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Abstract. We prove a general theorem on the zeros of a class of generalised Dirichlet series. 
We quote the following results as samples. 

Theorem A. Let 0 < 0 <  3 and let {a~} be a sequence of  complex numbers satisfying the 
I 

inequality [ ~. a= -- N <~ (3 - 0)- 1 for N = 1, 2, 3 . . . . .  also for n = 1, 2, 3 . . . .  let ~, be real a n d  

I m m l  

]ot, I <~ C(0) where C(0) > 0 is a certain (small) constant dependino only on 0. Then the number 
of  zeros o f  the function 

N 
~. a,(n + ~,)=' = ~(s) + ~ (a.(n + ~ , ) - ' -  n=') 

n = l  i = 1  

in the rectanole i ~< 1 ( ~ - 6  .~ ct <<. ~ + 6, T ~ t <<. 2T) (where 0 < 6 < 3 )  [s >>. C(0,6) T log T where 
C(0, 6) is a positive constant independent o f  T provided T >1 To(O, tS) a large positive constant. 

N I Theorem K In the above theorem we can relax the condition on a. to ,~'-1 a .  - N ~ (�89 - 0)- l N o 

and laNI -~ (~ -- 0)-  1. Then the lower bound for the number of  zeros in (o >t �89 - ~, T <~ t <<, 2T) 
is > C(O,o") Tlog T(loglog T) -1. The upper bound for the number of  zeros in (o >~3 + 6, 

T ~< t ~< 2T) is O(T) provided ~, a, = x + O,(x ~) for every e > O. 

Keywords. Generalised Dirichlet series; distribution of zeros; neighbourhood of the critical 
line. 

I. Introduction 

This paper ought to have been paper XII of this series. But elsewhere [5] the second 
author has referred to this paper as paper XIV, because there are two new additions 
to this series namely, On the zeros of ~'(s) - a, (on the zeros of a class of generalised 
Dirichlet series-XII) and On the zeros of ~(s) - a, (on the zeros of a class of generalized 
Dirichlet series-XIII) both of which will appear in A c t a  A r i t h m e t i c a  with the short 
titles only. The addition elsewhere of the title in the brackets have been made only 
for some technical convenience. In the present paper we continue the investigations 
of the papers III [1], IV [2], V [4], and VI [3]. Just as VI [3], was in the nature of 
an addendum to the earlier papers, this note is a modest progress beyond the paper 
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VI [3], and the previous papers. Apart from an innovation, the main change consists 
in replacing the old kernel exp(w 4k§ by the function R(w) = exp((sin w/lOO)Z). Thus 
in place of A(/), our new function AI(X) will be defined for all X > 0 by 

1 ~2+1~ 
= x'R(w) dw 

A~(X) Fn/j~_i| w" 

Also by moving the line of integration from Re w = 2 to Re  w = - 2 ,  we see that 
Ax(X) = O(X 2) and also A~(;0 = 1 + O(X -2) where the O-constants are absolute. As a 
special case of a more general theorem we prove the following two theorems. 

Theorem 1. Let 0 < 0 < �89 and let {a.} be a sequence of complex numbers satisfying 
the inequality 

] .~=la . -N[  ~< ( ~ -  0) - t  

for N = 1, 2, 3 . . . . .  Also for n = 1, 2, 3 .. . .  let ~, be real with I~, I <~ C(0) where C(0) > 0 
is a certain (small) constant depending only on 0. Then the number of  zeros of  the function 

~ a.(n + ~t,)-" = ~(s) + ~ (a.(n + ct.)-" - n-*) 
n= l  m=l 

in the rectangle (o >I �89 -- 6, T <<. t <<. 2T) (where 0 < 6 < 1_) is >t C(0, 6) Tlog T, where 
2 

C(0, 6) is a positive constant independent of  T provided T >I To(O, 6), a laroe constant. 

Theorem 2. Let 0 <  0 < �89 and {a.} a sequence of complex numbers satisfying the 
inequalities 

for N = 1, 2, 3 . . . . .  Let % be as before. Then the number of zeros of  the function 

a..(n + ot.)-'= r + ~ (a.(n + ot.)-'- n-') 
n = l  B ~ I  

in the rectangle (o~>�89 T~<t~<2T) (where 0 < 6 < � 8 9  is >C(0,6) Tlog T 
(loglog T)- 1, where C(0,6) is a positive constant independent of T provided T >I To(O, 6), 
a large positive constant. 

Remark 1. In Theorem 1 the number of zeros of the function in question in (o I> �89 + 6, 

T~< t ~< 2T) is O(T). But in Theorem 2 to prove a similar result, we require ~ a. = 
n ~ x  

x + O,(x ~) for every e > 0. To prove these we have to prove that the mean square of 
the absolute value of the function in question in (T, 2T) is O,(T ~) (for every e > 0) 
on the line o = �89 W e  have then to use an idea of J E Littlewood (see Theorem 9.15 (A) 
on page 230 of [7]). 
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Remark 2. Let {x,) and {y,} be any two sequences of complex numbers and let 
0<~-1<g2< . . .  and further let g , + l - ; t , ( n = l , 2  .... ) lie between two positive 
constants. Then 

__ T ao ~ ao / '  / oo \ 1 / 2  

T d 0 \ n = l  / \ n = l  / s = l  

x ) 
where the O-constants depend only on the constants appearing in the conditions for 
the sequence {~,}. Also y, denotes the complex conjugate of y,. This fundamental 
result is due to H L Montgomery and R C Vaughan (see [6] for a simple proof due 
to the second of us). It will be very much useful for our work. 

2. Notation 

From now on we adopt the following notation. The symbol At (X) is already explained. 
We begin by explaining two Dirichlet series 

a , b , ~ '  and F(s)= ~ a ,b , l~ '  
sff i l  m r |  

satisfying the conditions (i) to (ix) below. (We nearly borrow from VI [3]. Note the 
following typographical corrections. In place of g(x)g'(x) in the condition (iii) on 
page 247 of Vl [3] there should be g(x)g"(x). Again in Vl [3] page 248 line 7 from 
the top, x should be X and there should be extra term X 1-2~ in the bracket 
and in line 8 from the top "X'. should read X and r if r 0. Also in V [4] on 
page 304 line 11 from the bottom F(s) should be ~). Throughout we assume a, = O(1). 

(i) 0 < ~l < 42 < . . .  and ~ , + t -  ~,(n ffi 1,2, 3 .... ) should lie between two positive 
constants. The sequence {,~,} is further restricted by the condition (vii) or (viii) as 
the case may be. 
Let f (x)  and g(x) be two positive real valued functions defined in x I> 0 satisfying. 

(ii) f(x)x ~ is monotonic increasing and f(x)x -~ is monotonic decreasing for every 
fLxed t/> 0 and all x >i Xo(t/). 

(iii) lira (g(x)x- 1) = 1. 
X-*CO 

(iv) For all x i> 0,0 < a <~ g' (x) <<. b and 0 < a <~ (O' (x) ) 2 - g(x)o" (x) <~ b where a and 
b are constants. 
Let {a,} and {b,} be two sequences of complex numbers having the following 
properties. 

(v) [b,[ lies between af(n)  and bf(n) for all n. 

(vi) For all X/> 1, ~ I b, + t - b, [ << f (X) .  
X ~ s ~ 2 X  

We next assume that {a.} and {b.} satisfy at least one of the following two 
conditions (vii) and (viii). 
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(vii) Monotonieity condition. There exists an arithmetic progression M such that 

lim ( x - l  ~' a , )=h,  (h#O), 
X"* oO , ~  X 

where the accent denotes the restriction of n to M. Also lb, lit,- a/4oo is monotonic 
decreasing as n varies over M. 

(viii) Real part condition. There exists an arithmetic progression M of integers such 
that 

and 
x-.*oo x ~  A m ~  2 x , R e a n > O  

 oa.)=0 
x - ~  Qo x <~ An <~ 2 x , R e  a n  < O 

where the accent denotes the restriction of n to M. (We can manage with Im a,; 
but this is included in the condition stated since we can change b, in ~p on 
p. 304 of V 1,4] to ib, in fact to ___ b, or + ib,). 
Note that any of (vii) or (viii) implies that 

~ 'x a, Ib,12it~ -2" 
X 1 - 2 r  

>> 

1 - 2 a  

for or < �89 and or close to �89 where the constant impfied by >> is independent ofa. 
(ix) Finally let/~(> 0) be a constant. We write 2, =/~g(n) for n in ~r Otherwise 2, 

are arbitrary but the sequence {2,} is subject to the condition (i), mentioned 
above. Next we write/t ,  = 2, + o~, where {~,} is any sequence of real numbers 
subject to I~,1 ~< C1, C1 being a positive constant which is small enough. How 
small should Ca be will be stated later. (Ca will be independent of the constant 
6 which appears from Theorem 7 onwards). 

Remark 1. The earlier results were proved with the condition 2, = o(n) + u, + v, (for 
all n) where {u,} and {v,} denoted two arbitrary monotonic bounded sequences of 
real numbers. Since bounded monotonic sequences of real numbers are convergent 
(say u, + v, ~ l as n ~ oo) and in place of O(x), g(x) + I satisfies the conditions satisfied 
by O(x), the results of the present paper are more general. However we use the results 
of the earlier papers III I1], IV 1,2], V 1,4] and VI 1,3]. 

Remark 2. Our new results are Theorems 7, 8 and 9 and their Corollaries. 

3. Some preparations 

We begin by stating 

Theorem 3. Let Fl(s) ~ (a.b.Al( / i t . )2  ). Then for O < o r < ~  = T - '  1 and T~> 10 we 
n = l  
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have, 
1 12r 
-T Jr IFx(~ + it)ldt > C 2 Ttl/2}-~ f (  T), 

where C2 > 0 is independent of T. 
Also for 1 ~ X <~ T, we have, 

1 2r ~ X 2 - f I E (a,b, a l ( -~; ' -"~l  dt < c ~ x ' - ~ ' ( f ( x ) )  ~, 
TJ~ I.=~\ \&)  /I 

where 0 < a < �89 and C3 > 0 is independent of T and X. 
We make two remarks by way of proof. 

Remark 1. The first part of the theorem is nearly explained in V [4]. The role of F3(s ) 

in Lemma 7 (Here max [F3(s)l > 0 should read max [F3(s)l <~ D) of w 2 of paper VI [3] 

is played by Fs(s)= ~ '  b,2~ ~ where the accent denotes the restriction of the sum 
~.~< T 

to the integers ~ occurring in the condition (vii) or (viii) as the case may be. Then 
the function Fs(s) possesses a ffth power mean with O = if(a) > 2 i fa  < �89 in the sense 

-- IFs(tr + it)lgdt = 0(( T(t/2)-~ 
T 

This gth power moment is easily deducible from Lemma 6 of paper IV [2] which is 
quoted as Theorem 4 in paper V [4]. The rest of the proof follows V [4] except that 
exp ( - (2 . /T ) )  is replaced by A 1 (T/2.). The first part of the Theorem 3 is first proved 
for a close to �89 by the above method and then extended by convexity for all 
~(0 < a < 1-) 

2 "  

Remark 2. Let a > 0. Then by using the theorem of Montgomery and Vaughan [6] 
quoted already we see that the LHS of the second inequality of Theorem 3 is 

<.c,( z y, z 
\~,~<x ~,~>x T ~,>~x / 

Using the fact thatf(n)n" is monotonic increasing andf(n)n-~ is monotonic decreasing 
for all fixed t />  0 and all n t> no(t/), we see that the theorem is proved. 

1 Note that if 0 < # < ~ - a we have 

X 1 - 2 u ( f ( X ) ) 2  = X 1 - 2 0 -  2 /A( . f (X)X# )2  ~ X 1 - 2 0 -  2~u0C ( T )  T~) 2 

<~(X)1-2~ T1-2a(f(T))2 

and so the RHS of the second inequality of Theorem 3 is 

, - 2 - - -  T,  
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for all X t> Xo(g) and T>~ To(g). We can fix g =  1/4- t r /2  and X = TD where 
D(0 < D < 1: not to be confused with D occurring in Remark 1 below Theorem 3) is 
a small constant. In that case this expression is O(D"/21-<'(f(T)T"/2~-~ where 
the O-constant depends only on a. Note also that the second part of Theorem 3 uses 
only the properties 0 < 21 < 22 < . . .  and 1 << 2.+~ - 2 .  << 1 of {2.}. We now state a 
Corollary to Theorem 3. 

Theorem 4. Let 

where D(O < D < 1) is a sufficiently small positive constant. Then if 0 < ~ < �89 we have, 

1 r 2r -T J r  IF2(a + it)]dt > Cs T1/2-~ f ( T) 

and 
It2,  
T j  r [F2(r + it)lZdt < C 6 T l-2~(f(T))2, 

where C5(> 0) and C6(> 0) are independent of  T. 

4. Main results 

We now proceed to prove the analogue of Theorem 4 where {2. } is replaced by {#. }. 

Theorem 5. Let 

.=1  \ \ \/.q/ \ #.  // / 

where D is the positive constant occurring in F 2 (s). Then if 0 < ~ < �89 we have, 

i f  2T T. Ir  JF3(r + it)ldt > C7 T1/2-<'f(T) 

and 

-~ [F3(r + it)12dt < Cs(Ti /2-" f (T))2 ,  

where C7(> 0) and Ca(> 0) are independent of  T, provided Cl(>  0) of condition (ix) 
in w 2 is sufficiently small. 

Remark. Our proof gives this theorem where the constants depend on ~ but uniformly 
1 By convexity, the theorem can be upheld for all in a certain range for ~ in ~ < 3" 

0"<�89 uniformly in a ~<�89 where C9(> 0) is any constant less than �89 We can 
even secure C1 to be independent of C9, but C~ and Ca depend on C9. 

Proof. The second inequality follows by the well-known Montgomery-Vaughan 
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theorem (see [6]) as in Remark 2 below Theorem 3. The first part can be deduced 
from that of Theorem 4 as follows. Put 

Then 

= Ch(u, ~,)r (u)du, 
CI 

where we define Ch(u, 0~,) to be I ifu lies in (0, a,) if% > 0 or (~,, O) if% < O. Otherwise 
we define Ch(u, ~,)= O. Note that 

2rti .J2-,~ 2 - ~  - 2 - ~  R(w)-~ 
(g, + u)- '  r2+'| { T w (DT) w } 

21t--i ,/2-J| ( 2 ,+u)  w+l (;[,+u),,+ 1 R(w)dw. 
Now 

a n d  s o  

F3(s)- F2(s)= f~Ic, l,=~ a,b, Ch(u.ot,)~'(u)ldu 

f_, :_, o ,,,2 
T.JT [F3(s)- F2(s)ldt <<" ,~=1 (chb'Ch(u'~ dr) du. 

c, \TJT 
We write O'(u)= (Ol(U)+ O2(u))(A, + u) -~ with an obvious meaning for Ol(u) and 
~b2(u ). We have Ol(U)= O(T/A, min((T/A,) 2, (T//l,)-2)) and O2(u)--O(min(T2/A~, 
T-2/A~-I)), by moving the line of integration to Re w= 2 and Re w = - 2 .  We now 
prove that, for lu[ ~< C1 there holds uniformly in u, 

-- a,b, fl,(.~, + u)-" dr<< T 1-2~ 
T ,=1 

where/~, depends only on n, T and u and further [J,= O(min(T3/g~, ;t,/T)) and 
p .  = O(min( T2/,~a,, ,[,/T2)). Clearly the second estimate is smaller by a factor O(1/T) 
and hence it suffices to ignore it. By the well-known Montgomery-Vaughan theorem 
(see [6]) we see that LHS is 

( T,) 0 ~ (f(n))2n-2"--n+ ~ (f(n))2n-2"-~3- =O(T ~-2-(f(T))2). 
\ a ~ T  I s ~ T  

Here the O-constant is independent of C1 if C1 is chosen to be smaller than a constant 
C*(> 0). This completes the proof that 

- -  [F3(s) -- F2(s)ldt = 0(C1 T(I/z)-"f(T)) 
T 

where the O-constant is independent of C~. This completes the proof of Theorem 5. 
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Theorem 6. There are >> T distinct integers M in ( T, 2T) for  each o f  which there holds 

~ +  1 IFa(tr + it)tdt >> T~I /2) -~ f (T)  

provided 0 < a < �89 

Proof. Divide [ T, 2T'J into intervals G of unit length ignoring a bit at one end. Put 
A(G)--~alFa(o + it)ldt and Q = 7~l/2)-~f(T).  Theorem 5 gives 

Y. A(G) >> TQ and ~ (A(G)) 2 << TQ 2. 
G G 

This leads to Theorem 6. 

Theorem 7. Suppose that F(s) defined in a > 1 by 

F(s)= ~ b a, ,p11 
I I = 1  

can be continued analytically in (a ~>�89 T~< t ~< 2T) and there maxlF(s)J ~< T n 
where B( > O) is a constant. Then there are >> T(loglog T)-1  distinct integers M in 
(T, 2T) for  each o f  which there holds 

~ n + 1 T~I/2)-" f ( T)  IF(~ + it)ldt >> 
JM 

- - 1 - - 6 .  where a - -~ 
Using Theorem 3 of paper III [1] we obtain the following Corollary. 

COROLLARY 

F(s) has >> Tlog T(loglog T ) -  1 zeros in (a >1 �89 - 26, T <~ t <~ 2T). 

Remark. It is not hard to prove that in many cases (for example ~, a, = x + O~(x ~) 
n>>. x 

for every e > 0) t.hat 

] 2T 2 

(for every e > 0) and in this case it follows that the number of zeros of F(s) in 
(a >..�89 + 6, T <<. t ~<2T)is O( T). 

Proof. (Of Theorem 7). We have for s = a + it 

1 f2+ioo 
- - -  F(s + w ) ( T  w - ( D T ) ' ) R ( w )  dw 

Fa(s) - 2~i j 2-ioo w " 

We deform the contour (2 - ioo, 2 + ioo) to (2 - ioo, 2 - iClologlog T, - iClologlog T, 
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iClologlog T, 2+ iC lo log logT ,  2 + i ~ ) ,  use IF3(s)l<<.SII...Idw/wl (over the new 
contour) and integrate with respect to t from M to M + 1 of Theorem 6. We obtain 
the theorem by slight work. (Here Clo(>  10) is a large constant). 

"llae remark below the Corollary to Theorem 7 follows from an idea of J E Littlewood 
(see Theorem 9.15(A) on page 230 of 17-1). 

Theorem 8. We have, for a < �89 

1 f2T 
J r  IF(a + it)ldt >> T"/2)-*f(T).  

Proof. Let T+(T/IO)<~t<<,2T-(T/IO) and a < � 8 9  We start with the formula for 
F3(s) as in the proof of Theorem 7 above and deform the contour exactly as before. 
It follows that 

1 12T+cl~176176 >~ 
- IF(a + it)ldt T " / 2 ) - ' f ( T )  
T j T-Ctologioll T+(T/IO) 

on using the first part of Theorem 5. For this we need 

1 12 r - r / l~  >> 
T,jr+r/lo IF3(a+it)ldt T" /2 ) - ' f (T ) .  

But this can be proved just as we proved the first part of Theorem 7. This completes 
the proof of Theorem 8. 

Theorem 9. Let ~. a, = O(I). Then for 0 < a < �89 we have, 

and 

1 12T 
T . / r  IF(a+it)lZdt<< T t - 2 ~  2 

T Jr  1 \ 2  

for every ~ > O. 

COROLLARY 

Let 0 < a < � 8 9  Then there are >> T distinct integers M in (T,2T) for each of which 
there holds 

f[ + 1 IF(a + it)ldt >> T(l/2)-~ 

Hence as before F(s) has >> T log T zeros in (a >>. � 8 9  6, T <~ t <~ 2T) and only O(T) 
zeros in (a >1 1 ~ + 6 ,  T<<.t<.2T). 

We remark finally that Theorems 7, 8 and 9 are valid even if we omit N terms 
(other than the first term) in F(s) where N = 0~( T ') for every 8 > 0. 



176 R Balasubramanian and K Ramachandra 

P.S. In a forthcoming paper (On the zeros of a class of generalised Dirichlet series- 

XV) we consider zeros of functions like ~ d(n)(n +.un) -s and s da(n)(n + un) -s 
n=1 n = l  

and prove some interesting lower bounds for the number of zeros in (r t> � 8 9  
T~< t ~< 2T) like >> Tlog T. Also in paper XVI with the same title K Ramachandra 
and A Sankaranarayanan have proved the upper bound << Tin (r >t �89 + 6, T ~< t ~< 2T) 
for the functions such as those mentioned above. 
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