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Abstract. In this paper two theorems on IN, P,;6[k summability factors, which generalize 
the results of Bor [4] on L~7,P.lk summability factors, have been proved. 
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1. Introduction 

Let Ea. be a given infinite series with partial sums (s.) and let (p.) be a sequence of 
positive numbers such that 

P . =  ~ p v ~  as n ~ ,  (P_i=p_i=O,i>.l). (1) 
v = O  

The sequence-to-sequence transformation 

n 

t.--  v opvSo 

defines the sequence (t.) of the (N,p.) means of the sequence (s.), generated by the 
sequence of coefficients (p.). The series Xa. is said to be summable IN, p.Ik, h >/l, if 
(see [1]) 

(P./p.)k-lft.--t._llk < oo (3) 
n = l  

and it is said to be summable IN, P.; 6 Ik, k >/1 and 6 >~ 0, if (see [2]) 

(p./p.)Ok+k- 11 t. -- t._ 11 k < O0. (4) 
n = l  

In the special case when p. = 1 for all values of n (resp. 6 =0), l/g, p, ;6 Ik summability 
is the same as IC, 1;~tk (resp. [/r summability. 

Let f(t) be a periodic function with period 22z and integrable (L) over ( - i t ,  n). 
Without any loss of generality we may assume that the constant term in the Fourier 
series of f(t) is zero, so that 

f~ f(t)dt=O. (5) 

53 



54 Hiiseyin Bor 

and 

We write 

f( t ) -  ~ (a.cosnt + b.sinnt) = ~ A.(t). 
n = l  . = 1  

(6) 

r { f ( x + t ) + f ( x - t ) } ,  q~l(t)= 5 r  

2. Quite recently Bor [4] proved the following theorems. 

Theorem A. Let the sequence (p.) be such that 

e. = O(np.) 

P.Ap.  = O(p.p. + 1 ). 

(7) 

(8) 

I f  r is of bounded variation in (0, n) and (2.) is a sequence such that 

. = i n  

and 

~] ]A2.[ < ~ .  
n = l  

then the series XA.(t)P.A.(np.)-x is summable 1~7,p.lk for k >1 1. 

(9) 

(10) 

Theorem B. Let the sequence (p.) be such that conditions (7) and (8) of Theorem A 
are satisfied. I f  Y~a. is a series of  complex terms such that 

B.-  ~ vav=O(n), (11) 
V = I  

then the series Ea.P.2,(np.)  -1 is summable 1~7,p.[k for k >~ 1. 
3. The aim of this paper is to prove above theorems for IN, P.;61k, with k/> 1 and 

6/> 0, summability. Now, we shall prove the following theorem. 

Theorem 1. Let the sequence (p.) be such that conditions (7) and (8) of Theorem A are 
satisfied and 

.-. (p./p.)~k-1 _ 0 (Pv/pv) ~g . (12) 

I f  q~l (t) is of  bounded variation in (0, n) and (2.) is a sequence such that 

and 

n~g-l[2.]k < O0 (13) 

• nak[A2.[ < ~ ,  (14) 
n = l  

then the series Y.A.(t)P.)~.(np.)-1 is summable IN, p.; ~!k for k >t 1 and ~ >>. O. 
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Theorem 2. Let the sequence (p.) be such that conditions (7) and (8) of Theorem A and 
condition (12) of Theorem 1 are satisfied. I f  condition (I 1) of Theorem B is satisfied 
by the series Za.,  then the series Y.a.P.2,(np,)-1 is summable IN, P.; 61k for k >>, 1 and 

>~ O, where (2.) is as in Theorem 1. 
4. We need the following lemmas for the proof of our theorems. 

Lemma 1. I f  tpl(t ) is of  bounded variation in (0, r O, then 

vA~(x) = O(n) as n--* ~ .  (15) 
v = l  

This lemma is a particular case of Lemma due to Prasad and Bhatt ([5-1, Lemma 9). 

Lemma 2. ([3]). I f  the sequence (p.) is such that conditions (7) and (8) of  Theorem A 
are satisfied, then 

A {P./(p.n2) } = 0(11 n2) as n ~  oo. (16) 

5. Proof of  Theorem 2. Let (T.) denote the (_N, p.) mean of the series X a. P .  2. (np.)- 1. 
Then, by definition, we have 

1 1 ~ (p. 
T. = ~1)~=o Poi~o aiP'2i(ipi)-l : -~.1)~o - P~-I)a1)P~2~ 

Then, for n i> 1, we have that 

P" 1)~lp~_lp1)aoA1)(vpv)-1 7". - T.-1 = p.e._---~ = 

By Abel's transformation, we have 

n - - 1  

7".-  7"._ 1 = B . 2 . n - 2 - p . ( P . P . _ I )  -1 ~ p1)PoBo21)(v2po) -1 
V = I  

n - - 1  

+ P.(P.P.-x)  -1 ~ PvPvA21)B~(v2P1)) -1 
1)=1 

. - 1  

+ p . ( p . p . _ , ) - i  ~ pvBv21)+lA{eo/(v2pv)} 
I ) = 1  

= T.,1 + T.,2 + 7".,3 + T.,4, say. 

To complete the proof of the theorem, by Minkowski's inequality for k > 1, it is 
sufficient to show that 

• ( P . / p . ) 6 k §  T.,ilk< ~ ,  for i =  1,2,3,4. 
n = l  
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Firstly, we have that 

: (p./p.)ek+k- 11T.,: I' = ~ (p./pn)ek(p./pn)k- ,12.l, iB.l~n-a 
n = l  n ~ l  

= O(1) : nakn k- l l2..l'nkn- 2, 
n = l  

: O(1) ~ n a u -  x l&lk 
n = l  

=O(1)  as m o o o ,  

by virtue of (7), (11), (13). 
Now, when k > 1 applying H61der's inequality, with indices k and k', where 

1/k + 1/k'= 1, we have that 

m+ : ~+1 1 "~* p~P~Bv2~l k 

I 

=+1 1"c-, 1 fPAnvll,~t P <~ ~ (p./p.)ak-1 

f 1 . -1  )k - l .  

= 0(1) ~. p, lkolk(Po/pOklB, l% -=~ 
I . '=1  

m + l  1 

X Y. (pn/Pn)~k-1 
n = v + l  Pn-I 

= O(1) ~ (Pdpv)ak(edp~) k- l lBolk12~l%- 2k 
v = l  

=O(1) ~ va'-Xl&l' 

= 0(1) 

as m- ,  oo, by (7), (11), (12) and (13). 
On the other hand, since 

n - 1  n - I  1 n - 1  n - I  

v = l  v = l  en-lO=l v=l 

by (14), we have that 

.+1 m+ l 1 I ~  p~p~B~A,~lk 
E ( Pn/pn)&+k-ltTnalk~ E (P./P.)ak-1--F~ v2Pv I 

n = 2  ' n = 2  en-1 It,=l 

,.+i I f.-1 
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~" 1 "s k-z x (ev/po)klBvlkv -2k} • (P--~-x v=l 

= 0(1) ~ PvlAAvl(PJpv)klBd% -2~ 
v=l  

m + l  1 

n = v +  1 l - v - -  1 

= 0(1) s (e,,/po)'~k(eJpv)klBvlkv-2klAAvt 
V : I  

= O(1) s v6kIA;Lvl 
V = I  

= 0(1), 

as m ~  ~ ,  by virtue of (7), (11), (12) and (14). 
Finally, using the fact that A{PJ(vZp~)} = O(1/v2), by Lemma 2, we have 

m + l  m + l  1 
~., (p./p.)ak +k- 11T,,,,,lk <~ ~., (p,,/p.),~k-lpk.~ - 

n = 2  n = 2  1 

n - 1  

x ~., PolBollAv+llA{(PJ(v2pv)}l j' 
v = l  

I"f .,+1 1 p~(pjpv)v_ z 
= O(1) 2 (P , , /P , , ) ' u ' - IT '  

n=2 P n - 1  I.v=l 

x IBvll;~+ll } k 

= O(1) ~ (p./p.)~k- 1 (pjpv)kp~ v- 2k 
n = 2  P,,-1 v= 

x IBvlkl;to+xl ~ } x [~ ._ lv=lpv  

= 0(1) s (Pv/p~)kpvl2v+x[klBolkv -2k 
v = l  

m + l  1 
x ~ (P./p.) ~-1-,, 

n=v+ 1 l - n -  1 

= 0(1) s (Po/Pv)~k(edpv) k- 1 l,~v+ 1[ kvkv- 2k 
v =l  

=0(1) s V6k-ll2~+ltk 
V = I  

= 0(1) 

as m--, oo, by (7), (11), (12) and (13). Therefore, we get that 

s O(1) as m ~  o0, for i=  1,2,3,4. 
n = l  
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This completes the proof of Theorem 2. 

Proof of  Theorem 1. Theorem 1 is a direct consequence of Theorem 2.and Lemma 1. 

Remark. If we take 6 = 0 in our theorems 1 and 2, then we get Theorem A and 
Theorem B, respectively. Because in this case the conditions (13) and (14) reduce to 
conditions (9) and (10), respectively. It should be noted that in this case condition 
(12) is obvious. 

If we take p, = 1 for all values ofn in Theorem 1, then we get the following corollary. 

COROLLARY 

I f  ~Pl (t) is of bounded variation in (0, it) and (2.) is a sequence such that conditions (13) 
and (14) of Theorem 1 are satisfied, then the series ZA.( t )2 . ,  at t = x is summable 
[C, 1; 6[k, k >i 1, provided that 1 - 6k > O. 
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