Proc. Indian Acad. Sci. (Math. Sci.), Vol. 97, Nos 1-3, December 1987, pp. 179-188. © Printed in India.

On endomorphisms of degree two

MAX KOECHER

Mathematisches Institut der Westfälischen-Wilhelms-Universität Münster, Einsteinstraße 62, 4400 Münster, FRG

Abstract. Let R be a commutative ring, $\Delta \in R$ and let $R{\Delta}$ be the set of conjugacy classes of R-module endomorphisms f satisfying $f \circ f = \Delta$ id. Using a certain subspace of the tensor product of two endomorphisms a commutative and associative product on $R{\Delta}$ can be defined. For $R = \mathbb{Z}$ a generalization of the composition of quadratic forms arises as a special case.

Keywords. Composition of quadratic forms; commutative rings; tensor products; conjugacy class of endomorphism.

1. Introduction

Let R be a commutative ring with unit element $1 = 1_R$ and let Δ be an element of R. A pair (A, f) is called a Δ -pair, if A is an R-module and $f: A \rightarrow A$ is a linear mapping satisfying $f \circ f = \Delta \cdot i$, where $i: A \rightarrow A$ denotes the identity mapping.

Given two Δ -pairs (A, f) and (B, g) there is a natural way to construct a new Δ -pair (A * B, f * g). This construction is compatible with homomorphisms of Δ -pairs and hence induces a commutative and associative composition on the set $R{\Delta}$ of isomorphism classes of Δ -pairs.

In the case of free \mathbb{Z} -modules of rank 2 the composition is isomorphic to the product of the ideal classes in the ring $\mathbb{Z}[\sqrt{\Delta}]$ provided that Δ is not a square in \mathbb{Z} . Hence we obtain a new description of the composition of binary quadratic forms over \mathbb{Z} in the sense of C F Gauss.

2. Δ -pairs

Suppose that (A, f) and (B, g) are Δ -pairs. The elements of A resp. B are written as a, a_1, a_2 etc. resp. b, b_1, b_2 etc. A linear mapping $\varphi: A \to B$ is called a homomorphism of the Δ -pairs, if

$$\varphi \circ f = g \circ \varphi \tag{1}$$

holds. We also write $\varphi:(A, f) \rightarrow (B, g)$.

Now consider the tensor product $A \otimes B$ over R and the submodule

 $A * B \coloneqq (f \otimes i + i \otimes g)(A \otimes B) \tag{2}$

179

180 Max Koecher

of $A \otimes B$. Clearly, A * B is spanned by the elements

$$a * b \coloneqq f(a) \otimes b + a \otimes g(b)$$
, where $a \in A$ and $b \in B$. (3)

Using

$$(f \otimes i)(a * b) = \Delta a \otimes b + f(a) \otimes g(b) = (i \otimes g)(a * b)$$
(4)

a linear mapping $f * g: A * B \rightarrow A * B$ is defined by

$$f * g := f \otimes i|_{A * B} = i \otimes g|_{A * B}.$$
(5)

PROPOSITION A.

Suppose that (A, f) and (B, g) are Δ -pairs. Then (A, f)*(B, g):=(A*B, f*g) becomes a Δ -pair, too.

Proof. Clearly,

$$(f * g) \circ (f * g) = (f \otimes i) \circ (f \otimes i)|_{A * B} = (f \circ f) \otimes i|_{A * B} = \Delta \cdot i \otimes i|_{A * B}$$

in view of (5). \Box

Applying $i \otimes g$ to (4) yields

$$(f \otimes g)(x) = \Delta \cdot x$$
, whenever $x \in A * B$. (6)

PROPOSITION B.

Suppose that $\varphi:(A, f) \to (\overline{A}, \overline{f})$ and $\psi:(B, g) \to (\overline{B}, \overline{g})$ are homomorphisms of the Δ -pairs. Then

 $\chi: A * B \to \overline{A} * \overline{B}, \quad \chi:= \varphi \otimes \psi|_{A * B},$

becomes a homomorphism of the Δ -pairs.

Proof. First of all, write $\bar{a} := \varphi(a)$ resp. $\bar{b} = \psi(b)$, and obtain

$$\overline{f(a)} = \overline{f}(\overline{a})$$
 resp. $\overline{g(b)} = \overline{g}(\overline{b})$

from (1). Hence

$$\chi(a*b) = \overline{f(a)} \otimes \overline{b} + \overline{a} \otimes \overline{g(b)} = \overline{f}(\overline{a}) \otimes \overline{b} + \overline{a} \otimes \overline{g}(\overline{b}) \in \overline{A} * \overline{B}$$
(*)

holds according to (3). In order to prove $\chi \circ (f * g) = (\overline{f} * \overline{g}) \circ \chi$ it suffices to consider elements of the form (3). Hence one gets

$$\chi \circ (f * g)(a * b) = \chi(f(a) * b) = \overline{f}(f(a)) \otimes \overline{b} + f(a) \otimes \overline{g}(\overline{b})$$
$$= (\overline{f} \otimes i)(\overline{f}(\overline{a}) \otimes \overline{b} + \overline{a} \otimes \overline{g}(\overline{b})) = (\overline{f}l * \overline{g}) \circ \chi(a * b)$$

using (5) and (*).

PROPOSITION C.

Suppose that (A, f) and (B,g) are Δ -pairs. Then the restriction φ of the mapping $A \otimes B \rightarrow B \otimes A$ given by $a \otimes b \rightarrow b \otimes a$ to A * B becomes an isomorphism of A * B onto B * A and satisfies $\varphi(a * b) = b * a$.

Proof. Clearly,

 $\varphi(a * b) = g(b) \otimes a + b \otimes f(a) = b * a$

holds according to (3). Hence

$$\varphi \circ (f \ast g)(a \ast b) = \varphi(\Delta a \otimes b + f(a) \otimes g(b)) = \Delta \cdot b \otimes a + g(b) \otimes f(a),$$
$$(g \ast f) \circ \varphi(a \ast b) = (g \ast f)(b \ast a) = \Delta b \otimes a + g(b) \otimes f(a)$$

follow from (4) and (5). \Box

In order to prove the associative law start with three Δ -pairs (A, f), (B, g), (C, h) and compute

$$(a*b)*c = [(f*g)(a*b)] \otimes c + (a*b) \otimes h(c)$$

= $[\Delta \cdot a \otimes b + f(a) \otimes g(b)] \otimes c + [f(a) \otimes b + a \otimes g(b)] \otimes h(c)$
= $\Delta \cdot [a \otimes b] \otimes c + [f(a) \otimes g(b)] \otimes c$
+ $[f(a) \otimes b] \otimes h(c) + [a \otimes g(b)] \otimes h(c)$

according to (3), (4) and (5). With the aid of similar arguments one obtains

$$a * (b * c) = \Delta \cdot a \otimes [b \otimes c] + f(a) \otimes [g(b) \otimes c]$$
$$+ f(a) \otimes [b \otimes h(c)] + a \otimes [g(b) \otimes h(c)].$$

Furthermore one calculates

$$([f*g]*h)([a*b]*c) = \Delta \cdot (a*b) \otimes c + [(f*g)(a*b)] \otimes h(c)$$
$$= \Delta \cdot [f(a) \otimes b] \otimes c + \Delta \cdot [a \otimes g(b)] \otimes c$$
$$+ \Delta \cdot [a \otimes b] \otimes h(c) + [f(a) \otimes g(b)] \otimes h(c)$$

and respectively.

$$(f * [g * h])(a * [b * c])$$

$$= \Delta \cdot a \otimes [b * c] + f(a) \otimes [(g * h)(b * c)]$$

$$= \Delta \cdot a \otimes [g(b) \otimes c] + \Delta \cdot a \otimes [b \otimes h(c)] + \Delta \cdot f(a) \otimes [b \otimes c]$$

$$+ f(a) \otimes [g(b) \otimes h(c)].$$

Now let χ be the restriction of the *R*-module isomorphism

 $(A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C), (a \otimes b) \otimes c \mapsto a \otimes (b \otimes c),$

to (A * B) * C. Hence one has

$$\chi(a*(b*c)) = (a*b)*c$$

and

$$\chi \circ ([f * g] * h) = (f * [g * h]) \circ \chi$$

holds. A summary yields

PROPOSITION D.

Suppose that (A, f), (B, g) and (C, h) are Δ -pairs. Then the mapping $\chi: (A*B)*C \to A*(B*C)$ becomes an isomorphism of the Δ -pairs.

Now let $R\{\Delta\}$ denote the set of isomorphism classes of Δ -pairs over the ring R. The isomorphism class of a Δ -pair (A, f) is denoted by

$$\mathfrak{a} = \bigstar A, f \clubsuit. \tag{7}$$

According to Proposition A and B a product is defined in $R{\Delta}$ via

$$a * b := \langle A * B, f * g \rangle$$
, whenever $a = \langle A, f \rangle$, $b = \langle B, g \rangle$. (8)

The propositions C and D lead to the

Lemma. The set $R{\Delta}$ of isomorphism classes of Δ -pairs forms a commutative semi-group.

3. Free modules

Let \mathbb{R}^m denote the free R-module of column vectors with m entries. As an example consider a Δ -pair (A, f), where A is a free R-module of rank $m \ge 1$. Let $\mathscr{A} = (a_1, \ldots, a_m)$ be a basis of A and put

$$h(a) \coloneqq \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{pmatrix}, \tag{9}$$

whenever $a = \alpha_1 a_1 + \dots + \alpha_m a_m$ and $\alpha_1, \dots, \alpha_m \in R$. Hence $h = h_{\mathscr{A}}: A \to R^m$ becomes a bijective linear mapping and there exists a matrix $F \in Mat(m; R)$ such that

$$h \circ f = F \circ h, \quad F^2 = \Delta \cdot I, \tag{10}$$

holds. Clearly, $h:(A, f) \rightarrow (\mathbb{R}^m, F)$ becomes an isomorphism of the Δ -pairs.

Suppose further that (B,g) is a Δ -pair, where B is a free R-module of rank n and that $\mathscr{B} = (b_1, \ldots, b_n)$ is a basis of B. How can the product (A * B, f * g) be described?

Consider the diagram

In order to describe the module A * B, or better the module $R^m * R^n$, consider the isomorphism $\Phi: R^m \otimes R^n \to Mat(m, n; R)$ induced by $\Phi(a \otimes b) := ab^i$, where b stands for the transpose of b.

Hence the subspace

$$R^m * R^n = (F \otimes I + I \otimes G)(R^m \otimes R^n)$$

of $R^m \otimes R^n$ is spanned by

$$z \coloneqq F x \otimes y + x \otimes G y, \quad \text{where} \quad x \in \mathbb{R}^m, \quad y \in \mathbb{R}^n.$$
(12)

and the map F * G is given by

$$(F*G)(z) \coloneqq \Delta^* x \otimes y + Fx \otimes Gy.$$
⁽¹²⁾

Now the image $\Phi(R^m * R^n)$ is spanned by the matrices

$$(Fxy' + x \cdot (Gy)' = F \cdot xy' + xy' \cdot G'.$$

Hence

$$\Phi(R^m * R^n) = \{FM + MG^t; M \in \operatorname{Mat}(m, n; R)\}$$
(13)

holds. In addition, the map F * G is given via

$$FM + MG^{i} \mapsto F(FM + MG^{i}) = \Delta \cdot M + FMG^{i}$$
⁽¹³⁾

in view of (4). A summary yields the

Lemma. Suppose that (A, f) and (B, g) are Δ -pairs, where A resp. B are free R-modules of rank m resp. n. Then the Δ -pair (A * B, f * g) is isomorphic to the Δ -pair (C, h), where

$$C \coloneqq C_{F,G} \coloneqq \{FM + MG^{t}; M \in \operatorname{Mat}(m, n; R)\}$$
(14)

and where

$$h(X) := FX = XG^{t}, \quad \text{whenever} \quad X \in C. \tag{14'}$$

Consider the Δ -pair (R^2, e) , where $e: R^2 \to R^2$ is given by

$$e(a) \coloneqq Ea, \quad E \coloneqq \begin{pmatrix} 0 & \Delta \\ 1 & 0 \end{pmatrix}. \tag{15}$$

COROLL/RY.

Suppose that (A, f) is a Δ -pair, where A is a free R-module. Then the Δ -pair $(A, f)*(R^2, e)$ is isomorphic to (A, f).

Proof. Without restriction suppose $A = R^m$ and f(a) = Fa, where $F \in Mat(m; R)$ and $F^2 = \Delta \cdot I$. Hence according to (14), one has

$$C = \{FM + ME^{t}; M \in Mat(m, 2; R)\}$$
$$= \{(Fa + \Delta b, Fb + a); a, b \in R^{m}\}$$
$$= \{(Fc, c); c \in R^{m}\} \cong R^{m}$$

and the mapping $h: C \to C$ corresponds to the endomorphism $c \mapsto Fc$ of \mathbb{R}^m . \Box

The isomorphisms of (\mathbb{R}^m, F) onto $(\mathbb{R}^m, \tilde{F})$ clearly are given by matrices $W \in GL(m; \mathbb{R})$ such that $WF = \tilde{F}W$. Hence the isomorphism class $\langle \mathbb{R}^m, F \rangle$ in $\mathbb{R}\{\Delta\}$ coincides with the conjugacy class of the matrix F with respect to the group $GL(m; \mathbb{R})$.

PROPOSITION.

Suppose that R is a field of characteristic $\neq 2$ and suppose that Δ is a square in R. Then $R{\Delta}$ is isomorphic to the multiplicative semi-group $\mathbb{N} \times \mathbb{N}$.

Proof. A set of representatives of conjugacy classes of matrices $F \in Mat(m; R)$ satisfying $F^2 = \Delta \cdot I$ is given by

$$F_{p,q} \coloneqq \sqrt{\Delta} \begin{pmatrix} I^{(p)} & 0\\ 0 & -I^{(q)} \end{pmatrix},\tag{16}$$

where p + q = m, and it is parametrized by $(p, q) \in \mathbb{N} \times \mathbb{N}$. Hence

$$F_{p,q}M + MF_{r,s} = 2\sqrt{\Delta} \begin{pmatrix} A & 0\\ 0 & -D \end{pmatrix}, \tag{*}$$

where

$$M = \begin{pmatrix} A^{(p,r)} & B^{(p,s)} \\ C^{(q,r)} & D^{(q,s)} \end{pmatrix}.$$

Clearly, the dimension of $(\mathbb{R}^m, \mathbb{F}_{p,q}) * (\mathbb{R}^n, \mathbb{F}_{r,s})$ becomes pr + qs and multiplication of (*) from the left hand side by $\mathbb{F}_{p,q}$ produces the identity on $A \in Mat(p, r; R)$ and minus the identity on $B \in Mat(q, s; R)$.

4. An obvious generalization

In order to generalize Δ -pairs consider a monic polynomial $\pi \in R[X]$ of degree $r \ge 1$

$$\pi(X) = \pi_0 + \pi_1 X + \dots + \pi_{r-1} X^{r-1} + X^r, \tag{17}$$

where $\pi_0, \ldots, \pi_{r-1} \in R$. A pair (A, f) is now called a π -pair, if A is an R-module and if $f: A \to A$ is a linear mapping satisfying

$$\pi(f) = \pi_0 i + \pi_1 f + \dots + \pi_{r-1} f^{r-1} + f^r = 0.$$
⁽¹⁸⁾

Suppose that (A, f) and (B, g) are π -pairs. Define a linear mapping $F_{f,g}: A \otimes B \to A \otimes B$ via

$$F_{f,g} := \sum_{k=0}^{r-1} \pi_{k+1} \sum_{\nu+\mu=k} f^{\nu} \otimes g^{\mu}, \quad \pi_r = 1.$$
⁽¹⁹⁾

In particular, one has

$$\begin{array}{c|c} r & F_{f,g} \\ \hline 1 & i \otimes i \\ 2 & f \otimes i + i \otimes g + \pi_1 \cdot i \otimes i \\ 3 & f^2 \otimes i + f \otimes g + i \otimes g^2 + \pi_2 \cdot (f \otimes i + i \otimes g) + \pi_1 \cdot i \otimes i. \end{array} \end{array}$$

A verification using (18) leads to

$$(f \otimes i) \circ F_{f,g} = F_{f,g} \circ (f \otimes i) = F_{f,g} \circ (i \otimes g) = (i \otimes g) \circ F_{f,g}.$$
(20)

Now writing

$$A \star B \coloneqq F_{f,g}(A \otimes B), \tag{21}$$

and respectively

$$f * g: A * B \to A * B, \quad (f * g)(x) := (f \otimes i)(x), \tag{21'}$$

we obtain a π -pair (A * B, f * g)

This construction (and a more general set up) will be discussed elsewhere (cf. [2]).

5. The classical case

Suppose now $R = \mathbb{Z}$ and consider the case m = n = 2. Start with an integer Δ and let \mathbb{Z}_{Δ} be the set of matrices $F \in Mat(2; \mathbb{Z})$ satisfying

trace F = 0 and det $F = -\Delta$.

Hence $F^2 = \Delta \cdot I$ follows and (\mathbb{Z}^2, F) is a Δ -pair. Let $M{\{\Delta\}}$ denote the subset of $\mathbb{Z}{\{\Delta\}}$ consisting of the equivalence classes

 $\mathfrak{a} = \langle F \rangle := \langle \mathbb{Z}^2, F \rangle,$

where $F \in \mathbb{Z}_{\Delta}$. Recall that $\langle (F) \rangle$ depends only on the conjugacy class over \mathbb{Z} of F.

PROPOSITION.

 $M{\Delta}$ is a monoid under the composition $(a, b) \mapsto a * b$.

Proof. Put $a = \langle F \rangle$ resp. $b = \langle G \rangle$ and consider the Z-module $C_{F,G}$ according to (14). Hence $C_{F,G}$ is a free Z-module and $C_{F,G} \otimes \mathbb{C}$ has rank 2 over \mathbb{C} in view of Proposition 3. Therefore the Z-module $C_{F,G}$ has rank 2, too, and a * b belongs to $M\{\Delta\}$. Clearly, the unit element $e = \langle E \rangle$ (cf. (15)) belongs to $M\{\Delta\}$.

186 Max Koecher

Suppose that Δ is not a square in \mathbb{Z} , put $\Theta := \sqrt{\Delta}$ and consider the ring $\mathbb{Z}[\Theta]$. Let $\mathscr{I} \neq \{0\}$ be an ideal in $\mathbb{Z}[\Theta]$. Then there exists $0 \neq a \in \mathbb{Z}^2$ and $F = F_{\mathscr{I}} \in \mathbb{Z}_{\Delta}$ such that

$$\mathscr{I} = \{a^{t}(F + \Theta I)g; g \in \mathbb{Z}^{2}\}$$
(22)

holds. Note that F is uniquely determined up to conjugation over \mathbb{Z} . Hence a mapping

$$\mathscr{I} \mapsto \langle F_{\mathscr{I}} \rangle \tag{23}$$

of the ideals of $\mathbb{Z}[\Theta]$ into $M\{\Delta\}$ is well-defined. But F_{φ} depends only on the ideal class $\langle \mathscr{I} \rangle$ of \mathscr{I} and consequently the mapping (23) induces a mapping ψ of the set $C(\Delta)$ of ideal classes of $\mathbb{Z}[\Theta]$ into $M\{\Delta\}$, which is bijective according to a classical result of **R** Dedekind (cf. [1], § 187).

Clearly, the product $\mathscr{I}_1\mathscr{I}_2$ of two ideals $\mathscr{I}_1, \mathscr{I}_2$ of $\mathbb{Z}[\Theta]$ induces a product $\langle \mathscr{I}_1 \rangle \langle \mathscr{I}_2 \rangle \coloneqq \langle \mathscr{I}_1 \mathscr{I}_2 \rangle$ of the corresponding ideal classes. Hence $C(\Delta)$ is a commutative monoid.

Lemma. The mapping $\psi: C(\Delta) \rightarrow M^{1}_{1}\Delta^{1}_{1}$ is an isomorphism.

Proof. Let \mathscr{I}_1 and \mathscr{I}_2 be non-zero ideals of $\mathbb{Z}[\Theta]$. Hence there exist $u, h \in \mathbb{Z}^2 \setminus \{0\}$ and $F, G \in \mathbb{Z}_A$ such that

$$\mathscr{I}_1 = \{a^i(F + \Theta I)g; g \in \mathbb{Z}^2\} \quad \text{resp.} \quad \mathscr{I}_2 = \{b^i(G + \Theta I)h; h \in \mathbb{Z}^2\}$$

in view of (22). The elements of $\mathcal{I}_1 \mathcal{I}_2$ are spanned by elements of the form

$$a'(F + \Theta I)gh'(G' + \Theta I)b$$
, where $g, h \in \mathbb{Z}^2$,

hence equal

$$a^{t}X_{M}b$$
, where $X_{M} := (F + \Theta I)M(G^{t} + \Theta I)$

and where $M \in Mat(2; \mathbb{Z})$. But one has

$$X_{M} = (FMG^{t} + \Delta M) + \Theta(FM + MG^{t}) = (F + \Theta I)Y_{M},$$

where $Y_M := FM + MG^t$ holds. The use of (14) leads to

$$\mathscr{I}_1 \mathscr{I}_2 = \{ a^t(h(Y) + \Theta Y)b; Y \in C_{F,G'} \},\$$

where $\langle C_{F,G}, h \rangle = \langle F \rangle * \langle G \rangle$. Now choose a basis of $C_{F,G}$ and compute

$$\mathscr{I}_1 \mathscr{I}_2 = \{ c^t (H + \Theta I) g; g \in \mathbb{Z}^2 \}$$

for some $c \in \mathbb{Z}^2$ and $H \in Mat(2; \mathbb{Z})$ such that $\langle C_{E,G}, h \rangle = \langle H \rangle$. \Box

Note that $C(\Delta)$ and hence $M{\{\Delta\}}$ in general fail to be groups, because $\mathbb{Z}[\Theta]$ in general fails to be the maximal order of the quadratic field $\mathbb{Q}[\Theta]$. However, $M{\{\Delta\}}$ acts on $\mathbb{Z}{\{\Delta\}}$ in view of Lemma 2.

In addition, using the map

$$S \mapsto JS$$
, where $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,

from the set of symmetric 2×2 matrices over \mathbb{Z} of determinant- Δ onto \mathbb{Z}_{Δ} the composition of integral binary quadratic forms in the sense of C F Gauss is mapped onto the product in $M{\{\Delta\}}$.

6. The \mathbb{Z} -module $D_{F,G}$

Suppose that the integer Δ is not a square. Given $F \in Mat(m; \mathbb{Z})$ resp. $G \in Mat(n; \mathbb{Z})$ satisfying

$$F^2 = \Delta \cdot I$$
 resp. $G^2 = \Delta \cdot I$,

consider the \mathbb{Z} -modules $C_{F,G}$ (cf. (14)) and

$$D_{F,G} = \{N \in \operatorname{Mat}(m, n; \mathbb{Z}); FN = NG'\}.$$
(24)

Hence

$$C_{F,G} \subset D_{F,G} \tag{25}$$

holds according to (14').

PROPOSITION.

The \mathbb{Z} -modules $C_{F,G}$ and $D_{F,G}$ have the same rank.

Proof. Since $C := C_{F,G}$ and $D := D_{F,G}$ are free \mathbb{Z} -modules, it suffices to prove that the \mathbb{C} -ranks of $\mathbb{C} \otimes C$ and $\mathbb{C} \otimes D$ coincide. Without restriction assume $F \sim F_{p,q}$ resp. $G \sim F_{r,s}$, where $F_{p,q}$ is given by (16). Hence a computation leads to $\mathbb{C} \otimes C = \mathbb{C} \otimes D$.

COROLLARY.

The index $i_{F,G}$ of $C_{F,G}$ in $D_{F,G}$ is finite.

Now consider a matrix

$$H := \begin{pmatrix} F & N \\ 0 & -G^t \end{pmatrix},\tag{26}$$

where $N \in Mat(m, n; \mathbb{Z})$. A computation leads to

$$N \in D_{F,G} \Leftrightarrow H^2 = \Delta \cdot I \tag{27}$$

and to

$$\begin{pmatrix} I & M \\ 0 & I \end{pmatrix} H \begin{pmatrix} I & -M \\ 0 & I \end{pmatrix} = \begin{pmatrix} F & N - (FM + MG^{t}) \\ 0 & -G^{t} \end{pmatrix}.$$
 (28)

Lemma. The number of conjugacy classes of matrices (26) satisfying $H^2 = \Delta \cdot I$ does not exceed $i_{F,G}$.

Proof. The matrices N in (26) can be reduced modulo $C_{F,G}$ according to (28).

This result can be extended to arbitrary matrices $M \in Mat(m; \mathbb{Z})$ satisfying $M^2 = \Delta \cdot I$, because M is conjugate to a matrix of the form

where m = 2n and where all F_i 's belong to \mathbb{Z}_{Δ} and where all F_{ij} 's belong to $Mat(2; \mathbb{Z})$ according to Theorem III.12 in [3]. Since $F_{ij} \in D_{F,G}$ holds, where $F := F_i$ and $G := -F_j^i$, the matrices F_{ij} can be reduced modulo $C_{F,G}$. In particular, suppose that $C_{F,G} = D_{F,G}$ holds for all $F, G \in \mathbb{Z}_{\Delta}$. Then every $M \in Mat(m; \mathbb{Z})$ satisfying $M^2 = \Delta \cdot I$ is over \mathbb{Z} conjugate to a block diagonal matrix with diagonal blocks from \mathbb{Z}_{Δ} .

Given $F, G \in \mathbb{Z}_{\Delta}$,

$$F = \begin{pmatrix} f_1 & f_2 \\ f_3 & -f_1 \end{pmatrix}, \quad G = \begin{pmatrix} g_1 & g_2 \\ g_3 & -g_1 \end{pmatrix},$$

let

$$e_{F,G} \coloneqq gcd(f_1 + g_1, f_1 - g_1, f_2, g_2, f_3, g_3).$$

Without proof we mention that

 $C_{F,G} = e_{F,G} \cdot D_{F,G}$

holds. In particular, $e_{F,G} = 1$ for $F, G \in \mathbb{Z}_{\Delta}$, whenever Δ is square free and $\Delta \not\equiv 1 \pmod{4}$.

References

[1] Dirichlet P G L and Dedekind R, Vorlesungen über Zahlentheorie, Vieweg (1894)

[2] Koecher M, On endomorphisms satisfying a given polynomial identity (to appear)

[3] Newman M, Integral matrices (New York: Academic Press) (1972)