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On endomorphisms of degree two
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Abstract. Let R be a commutative ring, AeR and let R{A} be the set of conjugacy classes
of R-module endomorphisms f satisfying f- f = A-id. Using a certain subspace of the tensor
product of two endomorphisms a commutative and associative product on R{A} can be
defined. For R = Z a generalization of the composition of quadratic forms arises as a special
case.
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1. Introduction

Let R be a commutative ring with unit element 1 = 1 and let A be an element of R.
A pair (A, f) is called a A-pair, if A is an R-module and f: A — A is a linear mapping
satisfying f e f = A-i, where i: A — A denotes the identity mapping.

Given two A-pairs (A, f) and (B, g) there is a natural way to construct a new A-pair
(A*B, f*g). This construction is compatible with homomorphisms of A-pairs and
hence induces a commutative and associative composition on the set R{A} of
isomorphism classes of A-pairs.

In the case of free Z-modules of rank 2 the composition is isomorphic to the product
of the ideal classes in the ring Z[ﬂ] provided that A is not a square in Z. Hence
we obtain a new description of the composition of binary quadratic forms over Z in
the sense of C F Gauss.

2. A-pairs

Suppose that (A4, f) and (B, g) are A-pairs. The elements of 4 resp. B are written as
a,a,,a, etc. resp. b,b,, b, etc. A linear mapping ¢: A — B is called a homomorphism
of the A-pairs, if

oo f=g°@ (1)
holds. We also write ¢:(4, f)—(B,g).
Now consider the tensor product A ® B over R and the submodule

A*B=(f®i+i®g)(A® B) (2
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of A® B. Clearly, A*B is spanned by the elements

axb=f(a)®b +a®g(b), where aecA and beB. 3)
Using

(f@)axb)=Aa®b+ f(a)@g(b) = (i®g)(a*h) (4)
a linear mapping f *g: AxB— A= B is defined by

9= @il s =109l 4.5 (5)

PROPOSITION A.

Suppose that (A, f) and (B, g) are A-pairs. Then (A, f}x(B,g):= (A*B, f *g) becomes a
A-pair, too.

Proof. Clearly,
(f*9)°(f*9)=(f ®D(f @4 =([NNBilis=A-i®il,.,
in view of (5). [
Applying i® g to (4) yields
(f®g)(x)=A-x, whenever xeA«B. (6)

ProPOSITION B.

Suppose that ¢:(A, )— (A, f) and (B, g)— (B, §) are homomorphisms of the A-pairs.
Then

X A*B—>A*B, 1=0®Yl.p
becomes a homomorphism of the A-pairs.

Proof. First of all, write a:= ¢(a) resp. b = y(b), and obtain
f@=7@ resp. g(b)=3(b)
from (1). Hence
x(axb) = f(a) ®F +a®g(b) = (@) @b + a® G(B)e A+ B (*)

holds according to (3). In order to prove yo(f*g) = (f*g)°y it suffices to consider
elements of the form (3). Hence one gets

xo(f *g)axb) = x(f(@)*b) = f(f(@) ®b + f(a) ® §(B)
=(FR®)[@®b +a®jF) = (F1xd)ox(axb)
using (5) and (). [
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ProrosiTioN C.

Suppose that (A, f) and (B,g) are A-pairs. Then the restriction ¢ of the mapping
AR®B—-B® A given by aQb—b®a to AxB becomes an isomorphism of AxB onto
Bx A and satisfies p(axb)=bxa.

Proof. Clearly,
plaxb)=g(b)®a+b® f(a) = bxa

holds according to (3). Hence
@e(f*g)laxb)=@Aa®b + f(a)®g(b)) = A b®a+ g(b)® f(a),
(gxf)oplaxb) =(g*f)(bxa)=Ab®a+ g(b)® f(a)

follow from (4) and (5). [

In order to prove the associative law start with three A-pairs (A4, f), (B, g), (C,h) and
compute

(@xb)xc=[(f*g)(axb)]®c + (a*b)® hc)
=[Aa®b+ fa)@gb)]®c+[f(@)®b+aRgb)]1® hc)
=A[a®b]®c+[f(@)@g(b)]®c
+[f(@®b]®h(c) + [a®g(b) 1@ h(c)

according to (3), (4) and (5). With the aid of similar arguments one obtains

ax(bxc)=Aa@[b®c] + f(A®[g(b)®]
+ f(@@[b®hlc)] + a® [g(b) @ h(c)].
Furthermore one calculates
([f *g]*hi[axb]xc) = A(axb)®c + [(f *g)(axb) ] ® h(c)
=A[f(@®b]®c+A[a®y(b)]®c
+ A [a®b]@hlc)+ [ f(@)®g(b)]1® hlc)
and respectively.
(f*[g*h])(ax[bxc])
=A-aQ[bxc]+ f(@)®[(grh)(bxc)]
=A-a®[gb)®c]+AaR[b®h()] +A f(®[P®c]
+f(@@[g(b)® h(c)].
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Now let y be the restriction of the R-module isomorphism
(A®B)®C—->AR®BRC(). (a®@h)®c—a®@(b®c),
to (4% B)*C. Hence one has
zlax(bxc))=(axb)*c
and
o[ xglxh)=(f*[g*h])>x
holds. A summary yields

ProrosiTION D.

Suppose that (A, f),(B, g) and (C, h) are A-pairs. Then the mapping y:(A*B)* C — A*(B*C)
becomes an isomorphism of the A-pairs.

Now let R}{A} denote the set of isomorphism classes of A-pairs over the ring R. The
isomorphism class of a A-pair (4, f) is denoted by

a=€A,f>. (7)
According to Proposition 4 and B a product is defined in R{A} via
axb:= € AxB, f*xg}, whenever a=<€A.f>. b=<Bg>. (8

The propositions C and D lead to the

Lemma. The set R{A} of isomorphism classes of A-pairs forms a commutative
semi-group.

3. Free modules

Let R™ denote the free R-module of column vectors with m entries. As an example
consider a A-pair (4, f), where A is a free R-module of rank m > 1. Let .o/ = (a,,...,a,,)
be a basis of A and put

%
ay=1 : 1], 9
%
whenever a=o,a, + --- + 0,4, and a,,...,2,eR. Hence h=h_: A — R™ becomes a

bijective linear mapping and there exists a matrix FeMat(m; R) such that
hof =Fech, F?=A‘l, , (10)

holds. Clearly, h:(4, f)—(R™, F) becomes an isomorphism of the A-pairs.
Suppose further that (B, g) is a A-pair, where B is a free R-module of rank n and
that £ =(b,,...,b,) is a basis of B. How can the product (4B, f xg) be described?
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Consider the diagram

(4. /1 % 1By} —={A*B, fxg), i, b)axh,
hy l hg th)
{(R™. F) x{R" G} (R"*R", Fx(G).

In order 1o describe the module A*B, or better the module R™xR", consider the
isomorphism @ R R” — Mati{m, n; Rj induced by Dla ® by:= ab', where b stands for
the transpose ot b.

Hence the subspace

R™R"=(F &1+ 1&G)R"® K")
of R™& R" 1s spanned by

2 Filyy+ xmGy, where xeER™  yeR™ 2
and the map F+G s given by

FrGIz)=Ax®y+ Fx@ Gy 12

Now the imuge ®(R™*R") 1s spanned by the matrices

(Fap +xuy) = Fxy + x4l
Hence

OR™+R")="'FM +MG‘;MEMat(m,n;R)} {13)
holds. In addition, the map F+G is given via

FM+ MG —FFM +MG)=A-M+ FMG {135

n view of (4). A summary yields the

Lemma. Suppose that (A, 1) and (B, g) are A-pairs, where A resp. B are free R-moduies
of rank m resp. n. Then the A-pair (A*B. f *yg) is isomorphic to the A-pair (C, h), where

C=Cyp o= {FM + MG'; MeMat(m,n; R)} (14)
and where

hX)=FX = XG', whenever XeC. (14)

Consider the A-pair (R*, ¢), where e: R? > R? is given by

. . 0 A )
e(a)=Ea, b.-(l 0>. (15)

COROLL/RY.

Suppose that (A, f)is a A-pair, where A is a free R-module. Then the A-pair (A, f)*(R?, e)
is isomorphic to (A, f).
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Proof. Without restriction suppose 4 = R™ and f(a) = Fa, where FeMat(m; R) and
F?=A-1. Hence according to (14), one has

C={FM+ ME'; MeMat(m,2;R)}
={(Fa+ Ab,Fb + a).a.beR™}
={(Fc,c);ceR™} = R"
and the mapping h:C— C corresponds to the endomorphism ¢- F¢ of R”. [

The isomorphigms of (R™, F) onto (R™, F) clearly are given by matrices WeGL(m; R)
such that WF = FW. Hence the isomorphism class € R™, F} in R{A} coincides with
the conjugacy class of the matrix F with respect to the group GL(m; R).

PROPOSITION.

Suppose that R is a field of characteristic #2 and suppose that A is a square in R. Then
R{A} is isomorphic to the multiplicative semi-group N x N.

Proof. A set of representatives of conjugacy classes of matrices F'e Mat(m; R) satisfying
F?=A-1is given by

~( 1P 0
Fp.q:= \/A( 0 _1(4))’ (16)

/

where p+ g =m, and it is parametrized by (p,q)eN x N. Hence

4 0 ,
F, M+ MF, =2 /A ( 0 D). (*)

where
APn B(p.S)
M=( )
C(q.r) D(q.S)
Clearly, the dimension of (R™, F, )*(R", F, ) becomes pr + gs and multiplication of

() from the left hand side by F, , produces the identity on AeMat(p, r; R) and minus
the identity on BeMat(q,s; R). []

4. An obvious generalization

In order to generalize A-pairs consider a monic polynomial e R[X] of degree r > 1
Xy=no+n, X+ - +7n_, X'+ X", (17

where ng,.... 7, eR. A pair (4, f) is now called a n-pair, if A is an R-module and if
f:A— A is a linear mapping satisfying

f)=npi+n f+-+m_ [+ =0 (18)
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Suppose that (4, /) and (B, g) are n-pairs. Define a linear mapping F, ; AQB—» A® B
via

r—1
Ffvy:: an+1 Z fy®!1", = 1. (19)
k=0

v+u=k
In particular, one has

Ff.g

L i®i
\ fRi+i®g+n, i®i
| PRI+ R+ IR+, ([ Ri+i®g) + 7, i®i.

W b e ~

A verification using (18) leads to

(J @) F;,=F;o(f®i)=F; ,(i®yg)=(i®y)F,. (20)
Now writing

A*B:=F, (A® B), (21)
and respectively

J*xg:AxB—> AxB, (f*g)x)=(f ®(x), 21

we obtain a n-pair (4*B, [ xg)
This construction (and a more general set up) will be discussed elsewhere (cf. [2]).

5. The classical case

Suppose now R = Z and consider the case m = n = 2. Start with an integer A and let
Z, be the set of matrices FeMat(2; Z) satisfying

trace F=0 and detF=-—A

Hence F? = A-I follows and (Z2,F) is a A-pair. Let M{A} denote the subset of Z{A}
consisting of the equivalence classes

a=€F3=<«Z7%F>»,
where FeZ,. Recall that « (F)3 depends only on the conjugacy class over Z of F.

PROPOSITION.

M{A} is a monoid under the composition (a,b)+> axb.

Proof. Puta= € F 3 resp. b= « G 3 and consider the Z-module C; ; according to
(14). Hence Cr ¢ is a free Z-module and Cr ;®C has rank 2 over C in view of
Proposition 3. Therefore the Z-module Cp ¢ has rank 2, too, and a*b belongs to
M{A}. Clearly, the unit element e = € E > (cf. (15)) belongs to M{A}.
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Suppose that A is not a square in Z, put ©:= \/X and consider the ring Z{@]. Let
S # {0} be an ideal in Z[®]. Then there exists 0 #ueZ? and F = F ,eZ, such that

F = {d(F + Ol)g,geZ?| (22)
holds. Note that F is uniquely determined up to conjugation over Z. Hence 4 mapping
I £F, > {23}

of the ideals of Z[®] into M{A} is well-defined. But ¥, depends only on the ideal
class (#) of .# and consequently the mapping (23) induces o mapping ¢ of the set
C(A) of ideal classes of Z[®] into M{A|, which is bijective according 1o a classical
result of R Dedekind (cf. [1], § 187).

Clearly, the product #,.¢, of two ideals .#,,.#, of Z[®] induces a product
(I DI,y = (I S, of thecorresponding ideal classes. Hence C(A, s s commutative
monoid.

Lemma. The mapping y: C(A)— M A; is an isomorphism.

Proof. Let .#, and .#, be non-zero ideuls of Z[©]. Hence there exist u, heZ2\{0}
and F,GeZ, such that

S ={d(F+Ol)g;geZ?! resp. 5,= PG+ Oljiynel?

in view of (22). The elements of .#,.#, are spanned by ciements of the form
a(F + ONgh(G' + ®1)b, where y, heZ?,

hence equal
a'Xyb, where X, =(F+O)MG +06I)

and where MeMat(2; Z). But one has
Xy =(FMG' + AM) + O(FM + MG')=\F + O1}Y,,.

where Yy,:= FM + MG' holds. The use of (14) leads to
I I, ={dhWY)+OY)h YeCyry;).

where € Cr g, h> = € F 3+ € GF. Now choose a basis of Cp; and compute
S F,={c(H+Ol)g;geZ?

for some ceZ? and HeMat(2;Z) such that € C, ;,h¥» = «H>».

Note that C(A) and hence M{A} in general fail to be groups, because Z[®] in
general fails to be the maximal order of the quadratic field G[®]. However, M{A}
acts on Z{A} in view of Lemma 2.

In addition, using the map

0 1
S+ JS, where J-(__l 0),
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from the set of symmetric 2 x 2 matrices over Z of determinant-A onto Z, the
composition of integral binary quadratic forms in the sense of C F Gauss is mapped
onto the product in M{A}.

6. The Z-module D,

Suppose that the integer A is not a square. Given FeMat(m; Z) resp. GeMat(n; Z)
satisfying

F2=A'1 resp. G*=A-l,
consider the Z-modules Cp ; (cf. (14)) and

Dp ;= NeMat(m,n,2), FN = NG'}. (24)
Hence

Cro < Drg (25)
holds according to (14').

PROPOSITION.

The Z-modules C g and Dy  have the same rank.

Proof. Since C:= Cr ; and D:= Dy ; are free Z-modules, it suffices to prove that the
C-ranks of C®C and C®D coincide. Without restriction assume F ~ F, , resp.
G ~ F,, where F, , is given by (16). Hence a computation leads to C® C =C® D.

O
COROLLARY.

The index ip g of Cp g in Dg ¢ is finite.

Now consider a matrix

F N
i=(g %) (26)

where NeMat(m, n; Z). A computation leads to

NeDp g<-H2=A'1 27

I M I —-M\ (F N-—(FM+MG
<0 1>H<0 I )‘(0 —G > (28)

Lemma. The number of conjugacy classes of matrices (26 ) satisfying H> = A-I does not
exceed ip .

and to

Proof. The matrices N in (26) can be reduced modulo Cg ; according to (28). [
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This result can be extended to arbitrary matrices M e Mat(m; Z) satisfying M2 = A1,
because M is conjugate to a matrix of the form

Fl F12 Fln
T\FZ\ (29)
0——0 F

where m = 2n and where all F’s belong to Z, and where all F;;’s belong to Mat(2; Z)
according to Theorem II1.12 in [3]. Since F;;e Df ¢ holds, where Fi= F;and G:= — FJ,
the matrices F;; can be reduced modulo Cr . In particular, suppose that Cp ¢ =Dy
holds for all F,GeZ . Then every M eMat(m; Z) satisfving M* = A-1 is over Z conjugate
to a block diagonal matrix with diagonal blocks from Z ,.

Given F,GeZ,,

- f1 fz) G:<91 g2 )
F <f3 -fi) g3 —9 '

eF,G:ngd(fl +90 191, 292, [3-93)

let

Without proof we mention that
Cre=¢rc Drg

holds. In particular, e; ¢ = 1 for F, GeZ,, whenever A is square free and A # | (mod 4).
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