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On endomorphisms of degree two 
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Abstract. Let R be a commutative ring, ZkeR and let R{A} be the set of conjugacy classes 
of R-module endomorphisms f satisfying f o f = A.id. Using a certain subspace of the tensor 
product of two endomorphisms a commutative and associative product on R{A} can be 
defined. For R = Y a generalization of the composition of quadratic forms arises as a special 
case. 
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1. Introduction 

Let R be a commutat ive  ring with unit element 1 = 1R and let A be an element of  R. 
A pair (A, f )  is called a A-pair, if A is an R-module  and f :  A ~ A is a linear mapping  
satisfying f of = A.i, where i: A--, A denotes the identity mapping.  

Given two A-pairs (A, f )  and (B, g) there is a natural  way to construct  a new A-pair 
(A,B, f,g). This construct ion is compatible  with homomorph i sms  of  A-pairs and 
hence induces a commutat ive  and associative composi t ion on the set R{A} of  
isomorphism classes of  A-pairs. 

In the case of free 7/-modules of  rank 2 the composi t ion  is isomorphic  to the produc t  

of  the ideal classes in the ring 7/[x/~- ] provided that A is not  a squa're in 7/. Hence 
we obtain a new description of the composi t ion of  binary quadrat ic  forms over Y in 
the sense of  C F Gauss. 

2. A-pairs 

Suppose that (A, f )  and (B,g) are A-pairs. The elements of  A resp. B are written as 
a, a l ,  a2 etc. resp. b, b 1, b 2 etc. A linear mapping  q~: A ~ B  is called a homomorphism 
of the A-pairs, if 

~oof= go~o (1) 

holds. We also write ~o: (A, f ) ~ ( B ,  g). 

N o w  consider the tensor product  A | B over R and the submodule  

A,B:= (f  | i|174 (2) 
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of A | B. Clearly, A * B is spanned by the elements 

a*b:=f(a)Qb+a| where a~A 

Using 

and b~B. (3) 

( f  | i)(a* b) = Aa | b + f(a) @ g(b) = (i | #)(a* b) (4) 

a linear mapping f .  g: A �9 B ~ A �9 B is defined by 

f .  g:=f| i[A,B = i | glA.~. (5) 

PROPOSITION m. 

Suppose that (A, f )  and (B, g) are A.pairs. Then (A, f)*(B, g):= (A *B, f , g )  becomes a 
A-pair, too. 

Proof. Clearly, 

( f  ,g)o(f  ,g) = ( f  | i)o(f | i)[A, B = ( f  of) | i[a, B = A ' i |  ilA,8 

in view of (5). [] 

Applying i |  g to (4) yields 

( f |  whenever x e A , B .  (6) 

PROPOSITION B. 

Suppose that r (A, f )  ~ (A, f )  and r (B, 9) ~ (B, ~j) are homomorphisms of the A-pairs. 
Then 

z : A * B ~ A * B ,  Z:= ~p | r 

becomes a homomorphism of the A-pairs. 

Proof. First of all, write ~i:= r resp. b = r and obtain 

f (a)=f(~)  resp. 9(b)=~(b) 

from (1). Hence 

x(a*b) =f (a )  | + d| =f(~)  | b + gt| (.) 

holds according to (3). In order to prove z o ( f . g ) =  (f*g)~ it suffices to consider 
elements of the form (3). Hence one gets 

Z o ( f .  g)(a* b) = z(f(a)* b) = f(f(c~) @ b + f(a) | ~(b) 

= ( f |  i)(f(gt) | b + ~ | ~j(b)) = (fl* ~)o z(a *b) 

using (5) and (*). [] 
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PROPOSITION C. 

Suppose that ( A , f )  and (B,9) are A-pairs. Then the restriction qo of the mapping 
A | B --, B @ A given by a | b ~ b | a to A * B becomes an isomorphism of A �9 B onto 
B , A  and satisfies tp(a*b) = b*a. 

Proof. Clearly, 

~o(a,b) = g(b)|  + b Q  f(a) = b , a  

holds according to (3). Hence 

(p o ( f  * g)(a* b) = (p(Aa | b + f(a) | g(b)) = A. b | a + g(b) |  

( g , f )  o (p(a* b) = (9*f)(b* a) = Ab @ a + g(b) | f(a) 

follow from (4) and (5). [] 

In order to prove the associative law start with three A-pairs (A, f) ,  (B, 9), (C, h) and 
compute 

(a*b)*c = [ ( f  *g)(a*b)] | c + (a ,b ) |  h(c) 

= [A.a | b + f(a) | g(b)] | c + [f(a) | b + a | g(bl] | h(c) 

= A.[a | b] | c + [f(a) | g(b)] | c 

+ [f(a)  | b] | h(c) + [a | g(b)] | h(~') 

according to (3), (4) and (5). With the aid of similar arguments one obtains 

a*(b,c)  = A . a |  [b |  + f (a ) |  [g(b) | c] 

+ f(a) | [b | h(c)] + a | [g(b) | h(c)]. 

Furthermore one calculates 

( [ f  *g]*h)([a*b]*c) = A. (a*b) |  + [ ( f  *g)(a*b)] | 

= A" I f (a )  | b] | c + A ' [ a  | g(b)] | c 

+ A" [a | b] | h(c) + [f(a)  | 9(b)] | h(c) 

and respectively. 

( f  , [g ,h] ) (a*[b*c] )  

= A.a | [ b , c ]  + f ( a ) |  [(g*h)(b*c)] 

= A.a  | [g(b) | c] + A" a | [b | h(c)] + A.f(a) | [b | c] 

+ f(a) | [9(b) | h(c)]. 
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Now let Z be the restriction of the R-module isomorphism 

(A |174  ~ A | 1 7 4  ( a Q b ) Q c ~ a Q ( b |  

to (A * B)* C. Hence one has 

z(a*(b*c)) = (a,b)*c 

and 

Z ~(k]"*93* h) = {f*[y*h])'=Z 

holds. A summary yields 

PROPOSITION D. 

Suppose that (A, f),  (B, e) and (C, h) are A-pairs. Then the mapping )~: (,4 * B)* C ---, A * (B* C) 
becomes an isomorphism of the A-pairs. 

Now let R [A} denote the set of isomorphism classes of A-pairs over the ring R. The 
isomorphism class of a A-pair (A, f )  is denoted by 

a= r  ) .  (7) 

According to Proposition A and B a product is defined in R{A} via 

a .  b:= ~z A .  B, f ,  g ::),, whenever a = 4: A, f ~ .  b = ~ B, g ~r. (8) 

The propositions C and D lead to the 

Lemma. The set R{A} of isomorphism classes of A-pairs forms a commutative 
semi-group. 

3. Free modules 

Let R m denote the free R-module of column vectors with m entries. As an example 
consider a A-pair (A, f) ,  where A is a free R-module of rank m >~ 1. Let .d = (a~ . . . . .  am) 
be a basis of A and put 

h(a):= , (9) 

whenever a = ~1 al + "'" + C~mam and ~ . . . . .  emeR. Hence h = h~: A ---, R m becomes a 
bijective linear mapping and there exists a matrix FeMat (m;  R) such that 

hof=Foh,  f 2=A.I ,  (10) 

holds. Clearly, h: (A, f ) ~ , ( R  m, F) becomes an isomorphism of the A-pairs. 
Suppose further that (B, 9) is a A-pair, where B is a free. R-module of rank n and 

that ~ = (bt . . . . .  b,) is a basis of B. How can the product ( A , B , f , g )  be described? 
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Consider the diagram 

~A,JI•  gl -+(A*B, f*gh  (a,b)~-+a,b, 

1 
~R~'.F) x tR ~, G}:-+(R" * R",F*G~. 

in order to describe the module A , B ,  or better the module R"*RL con~idcr the 
isomorphism ~: R "~ | R" --, MatIm, n, R) induced by 4~(a @ b~:= ab', where h" ~tal~ds for 
the transpose of h. 

Hence the aubspacc 

Rm*R" = d " @ l  -f I |  

of R" | R" ib spanned by 

z:=F_~:@).-rx(x)G.;, where ~ R " ,  yeR". i2i 

and the map F , G  is gi~,en by 

(F ,  G~(z):= A-x | y + Fx @ Gy. i 2i 

Now the image O(R' ,R"~ is spanned by the matrices 

f".~ ~,,' • x "t Gy)'  = F . x y '  + x d" G'. 

Hence 

O~R", R") = ~,FM + MG'; M ~ Mat(m, n; R)] (13) 

holds. In addition, the map F*G is given via 

FM -1- MG' ~, F(FM + MG') -- A. M -t- FMG' ( 133 

in view of (4). A summary yields the 

Lemma, Suppose that (A, J') and (B, g) are A-paws, ~here A resp. B arejree R-modules 
of rank m resp. n. Then the A-pair (A * B, f *g) is isomorphic to the A-pair (C,h), where 

C:= C~.c:= {FM + MG' ;MeMat (m,n;R)}  (14) 

and where 

h(X):= F X  = XG ~, whenever X~C.  t14') 

Consider the A-pair (R =', e), where e: R2--+ R 2 is given by 

e(a):=Ea, E:=(~  0)" (15) 

COROLLI RY. 

Suppose that (A, f )  is a A-pair, where A is a free R-module. Then the A-pair (A, f ) *  (R 2, e) 
is isomorphic to (A, f ). 
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Proof Without restriction suppose A = R" and f ( a ) =  Fa, where F~Mat(m; R) and 
F 2 = A'I. Hence according to (14), one has 

C = {FM + ME'; M s  Mat(m, 2; R)} 

= ((Fa + Ab, Fb + a): a, b~R "~} 

= {(Fe, c);cER"} ~- R m 

and the mapping h:C ~ C corresponds to the endomorphism c ~  Fc of R m. []  

The isomorphisms of (R", F) onto (R%/~) clearly are given by matrices W~GL(m; R) 
such that WF = FW: Hence the isomorphism class ~ R", F~ in R {A~ coincides with 
the conjugacy class of the matrix F with respect to the group GL(m; R). 

PROPOSITION. 

Suppose that R is afield of characteristic r  and suppose that A is a square in R. Then 
R {A~- is isomorphic to the multiplicative semi-group ~ x ~. 

Proof. A set of representatives ofconjugacy classes of matrices F~Mat(m; R) satisfying 
F 2 =  A-I is given by 

~ - / I  Ipl 0 
Fp.q:= ~/A~ 0 __ltq)) , (16) 

where p + q = m, and it is parametrized by ( p , q ) ~  x/~. Hence 

Fp"M + MF"~= 2"~A(  o ? D ) '  (*) 

where 

( A~p, r) Btp.s) ~ 
m = \c~q., ) Dtq.s) j .  

Clearly, the dimension of (R", Fp.q)*(R", F,,s) becomes pr + qs and multiplication of 
(*) from the left hand side by Fp,q produces the identity on A~Mat(p, r; R) and minus 
the identity on BeMat(q,s;R).  [] 

4. An obvious generalization 

In order to generalize A-pairs consider a monic polynomial h e R [ X ]  of degree r >/1 

it(X) = rCo + 7rlX + ... + ~ ,_ lX  r-x + X ' ,  (17) 

where n o . . . . .  ~z~_ l eR. A pair (A , f )  is now called a rt-pair, if A is an R-module and if 
f :  A --* A is a linear mapping satisfying 

n ( f ) =  rroi+ r r x f +  . . -+  r r , _ l f  ' -1  + f "  = 0. (18) 
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Suppose that (A, f )  and (B, 9) are g-pairs. Define a linear mapping Fs.g: A | B --, A | B 
via 

r -1  
Fs.~:= ~ ~z~+ 1 ~ p ' |  ~, gr=  1. (19) 

k ~ O  v + # = k  

In particular, one has 

r F f. o 

1 i@i 
2 f | 1 7 4 1 7 4  
3 f 2 | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  

A verification using (18) leads to 

(] | F/..q~.(.f |  Fs.oo(i@g)=(i| o. (20) 

Now writing 

A* B:= Fs.o(A | B), (2'1) 

and respectively 

f . g : A . B ~ A , B ,  ( f  .g)(x):=(f | (21') 

we obtain a n-pair (A,B,  f , g )  
This construction (and a more general set up) will be discussed elsewhere (cf. [2]). 

5. The classical case 

Suppose now R = ~ and consider the case m = n = 2. Start with an integer A and let 
Z~ be the set of matrices F~Mat(2; Z) satisfying 

t r a c e F - 0  and d e t F = - A .  

Hence F2= A.1 follows and (Z2,F) is a A-pair. Let M{A} denote the subset of Z{A} 
consisting of the equivalence classes 

a =  ,g F 3- := ~: Z 2 , F ~ ,  

where FeT/~. Recall that r (F)z~ depends only on the conjugacy class over Z of F. 

PROPOSITION. 

M{A} is a monoid under the composition (a, b ) ~ a . b .  

Proof. Put a = {z F :} resp. b = 4: G ~ and consider the Z-module CF, o according to 
(14). Hence Cr,G is a free Z-module and Cr ,o |  has rank 2 over C in view of 
Proposition 3. Therefore the Z-module Cr,6 has rank 2, too, and a . b  belongs to 
M{A}. Clearly, the unit dement e = 4: E ~ (of. (15)) belongs to M{A}. [] 
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Suppose that A is not a square in Z, put O:= , /~-  and consider the ring 21~| Let 
J ~ {0} be an ideal in Z[| Then there exists 0 ~ a ~ 2  e and F = F~62 a such that 

J = {a'(F + O1)9; gE•21 (22) 

holds. Note that F is uniquely determined up to conjugation over 2. Hence a mapping 

J ~  4: F., ~ (23) 

of the ideals of Z[|  into M t A  i is well-defined. But k', dep,:nds only on the ideal 
class ( J )  of J and consequently the mapping {23t inducts a mapping ~p of the set 
C(A) of ideal classes of Y[| into ~ ' M ( A j ,  which is bijective according to a classical 
result of R Dedekind (cf. [1], w 187). 

Clearly, the product J ~ J z  of two ideals .,4~,.~ 2 of Z[-(O] ip.duces a product 
( J 1 )  ( J 2 ) : =  (Jr~Cz) of the corresponding ideal classes, l-iencc t(A~ is a c~)mmutative 
monoid. 

Lemma. The mapping O: C(A) ~ MIA I is an isomorphism. 

Proof. Let J~  and J 2  be non-zero ideals of 210].  Hence there ex>t , ,be22\{0} 
and F, GeT/~ such that 

,r = {at(F + | resp. ,~2 = Ib'( G "- t~l)*t;,~z,'_-I 

in view of (22). The elements of . t~.J 2 are spanned 19), eiements of the form 

a'(F + Ol)ght(Gt + | where ~q,h~22, 

hence equal 

atXMb, where X~t:=(F • |  ~- (91) 

and where M~Mat(2;2).  But one has 

XM = (FMG t + AM) + (9(k'M + MG') = ~F • (91) ~iu, 

where YM:= F M  + MG' holds. The use of ~141 leads to 

J 1 J 2  = {d(h(Y) + | YeC~. ~ ,  

where 4: Cv,~, h ;} = 4: F ~ * 4: G ~ .  Now choose a basis of Cv,c; and compute 

J l J 2  = {ct(H + 191)0;,q~7/2~ 

for some c~7/2 and H~Mat(2;2)  such that 4: Cv,. ,h 9r = 4: H :~. rM 

Note that C(A) and hence M{A} in general fail to be groups, because 2[ |  in 
general fails to be the maximal order of the quadratic field (~[| However, MSA~ I. ) 

acts on Z{A} in view of Lemma 2. 
In addition, using the map 

S - - J S ,  where J = ( _ ;  ; ) ,  
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from the set of symmetric 2 • 2 matrices over Y of determinant-A onto 7/a the 
composition of integral binary quadratic forms in the sense of C F Gauss is mapped 
onto the product in M{A}. 

6. The 7/-module Dr, a 

Suppose that the integer A is not a square. Given F~Mat(m; 7/) resp. G~Mat(n; Y) 
satisfying 

F 2 = A . I  resp. G 2 = A - I ,  

consider the Y-modules Cv,c, (cf. (14)) and 

Dr, ~ = ', N~Mat(m, n; 7/); FN = NG'}. (24) 

Hence 

Cv.G ~ Dv,G (25) 

holds according to ~14'). 

PROPOSITION. 

The 7/-modules CF.G and D~-,G have the same rank. 

Proof. Since C:= CF,~ and D:= Dr, G are free 7/-modules, it suffices to prove that the 
C-ranks of C | C and C |  coincide. Without restriction assume F ~ Fp,q resp, 
G ~ F .... where F,,q is given by (16). Hence a computat ion leads to C | C = C | D. 

[]  

COROLLARY. 

The index iF, G of CF, G in DV.G is finite. 

Now consider a matrix 

H:= - a '  ' (26) 

where N~Mat(m,  n; 7/). A computat ion leads to 

N~DF.GC~H 2 = A-I (27) 

and to 

Lemma. The number of conjugacy classes of matrices (26) satisfying H 2 = A'I  does not 
exceed iv, G. 

Proof. The matrices N in (26) can be reduced modulo Cv,~ according to (28). []  
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This result can be extended to arbitrary matrices M ~ Mat (m; l )  satisfying M 2 = A '  I,  
because M is conjugate to a matrix of the form 

where m = 2n and where all Fi's belong to 7/~ and where all Firs belong to Mat(2; l )  
according to Theorem III.12 in [3]. Since F~eDF,G holds, where F:= F i and G:= - F } ,  
the matrices F~j can be reduced modulo CF,G. In particular, suppose that Cr,G = De,G 
holds for all F, Ge2a.  Then every MeMat(m; 1) satisfying M 2 = A. I  is over I conjugate 
to a block diagonal matrix with diagonal blocks from 7/a. 

Given F, G e l a ,  

F = (J' l  
\f3 

let 

f2~, G=_(gl g2 ~, 
- - f l , ]  \,q3 --Yl/ 

ev,a: = gcd(fl  + gt,  f l  - g , ,  f2,  g2, f3 ,  (]3). 

Without proof we mention that 

Cr. ~ = er,G'D~.,G 

holds. In particular, eF,G = 1 for F, GE2~, whenever A is square free and A ~ 1 (mod 4). 
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