Association of GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms with clinical response to imatinib mesylate treatment among Malaysian chronic myeloid leukaemia patients

SITI MAZIRAS MAKHTAR1, AZLAN HUSIN2, ABDUL AZIZ BABA3 and RA VINDRAN ANKATHIL1*

1Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
2Haemato-Oncology Unit and Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
3International Medical University, No. 126, Jalan Jalil Perkasa 19, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
*For correspondence. E-mail: rankathil@hotmail.com.

Received 7 December 2016; revised 4 January 2017; accepted 10 January 2017; published online 28 August 2017

Abstract. The detoxifying activity of glutathione S-transferases (GST) enzymes not only protect cells from the adverse effects of xenobiotics, but also alters the effectiveness of drugs in cancer cells, resulting in toxicity or drug resistance. In this study, we aimed to evaluate the association of GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms with treatment response among Malaysian chronic myeloid leukaemia (CML) patients who everyday undergo 400 mg of imatinib mesylate (IM) therapy. Multiplex polymerase chain reaction (multiplex-PCR) was performed to detect GSTM1 and GSTT1 polymorphisms simultaneously and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was conducted to detect the GSTP1 Ile195Val polymorphism. On evaluating the association of the variant genotype with treatment outcome, heterozygous variant (AG) and homozygous variant (GG) of GSTP1 Ile105Val showed significantly a higher risk for the development of resistance to IM with OR: 1.951 (95% CI: 1.186–3.209, \(P = 0.009 \)) and OR: 3.540 (95% CI: 1.305–9.606, \(P = 0.013 \)), respectively. Likewise, GSTT1 null genotype was also associated with a significantly higher risk for the development of resistance to IM with OR: 1.664 (95% CI: 1.011–2.739, \(P = 0.045 \)). Our results indicate the potential usefulness of GST polymorphism genotyping in predicting the IM treatment response among CML patients.

Keywords. GSTM1; GSTT1; GSTP1; chronic myeloid leukaemia; imatinib mesylate; single-nucleotide polymorphism.

Introduction

Chronic myeloid leukaemia (CML) accounts for 20% of all cases of leukaemia (Baccarani et al. 2015). This clonal myeloproliferative disorder (Karkucak et al. 2012) is characterized by the increased levels of leukocytes, splenomegaly, myeloid hyperplasia in bone marrow and also increased levels of mature myeloid cells in peripheral blood (Sawyers 1999; Kabarowski and Witte 2000; O’Dwyer et al. 2002). In CML, a breakpoint cluster region-Abelson (BCR-ABL) oncogene with markedly increased tyrosine kinase activity is generated from the Philadelphia (Ph) chromosome translocation t(9;22)(q34;q11). An increasing knowledge and advancement of technology in understanding the abnormal activity of the BCR-ABL protein had led to the designing and emergence of targeted therapies such as tyrosine kinase inhibitors (TKIs) for Ph chromosome positive CML. Imatinib mesylate (IM) is the first used molecularly targeted TKI drug (Druker et al. 1996) and still remains the gold standard for CML treatment. Despite having shown to produce superior results, up to 33% of CML patients develop resistance to IM. Apart from mutations and amplifications of the BCR-ABL gene, also pharmacokinetic variability accounts for development of drug resistance among patients. It is now becoming increasingly clear that variations in genes involved in transport, binding and metabolism of IM affect the pharmacokinetics of drugs and may be important determinants of pharmacokinetic variability.
The xenobiotic metabolizing enzymes play an important role in the metabolism of drugs including chemotherapeutic drugs. Many of these enzymes are genetically polymorphic. Polymorphisms in genes encoding drug metabolizing enzymes can vary in their enzymatic activity and can play an important role in pharmacokinetic variability, potentially modifying treatment response and resistance or drug-related toxicity (Weinshilboum 2003). Glutathione S-transferases (GSTs) are one of the phase II drug metabolizing enzymes super family, which are ubiquitous, multifunctional and play an important role in cellular detoxification, and also in protecting macromolecules from being attacked by the reactive electrophiles (Strange et al. 2001). Of the eight classes of GSTs, the most commonly studied genes are GSTM, GSTT and GSTP and several types of allelic variations are identified in them. Polymorphisms occurring within these genes are associated with an increased risk of cancer and diverse response to treatment (Zmorzyński et al. 2015).

GSTμ (GSTM) subfamily coded by 100-kb gene cluster is located on chromosome 1p13.3 and arranged in the order of 5′-GSTM4-GSTM2-GSTM1-GSTM5-GSTM3-3′ (Pearson et al. 1993; Landi 2000). GSTM1 consists of eight exons, size range from 36 to 112 bp, whereas introns vary from 87 to 2641 bp (Parl 2005). GSTM1 is embedded and flanked in between two identical 4.2 kb regions with extensive homologies. GSTM1 null allele emerges by homologous recombination of 4.2 kb repeats on right and left of GSTM1 gene, resulting in deletion of 16 kb region containing whole sequence of GSTM1. Deletion commonly involves both the alleles resulting in GSTM1−/− and can be technically assessed by PCR assay which will be characterized as null genotype or GSTM1−/− when PCR product is absent.

There are two genes (GSTT1 and GSTT2) existing in theta-class GST gene cluster (GSTθ) subfamily, separated by about 50 kb, located on chromosome 22q11.2 (Coggan et al. 1998; Whittington et al. 1999; Landi 2000). The GSTT1 has five exons with size range from 88 to 195 bp and introns with size range from 205 to 2363 bp (Parl 2005). The GSTT1 is present in a region between two 18 kb extensive homology, which has more than 90% homologies called HA3 and HA5. HA3 and HA5 share 100% identity of 403-bp sequence. Null deletion of GSTT1 emerges from the homologous recombination of 403 bp repeats on the left and right of GSTT1, which result in 54-kb deletion of whole sequence of GSTT1. This null deletion involves only GSTT1 and does not include GSTT2 (Coggan et al. 1998).

Glutathione S-transferase P1 (GSTP1) which belongs to the pi (π) class gene family, is located on chromosome 11q13 (Autrup 2000), spans ∼2.48 kb and consists of seven exons (Morrow et al. 1989; Bora et al. 1997). Two polymorphisms are reported and identified in this gene. The first one is A–G polymorphism in exon 5 at nucleotide 313. This polymorphism leads to substitution of amino acid isoleucine (Ile) by valine (Val) at amino acid position 105 (Ile105Val) (Ali-Osman et al. 1997; Watson et al. 1998; Sailaja et al. 2010). The other polymorphism of this gene is C–T transition at nucleotide 341, which leads to amino acid substitution of alanine by valine at codon 114 in exon 6 (Ala114Val) (Ali-Osman et al. 1997; Hayes et al. 2005; McIlwain et al. 2006).

Genetic variations may result in a decreased intracellular enzyme concentration, a dysfunctional protein and may also alter the structure of enzyme, which later leads to changes in the function of the enzyme. Therefore, polymorphisms that decrease the activity of GSTs are associated with an increased risk of cancer development and may also be associated with the phenomenon of drug resistance (Traverso et al. 2013). It was hypothesized that polymorphisms in GSTM1, GSTT1 and GSTP1 may be involved in variation of IM metabolism and thus, contributing to interindividual variation of IM response in CML patients. The current study was designed to test the above hypothesis.

Materials and methods

Subject recruitment

In the present study, 278 CML patients (including 132 IM good responders and 146 IM resistant) were successfully recruited from few hospitals in Malaysia which includes Hospital Universiti Sains Malaysia (HUSM), Universiti Kebangsaan Malaysia Medical Centre (PPUKM), Sime Darby Medical Centre, Hospital Raja Perempuan Zainab II (HRPZII) Kota Bharu, Hospital Pulau Pinang, Penang, Hospital Raja Permaisuri Bainun, Ipoh and Hospital Umum Sarawak (HUS) and Miri. Only Philadelphia (Ph) chromosome positive CML patients who were treated with 400 mg IM for at least 12 months and were negative for BCR-ABL mutation and amplification were recruited. This study was initiated after getting ethical approval from Research and Ethics Committee of Universiti Sains Malaysia (ethical numbers USMKK/PPP/JEPeM [244.3.(4)] and USMKK/PPP/JEPeM [264.3.(8)]) and Ministry of Health Malaysia (NMRR-10-1207-7183).

Multiplex-PCR analysis for detection of GSTM1 and GSTT1 null deletion

Three millilitres of peripheral blood was collected from study subjects (CML patients) after getting their written informed consent. Genomic DNA was extracted using commercialized kit, QIAGEN QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany), followed by amplification of targeted gene. Multiplex polymerase chain reaction (multiple-PCR) was used for the detection of null allele in both GSTM1 and GSTT1 simultaneously. Three pairs of primers were used simultaneously in which β-globin served as a control (table 1). PCR mixture was prepared

...
PCR products of all samples were cut using 2% agarose gel to check the success of amplification. With an incubation period for 1 h at 55°C and detection of GSTP1 polymorphism (PCR-RFLP) was used in amplification. Polymerase chain reaction-restriction fragment length polymorphism of GSTP1 polymorphism (Ile105Val) in total volume of 20 μL including 2× HotStarTaq Plus Master Mix, 0.1 μM of each forward and reverse primers for GSTM1, GSTT1 and beta-globin, RNase-free water and DNA template. Conditions used for multiplex-PCR were initial denaturation at 95°C for 5 min, followed by 30 cycles of the following steps: denaturation at 94°C for 1 min, annealing at 55.5°C for 1 min and extension at 72°C for 10 min. To determine the success of PCR analysis, 3% agarose gel was used. Null deletion was detected when no band appeared at specific region.

Genotyping of GSTP1 polymorphism (Ile105Val)

Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used in amplification and detection of GSTP1 polymorphism. One set of primers were used to amplify 433 bp targeted gene which were 5′-GTAGTTTGCCCAGGTCAAG-3′ (forward) and 5′-AGCCACCTGAGGGGTAAG-3′ (reverse). PCR mixture was prepared in a total of 25 μL which consisted of 1× PCR buffer, 1 μM of MgCl2, 0.22 μM of dNTPs, 0.4 μM of each primers, 1 U of GoTaq DNA polymerase and deionized water. PCR cycles consisted of an initial denaturation at 95°C for 2 min, followed by 30 cycles of 3 steps: denaturation at 94°C, annealing at 57°C and extension at 72°C for 45 s each respectively, and final extension at 72°C for 10 min. PCR product was electrophoresed on 2% agarose gel to check the success of amplification. PCR products of all samples were cut using BsmBI enzyme with incubation period for 1 h at 55°C. The outcome of RFLP analysis was observed in presence of three different band sizes 433, 327 and 106 bp on 3% agarose gel. A homozygous wild type produced only one band at 433 bp, a heterozygous variant produced three bands at 433, 327 and 106 bp and a homozygous variant produced two bands at 327 and 106 bp.

Following the genotyping, a few samples from each of different genotype category were randomly selected for direct sequencing to confirm that the designed primers amplified the correct targeted sequence of the candidate gene. Samples were sent to the commercial company, First BASE Laboratories Sendirian Berhad (Kuala Lumpur, Malaysia).

Results

In this study, we successfully recruited 278 CML patients (132 IM good responders and 146 IM resistant) who were undergoing imatinib mesylate treatment. Multiplex-PCR was able to successfully amplify the three pairs of primers for detection of null (deletion) genotypes of GSTM1 and GSTT1 (figure 1). PCR-RFLP performed using BsmBI enzyme correctly cut the targeted region on sequence of GSTP1 as shown in figure 2.

The distribution of genotype frequencies of the SNPs studied among the two groups of CML patients are provided in table 2. Frequency of GSTM1 wild-type genotype was higher in good response group as compared to resistant group, whereas null genotype was higher in resistant group as compared to response group, but was not statistically significant. GSTT1 wild type was significantly higher in good response as compared to resistant group. In contrast, null genotype of GSTT1 was significantly higher in resistant group as compared to response group. For GSTP1, our results showed that AA (Ile) genotype was significantly higher in IM good responders as compared to IM resistant CML patients (58.3% versus 39.7%; P = 0.002). However, heterozygous variant (AG) and homozygous variant (GG) genotypes were significantly higher, 49.3 and 11.0% in IM resistant CML patients, respectively, as compared to the IM good responders, which were 37.1 and 4.6%, respectively.

The results on the association of polymorphic genotypes with IM response are provided in table 2. Although,
Figure 1. Gel electrophoresis picture showing multiplex-PCR analysis of \textit{GSTT1} and \textit{GSTM1}. Lane 1 represents 100 bp ladder. Lanes 2 and 3 show only one band present at 260 bp (represent deletion of \textit{GSTT1} and \textit{GSTM1}). Lane 4 shows two bands present at 260 bp for β-globin and 219 bp for \textit{GSTM1} (indicates deletion of \textit{GSTT1}). Lanes 5 and 7 show presence of three bands at 459 (\textit{GSTT1}), 260 (β-globin) and 219 bp (\textit{GSTM1}), representing presence of both genes. Lane 6 shows presence of two bands at 459 (\textit{GSTT1}) and 260 bp (β-globin) indicating deletion of \textit{GSTM1}.

Figure 2. Gel electrophoresis picture showing RFLP analysis of \textit{GSTP1}. Lane 1 represents 100 bp ladder. Lanes 2 and 3 show homozygous wild type (AA); lanes 4, 6, 8 and 9 show heterozygous variant (AG) and lanes 5 and 7 show homozygous variant (GG).

Table 2. Genotype frequencies and risk association of \textit{GSTM1}, \textit{GSTT1} and \textit{GSTP1} Ile105Val polymorphism with IM response in CML patients.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Resistance ($n = 146$) (%)</th>
<th>Good response ($n = 132$) (%)</th>
<th>P *</th>
<th>OR</th>
<th>95% CI</th>
<th>P #</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{GSTM1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>57 (39.0)</td>
<td>45 (34.1)</td>
<td>0.392</td>
<td>1.000</td>
<td>Reference</td>
<td>–</td>
</tr>
<tr>
<td>Null</td>
<td>89 (61.0)</td>
<td>87 (65.9)</td>
<td>0.808</td>
<td>0.495–1.318</td>
<td>0.393</td>
<td></td>
</tr>
<tr>
<td>\textit{GSTT1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>86 (58.9)</td>
<td>93 (70.5)</td>
<td>0.044</td>
<td>1.000</td>
<td>Reference</td>
<td>–</td>
</tr>
<tr>
<td>Null</td>
<td>60 (41.1)</td>
<td>39 (29.5)</td>
<td>1.664</td>
<td>1.011–2.739</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>\textit{GSTP1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile/Ile</td>
<td>58 (39.7)</td>
<td>77 (58.3)</td>
<td>0.002</td>
<td>1.000</td>
<td>Reference</td>
<td>–</td>
</tr>
<tr>
<td>Ile/Val</td>
<td>72 (49.3)</td>
<td>49 (37.1)</td>
<td>0.041</td>
<td>1.951</td>
<td>1.186–3.209</td>
<td>0.009</td>
</tr>
<tr>
<td>Val/Val</td>
<td>16 (11.0)</td>
<td>6 (4.6)</td>
<td>0.048</td>
<td>3.540</td>
<td>1.305–9.606</td>
<td>0.013</td>
</tr>
</tbody>
</table>

P value < 0.005 (statistically significant) are in bold; OR, odds ratio; CI, confidence interval; # simple logistic regression.

\textit{GSTM1} null genotype showed lower risk for the development of IM resistance, it was statistically not significant (OR: 0.808, 95% CI: 0.495–1.318, $P = 0.393$). On the contrary, \textit{GSTT1} showed significantly higher risk for development of IM resistance with OR value 1.664 (95% CI: 1.011–2.739, $P = 0.045$). Regarding the association of \textit{GSTP1} Ile105Val with development of resistance to IM, heterozygous variant showed 1.951-fold higher risk for resistance development (95% CI: 1.186–3.209, $P = 0.009$) and homozygous variant showed 3.540-fold higher risk for
development of resistance to IM (95% CI: 1.305–9.606, \(P = 0.013 \)).

Polymorphisms which did not show a significant association with IM response when acting individually, an association could still be possible when the genotypes of these different polymorphisms are combined. Thus, we investigated the combination of \(GSTM1 \) versus \(GSTT1 \), \(GSTM1 \) versus \(GSTP1 \) and \(GSTT1 \) versus \(GSTP1 \) and their association with IM response and the results are presented in Table 3. Combination of both \(GSTM1 \) and \(GSTT1 \) deleted genes (\(GSTM1 \) and \(GSTT1 \) null genotypes) and combination of \(GSTM1 \) present and \(GSTT1 \) null genotypes showed higher OR values indicating higher risk for development of IM resistance, but the values were statistically not significant (\(P = 0.419 \) and 0.277). Similarly, combination of null \(GSTT1 \) versus \(GSTP1 \) Ile/Val and null \(GSTT1 \) versus \(GSTP1 \) Val/Val showed significantly higher OR value (OR values of 4.126 and 5.803), which represent higher risk for IM resistance development for carriers of these combination genotypes. In contrast, combination of null \(GSTM1 \) versus \(GSTP1 \) Ile/Val showed lower OR value, thereby indicating a protective role in IM resistance development for carriers of such genotype combinations.

Discussion

Drug metabolizing enzymes are involved in the activation and/or detoxification of cytotoxic drugs. Genetic variation in genes encoding the drug metabolizing enzymes could explain interpatient variability in drug response, and could be crucial and basal determinants for treatment response assessment. Polymorphisms can result in lack of enzymatic activity and reduced detoxification role for GSTs. Few studies have reported associations of GST polymorphisms with the efficacy and toxicity of cancer chemotherapy and have also been implicated in resistance to some anticancer drugs (Tew 1994; Hayes and Strange 1995; Ban et al. 1996).

However, reports on the association of polymorphisms in GSTs with response to IM are limited. To the best of our knowledge, this is the first study to determine the association of genetic variations in \(GSTP1 \), null deletion in both \(GSTM1 \) and \(GSTT1 \) with clinical response to IM in CML patients from Malaysia.

The present study evaluated the association of genetic variation in \(GSTM1 \) and \(GSTT1 \) with IM treatment outcome. Both \(GSTM1 \) and \(GSTT1 \) showed higher frequency of wild-type genotype in IM response group, whereas the frequency of null genotype was higher among IM resistant group of CML patients. However, the difference in frequency of \(GSTM1 \) was statistically not significant between the two groups, whereas \(GSTT1 \) frequency showed significant difference between the two groups (IM resistant group and IM good response group). Regarding the susceptibility to IM failure, \(GSTT1 \) null deletion genotype showed 1.6-fold higher risk in development of resistance to IM. This result was concurrent with a study by Ovsepyan et al. (2014) among Russian CML patients. Ovsepyan et al. (2014) found that carriers of null deletion of \(GSTT1 \) genotype showed 3.3-fold higher risk in failure of achieving cytogenetic response with 95% CI: 0.7–14.47 with \(P = 0.013 \).

The risk of IM treatment failure for those with combined carriernship of deletion of \(GSTT1 \) and \(GSTM1 \) was also

Table 3. Risk association of combined genotype of \(GSTM1 \), \(GSTT1 \) and \(GSTP1 \) polymorphisms with IM response in CML patients.

<table>
<thead>
<tr>
<th>Combined genotypes</th>
<th>Resistance ((n = 146)) (%)</th>
<th>Good response ((n = 132)) (%)</th>
<th>OR</th>
<th>95% CI</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(GSTM1) (GSTT1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present Present</td>
<td>36 (24.7)</td>
<td>33 (25.0)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Null Null</td>
<td>39 (26.7)</td>
<td>27 (20.5)</td>
<td>1.324</td>
<td>0.670–2.616</td>
<td>0.419</td>
</tr>
<tr>
<td>Present Null</td>
<td>21 (14.4)</td>
<td>12 (9.1)</td>
<td>1.604</td>
<td>0.684–3.761</td>
<td>0.277</td>
</tr>
<tr>
<td>Null Present</td>
<td>50 (34.2)</td>
<td>60 (45.4)</td>
<td>0.764</td>
<td>0.418–1.396</td>
<td>0.382</td>
</tr>
<tr>
<td>(GSTM1) (GSTP1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1(+/+) Ile/Ile</td>
<td>28 (19.2)</td>
<td>23 (17.4)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>M1(+/+) Ile/Val</td>
<td>23 (15.8)</td>
<td>17 (12.9)</td>
<td>1.111</td>
<td>0.482–2.561</td>
<td>0.804</td>
</tr>
<tr>
<td>M1(+/-) Val/Val</td>
<td>6 (4.1)</td>
<td>5 (3.8)</td>
<td>0.986</td>
<td>0.266–3.649</td>
<td>0.983</td>
</tr>
<tr>
<td>M1(--/+) Ile/Ile</td>
<td>29 (19.9)</td>
<td>53 (40.1)</td>
<td>0.449</td>
<td>0.220–0.917</td>
<td>0.028*</td>
</tr>
<tr>
<td>M1(--/+) Ile/Val</td>
<td>50 (34.2)</td>
<td>33 (25.0)</td>
<td>1.245</td>
<td>0.615–2.520</td>
<td>0.543</td>
</tr>
<tr>
<td>M1(--/-) Val/Val</td>
<td>10 (6.8)</td>
<td>1 (0.8)</td>
<td>8.214</td>
<td>0.978–69.007</td>
<td>0.052</td>
</tr>
<tr>
<td>(GSTT1) (GSTP1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1(+/+) Ile/Ile</td>
<td>49 (37.1)</td>
<td>38 (26.0)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T1(+/+) Ile/Val</td>
<td>40 (30.3)</td>
<td>40 (27.4)</td>
<td>1.289</td>
<td>0.701–2.372</td>
<td>0.414</td>
</tr>
<tr>
<td>T1(+/-) Val/Val</td>
<td>4 (3.0)</td>
<td>7 (4.8)</td>
<td>2.257</td>
<td>0.615–8.276</td>
<td>0.220</td>
</tr>
<tr>
<td>T1(--/+) Ile/Ile</td>
<td>27 (20.5)</td>
<td>20 (13.7)</td>
<td>0.955</td>
<td>0.466–1.956</td>
<td>0.900</td>
</tr>
<tr>
<td>T1(--/-) Ile/Val</td>
<td>10 (7.6)</td>
<td>32 (21.9)</td>
<td>4.126</td>
<td>1.805–9.433</td>
<td>0.001*</td>
</tr>
<tr>
<td>T1(--/-) Val/Val</td>
<td>2 (1.5)</td>
<td>9 (6.2)</td>
<td>5.803</td>
<td>1.184–28.445</td>
<td>0.030*</td>
</tr>
</tbody>
</table>

\(P > 0.05 \) (statistically not significant); OR, odds ratio; CI, confidence interval.

* \(P \) value < 0.005 (statistically significant) and are in bold.
evaluated. Our study found that carriers of null genotypes of both GSTT1 and GSTM1 were higher in IM resistant group as compared to those with good response group, with higher OR values although statistically not significant. This result was concurrent with the result reported by Ovsepyan et al. (2014). In the present study, lack of statistical significance may be attributed to the small sample size. According to Ovsepyan et al. (2014), the high risk in failure of high cytogenetic response (HCR) after 12 months of imatinib therapy among carriers of GSTM1 and GSTT1 null deletion genotypes could be due to higher incidence in mutations of tumour cells because of less deactivation of exogenous and endogenous genotoxicants, which then lead to promoting the emergence of resistant clones insensitive to imatinib therapy in a daily dose of 400 mg (Ovsepyan et al. 2014). Thus, combined carriership of null deletion of GSTM1 and GSTT1 has been implicated as a risk factor for CML progression which then leads to failure of imatinib therapy. This result also highlights the probable significance of gene–gene interactions for the risk of CML progression.

In this present study, frequency of heterozygous variant (AG) of GSTP1 was significantly higher in IM resistant group as compared to the IM good response group with P value = 0.041. In addition, homozygous variant (GG) also showed elevation in frequency of IM resistant group as compared to the IM good response group with P value = 0.048. We also evaluated the association of genotype pattern of GSTP1 Ile105Val with response to imatinib mesylate and found that carriage of heterozygous variant and homozygous variant genotypes were associated with higher risk for development of resistance towards IM with OR 1.951 (95% CI: 1.186–3.209, $P = 0.009$) and OR 3.540 (95% CI: 1.305–9.606, $P = 0.013$), respectively. Among Indian CML patients, Sailaja et al. (2010) also had shown results in response to IM in terms of haematological response which indicated elevation in frequency of combined genotypes in cytogenetic poor (41.6%) and minor (53.7%) responders as compared to major (38.5%) responders. Sailaja et al. (2010) suggested that GSTP1 Ile105Val polymorphism with reduced GSTP1 enzyme activity might induce abundance of intermediate metabolites in the body and initiate additional mutation which delays response rates towards treatment and also favours disease progression.

In addition, we also determined the risk of IM treatment failure for combination of GSTP1 Ile105Val genotype with GSTM1 deletion, as well as GSTT1 deletion to strengthen the finding of this study. In the GSTM1 null and GSTP1 genotype combination analysis, the GSTM1 null / GSTP1 Ile105Ile genotypes combination showed significant lower risk for development of resistance to IM with P value of 0.028. However, when association of combination genotype of GSTT1 and GSTP1 with IM response was assessed, higher risk to IM resistance development was observed among carriers of GSTT1 null / GSTP1 Ile105Val and GSTT1 null / GSTP1 Val105Val combination genotypes and the associations were statistically significant. We could not compare our data with other reports as no other reports are available on combination genotype analysis. Due to the dual role of activation and detoxification, the specific mechanism through which GSTs modify the response to IM treatment cannot be explained accurately. According to Traverso et al. (2013), GSTs can combine with mitogen-activated protein kinases (MAP/MAPK) (Traverso et al. 2013). As a result of this, apoptosis-inducing MAP kinases are blocked and cannot be activated by compounds with anticancer properties. However, the interplay of genetic and cellular environment factors cannot be underestimated, while exploring the clinical impact of GST in IM therapy and this remains an issue to be explored.

In conclusion, the present study showed that CML patients with carriage of heterozygous and homozygous variant genotypes of GSTP1 Ile105Val and GSTT1 null, have a higher risk for development of resistance to IM. Hence, genetic variation in GST super family genes could be considered as pharmacogenetic markers to predict the treatment outcome for imatinib mesylate among CML patients.

Acknowledgement

This study was supported by USM APEX grant no. 1002/PPSP/910340.

References

