

11= limll ~ in the space V(co). On the one hand, IqlE = limlll~lE=0; on the other, 

I[llLIn, • w ~ w = Jim II11 ~ IIn, ~ u, ~ , :  = 1. Hence we have reached a contradiction, and the 

proof is complete. [] 

Remarks. (1) No geometrical assumption on the middle surface S is needed here (by 
contrast, an assumption of uniform ellipticity will be introduced to handle the 
membrane model; cf. w 4). (2) The same analysis can be applied to the two-dimensional 
shell model of Naghdi [22]; cf. Bernadou et al ([3], th. 3.1). [] 

3. The two-dimensional bending shell model 

As observed in Ciarlet [9], Koiter's model is not a limit model, i.e., one that can be 
obtained in a rational fashion as a limit of the three-dimensional equations as e-§ 0. 
Indeed, Sanchez--Palencia [26] has shown that the solution of the three-dimensional 
shell equations has two essentially different behaviors as the thickness approaches 
zero, according to the geometry of the middle surface and to the boundary conditions: 
It converges either to the solution of the bending shell model, or to the solution of 
the membrane shell model, which are described in this and the next sections (for 
more details about this limit behavior, the relations between these models, and the 
differences between shells and plates, see also Destuynder [14], Sanchez-Palencia 
[24, 25], Ciarlet [7, 8] Miara and Sanchez-Palencia [20]). 

More specifically, let 

Vo(cO) = {11eV(co); 7,a01) = 0 in co} 

denote the space of inextensional displacements, where the strain tensor (y,a(rl)) and 
the space V(co) are defined as in w 1 and w respectively. 

If Vo(cO) r {0} (there exist such instances), the first non-zero term ~ = (~) of a formal 
asymptotic expansion as powers of e of the covariant components of the three- 
dimensional displacement is independent of the transverse variable, and it solves the 
following two-dimensional shell model, called the bending model: 

~r and Bo(~,q)= L(ri) for all qrVo(cO ), 

where the space Vo(co) is defined as above, 

Bo (;, n) = o a "p"~ r ol;) r,B!n)  dy, 

and the linear form L has the same expression as in w 2 (the tensors (a "pp~ and (Y p(q)) 
are defined as in w I). 

The existence and uniqueness of the solution of the above variational equations 
are consequences of the following theorem (note that Vo(co) is a closed subspace of 
V(co)): 
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Theorem 2. Assume that q~eqr length 70 > 0, and V ~-{0}. Then there exists a 
constant flo such that 

]/o > 0and Bo( q, q) i> n o II IIII ~ , t~  ~ ~,t,~ ~ H'~,) 

for all qeVo(co). 

Proof. By part (i) of the proof of Theorem 1, there exists a constant C,  > 0 such that 

Bo(q,q) >1 C,~  ~ l i t  , ( q ) i l ~  '/2 for all q~V(co). 
La,D J 

In the same proof, we have seen that the semi-norm I'lE is a norm over V(co), equivalent 
to the product norm II 'llw ~ w~ .~ (cf. ( iv)) .  The conclusion thus follows, since 

IlY.~(q)ll2~ =[qlE for all qeVo(w). [] 

4. The two-dimensional membrane shell model 

Let the space Vo(og) of inextensional displacements be defined as in w 3. If Vo(cO) = {0} 
(there exist such instances), the first non-zero term ~ = (~i) of a formal asymptotic 
expansion as powers of e of the covariant components of the three-dimensional 
displacement is independent of the transverse variable, and it solves the following 
two-dimensional shell model, called the membrane model: 

where 
~Vl(co)  and Bl(~,q)= L(q) for all q~Vl(co), 

V1 (co) = {I I = (r/i);rlarHl (w), tl3e L2(co), r/a = 0 on 7o}, 

Bl (~ tO = f~, ea~PP'Tp,(07~(11)x/"-ady, 

and the linear form L has the same expression as in w 2 (the tensors (a ~ppr and (7~p(q)) 
are defined as in w 1). 

The existence and uniqueness of the solution of the above variational equations 
are consequences of the following result: 

Theorem 3. Assume that the boundary 7 is of class qr and that 7o = 7. Assume further 
that q~ is analytic in an open set oY containing t3. Assume finally that the surface S is 
uniformly elliptic, in the sense that there exists a constant b such that 

b > 0 and b p ( y ) ~  p >>. bill 2 

for all y~cb and all ~ = (r 2, where (b B) denotes the second fundamental form of 
S. Then there exists a constant fll such that 

fll > 0and Bl(rl, q) ~> fll 2 

for all qeVl(~o ) = H~(09) x HA(co ) x L2(co). [] 
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Two different proofs of Theorem 3 are given in Ciarlet and Sanchez-Palencia [12, 
13], and in Ciarlet and Lods [11-1. It is the latter proof that we sketch here. 

Outline of the proof of Theorem 3 

(i) By part (i) of the proof of Theorem 1, there exists a constant C5 > 0 such that 

t.~,p 
P 

for all t leH ~ x H t x L 2. It thus suffices to show that there exists a constant C6 > 0 
such that 

{ ~ 'lY,#(q) H 22 } x/2 >~ c6 Htll]w • n' " L2 

for all tl = (th)eHo 1 x H A • L 2 (recall that we assume ?o = ?). 
(ii) Using the same arguments as in part (ii) of the proof of Theorem I, i.e., in particular 
the lemma ofJ L Lions and the open mapping theorem, one successively shows that 

{t 1 = (r/i); the L 2, r~p(11)e L 2 } = n 1 • H x x L 2, 

and that there exists a constant C7 > 0 such that the following generalized Korn's 
inequality holds: 

for all t l~H ~ x H 1 x L 2. 
(iii) One next establishes another rigid displacement lemma: If the surface S is uni- 
formly elliptic (this assumption is needed from now on), the space 

R(r = {ti = (th)~H~ x H A x L2; ?,p(tl)= 0 in ~o} 

is finite-dimensional. To this end, one first observes that, if ~ =(~i)eR(og) then 
~: = (~)eHo 1 x H A solves the variational equations 

where 

Ao(~,q) + At(~,q)= 0 for all ~l:= (r/~)~/-/~ x HA, 
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One next shows that there exists a constant C9 > 0 such that 

aoffl, fl)>I C8 Ilfil12., ~. ,  for all ~ = (r/~)en i x H i. 

Since there exists a constant C o > 0 such that 

A l ( ~ , q )  >i - -  2C8C9 II~IIL, ~ ~, I1~11,, ~ , ,  for all ~ H  t x H t, 

one easily deduces that the operator T from L 2 x L 2 into H i x H i defined by the 
relations 

Ao( Tq, tl) + A ~ ( Tq, tl) + 2 f ~ ( Tq)~rl~dY = f o q~rl~dy, where 2 = 2Cs(Cg)Z, 

for all 11 ~ (r/~)eH i x H i ,  is compact. 
Since ~ K e r ( l -  2T) and K e r ( l - 2 T )  is finite-dimensional (T is compact), the 

assertion is proved. 
(iv) By refining the regularity assumptions on the boundary 7 (which was so far 
assumed to be only Lipschitz-continuous) and on the mapping q~ (which was so far 
assumed to be of class :g2 on 03), we can strengthen the result of part (iii). More 
specifically, we show that, if ~, is of class ~3, and r is analytic in an open set co' 
containing o3, the space R(m) (as defined in (iii)) reduces to {0}. 

Consider the boundary-value problem: 

1')'11 (4): = ,1~ ~ - F~t ~0 - b~t ~3 = 0 in co, 

1'~22(~): = ]02~2 - F~2~ o - b22~3 = 0 in co, ~l -- 0 on ~,. 

This first-order system is a uniformly elliptic system (the assumption of uniform 
ellipticity of S is needed here) that satisfies the supplementary condition on L, and 
(~ = 0 on ~ is a complementing boundary condition, in the sense of Agmon et al [1] 
(this was first observed by Geymonat and Sanchez-Palencia 1,16,1). 

We thus need to show that ~ = 0 is the only solution to the boundary value problem: 

{ 7 ,B(~)  = 0 in o9, 

~, = 0 on 7. 

Since the boundary 7 is not a characteristic curve for the reduced Cauchy problem 
where ~3 has been eliminated, Hoimgren's uniqueness theorem shows that ~ = 0 is 
the only solution in a small enough neighborhood of any point of y (the coefficients 
are analytic in co' because ~0 is analytic in co'). 

By a result of Morrey and Nirenberg 1-21-1, any solution of a uniformly 
elliptic system whose coefficients are analytic in w is analytic in co. Therefore ~ = 0 is the 
only solution in w, by the analytic continuation theorem for analytic functions of 
several real variables. 
(v) In order to conclude, it suffices to show that there exists a constant C10 > 0 such 
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that 

  ,olr. for al, 

as the desired inequality (that involving the constant C6, cf. part (i)) will then follow 
from the inequality established in part (ii). 

If this assertion is false, there exists a sequence (qk) of elements in H~ x H~ x L 2 
such that 

II~B(qk)ll~2 ~ 0  k-~ and [l~ll~ = 1 for all k. 

Hence there exists a subscquence 01 l) and an element q = 0h)eHo l x Ho I x L 2 such that 
( ~  and ~ denote strong and weak convergences, respectively): 

r/~--~/, in H~, ffl _., r/~ in L2, r/ s ._.. I/ in L2. 

Since y.B(11~)--.-T~#(q) in L 2 on the one hand and T~#(ql)--.0 in L 2 on the other, we 
first conclude that 11 = 0, by (iv). 

The convergences y~#(qz)_,0 in L 2 and r/t ~ 0 in L 2, combined with the definition 
of the functions y.#(q) imply that (b11~C~ does not vanish in o3, by the assumed 
uniform r of 5") 

h 
a2~/~ + c~t ~/~ - 2b-~2 a,~fl ~ 0 i n  L 2, 

H 

b22 ! L 2. 
a2Jl~ -- b-~lal t/1 ~ 0 in 

From these convergences and the relations 

f~ 02rl',O~tl~dy = f~ O,,~02,~dy, 

we then infer that 

~2'f , - - -~x, ix/  + (bl~b22-(b12)2)(~l,7il) 2 dy-~0. 
bll ] 

This last convergence, combined with the uniform ellipticity of S, then implies that 

~ l =  I t 1 l L 2. 
3 b , ~ C ~ , t / , - ~ ( O , ~ l , - b ,  l t /~)~O in 

Hence I1*--.0 in L 2 x L 2 • L 2, which contradicts I1~111,2 = 1, and the proof 

of Theorem 3 is complete. [] 
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