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A Hidden Markov Model (HMM) has been developed for prediction of quantitative snowfall in
Pir-Panjal and Great Himalayan mountain ranges of Indian Himalaya. The model predicts snowfall for
two days in advance using daily recorded nine meteorological variables of past 20 winters from 1992–
2012. There are six observations and six states of the model. The most probable observation and state
sequence has been computed using Forward and Viterbi algorithms, respectively. Baum–Welch algo-
rithm has been used for optimizing the model parameters. The model has been validated for two winters
(2012–2013 and 2013–2014) by computing root mean square error (RMSE), accuracy measures such as
percent correct (PC), critical success index (CSI) and Heidke skill score (HSS). The RMSE of the model
has also been calculated using leave-one-out cross-validation method. Snowfall predicted by the model
during hazardous snowfall events in different parts of the Himalaya matches well with the observed one.
The HSS of the model for all the stations implies that the optimized model has better forecasting skill
than random forecast for both the days. The RMSE of the optimized model has also been found smaller
than the persistence forecast and standard deviation for both the days.

1. Introduction

The Himalayan region, during winter is prone to
severe weather due to large amount of snowfall.
The snowfall occurs during southward excursions
of the subtropical westerly jet (SWJ) (Schiemann
et al. 2009) associated with terrain-locked, low
pressure systems (WDs) at the notch formed by the
Himalayas and the Hindu Kush mountains (Lang
and Barros 2004). Snowfall due to WD is the prin-
cipal source for snow cover evolution and glaciers of
western Himalaya (Dimri et al. 2015). Himalayan
snow cover is feeding source of many major rivers
in the central Asia with drainage basins reaching a
total area of 6.7 × 109 km2, and supplying water to
more than 1.2 billion people (Revenga et al. 2003).

While snowfall is vital for survival of glaciers and
glacier-fed rivers, extreme snowfall give birth to
severe snow avalanches. Snow avalanches toll lives
as well as damage property worth millions every
year in western Himalaya (Gusain et al. 2009).
Therefore, snowfall prediction over Himalaya is of
prime importance for avalanche-hazard mitigation.
Snowfall prediction is also important in hydrol-
ogy, climate change, glaciology and crop models in
agriculture.

Different modelling approaches have been used
over the globe for the prediction of meteorological
variables. General circulation models (GCMs) are
used to simulate large-scale atmospheric circu-
lation patterns and for determining the effect
of changes in the atmosphere on those patterns
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(Zorita et al. 1995). However, the GCMs are not
adequate for reproducing local and regional phe-
nomena, such as precipitation (Rind et al. 1989).
In areas where local topography strongly influences
precipitation pattern, stochastic models are used
to improve the quality of precipitation sequence
(Hay et al. 1991). Stochastic models are statisti-
cal models that aim at quickly simulating realis-
tic random sequences of atmospheric variables such
as temperature, precipitation and wind (Wilks
and Wilby 1999). There are mainly three features
that distinguish stochastic models from numerical
weather prediction models. The stochastic mod-
els focus on small spatial scales, they have to
be computationally fast to provide numerous ran-
dom realizations and their outputs have the same
distributional properties as observed time series.
Because of these reasons, stochastic models have
been adopted in impact studies as computation-
ally inexpensive tools to generate synthetic daily
time series of atmospheric variables at local sites.
Such simulated outputs can be used in any process-
based models, typically, electricity demand models
or crop models (Launay et al. 2009; Kolokotroni
et al. 2012).

In stochastic models, weather states can be
considered as observed or latent depending on the
availability of good descriptors of weather patterns.
The weather states are said to be observed when
they are extracted from external variables such as
descriptors of large scale synoptic climatological
patterns (Bardossy and Plate 1991, 1992; Wilson
et al. 1992). Weather types are considered as latent
variables when they are estimated on local vari-
ables by means of an a priori clustering algorithm
(Flecher et al. 2010), or when they are estimated
as a hidden variable in the statistical model.

The weather generators were first developed for
hydrological application (Gabriel and Neumann
1962; Todorovic and Woolhiser 1975). Rainfall
occurrences at a single site were described by a two-
state Markov chain and their intensities by inde-
pendent exponential or Gamma random variables,
leading to the so-called ‘chain dependent model’
(Katz 1977). In this simple model, weather states
correspond to the states of the Markov chain, i.e.,
to dry and wet states. Richardson (1981) added
the modelling of daily minimum and maximum
temperature and solar radiation to the weather
generator in Katz (1977).

Wilks and Wilby (1999) gave a detailed
presentation of Richardson’s model and its exten-
sions, with a discussion of the advantages and
drawbacks of these models and some application
issues. Srikanthan and McMahon (2001) provided
a quite comprehensive list of models for annual,
monthly and daily climate variables at a single site
together with some remarks on multisite models.

Maraun et al. (2010) and Wilks (2010, 2012)
discussed in detail the strong links between down-
scaling approaches and stochastic models, mainly
focussing on how to make the connection between
circulation patterns and local atmospheric vari-
ables at the daily scale. The linking between
weather types and large scale synoptic atmospheric
patterns has been explored by researchers working
on statistical downscaling (Hughes and Guttorp
1994; Wilks 2012; Haberlandt et al. 2014) and
sea state condition generators (Guanche et al.
2013). Hughes and Guttorp (1994) described a non-
homogeneous hidden Markov model (NHMM) to
relate broad scale atmospheric circulation pattern
to local rainfall. They classified atmospheric pat-
terns into classes that are associated with par-
ticular precipitation pattern based on unobserved
weather states. In a study by Mares et al. (2003),
HMM and NHMM have been used successfully
for prediction of quantitative precipitation during
spring season over Danube Basin.

A few attempts in the past have been made
for numerical as well as statistical prediction of
snowfall over Himalaya during winter. Mohanty
and Dimri (2004) used perfect prognostic method
for probability of precipitation forecasting and
quantitative precipitation forecast over western
Himalayan region. They used forecast variables of
different NWP models as predictor. Dimri et al.
(2008) predicted probability of precipitation and
quantitative precipitation for two days using
k-Nearest Neighbour (k-NN) sampling method.
Singh et al. (2008) used analog method for site-
specific snowfall forecast for northwest Himalaya
with a lead time of three days. Menegoz et al.
(2013) applied a Regional Climate Model (RCM)
to simulate precipitation and snow cover over the
Himalaya. Though this model underestimated pre-
cipitation at the foothills of the Himalaya and
in its eastern part, it provided a first estimation
of liquid and solid precipitation in high altitude
areas, where satellite and rain gauge networks are
not very reliable. Gerlitz et al. (2015) presented
a neural-network based approach to generate spa-
tially high resolution precipitation fields in cen-
tral Asia, covering the Tibetan Plateau and the
adjacent mountain ranges and lowlands. They esti-
mated local-scale precipitation rates as a function
of large-scale atmospheric conditions.

In the present work, the HMM has been
developed for quantitative prediction of snow-
fall in two different mountain ranges of the
Himalaya. In Pir-Panjal range, snowfall has been
predicted for eight locations (Station-1, Station-3
to Station-9) and in Great Himalayan range for
two locations (Station-2 and Station-10). The geo-
graphic location of these stations is shown in figure
1. Historical data of past 20 winters (1992–2012)
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collected at these stations has been used to predict
quantitative snowfall for two days in advance
with a temporal resolution of 12 hrs. The HMM
has been developed using nine meteorological
variables: (i) maximum temperature, (ii) minimum
temperature, (iii) atmospheric pressure, (iv) relative
humidity, (v)wind speed, (vi) wind direction,
(vii) cloud amount, (viii) cloud type and (ix) sun
shine hours. The model output is quantitative
snowfall in one of the six different categories;

Figure 1. Meteorological stations of SASE in Pir-Panjal and
Great Himalayan mountain ranges.

(i) 0, (ii) 1–15, (iii) 16–30, (iv) 31–45, (v) 46–60,
and (vi) >60 cm. The HMM parameters has
been optimized using Baum–Welch algorithm. The
model has been validated using data of two win-
ters (2012–2013 and 2013–2014) by computing root
mean square error (RMSE), percent correct (PC),
critical success index (CSI) and Heidke skill score
(HSS). The RMSE of the model has been compared
with the persistence forecast and standard devi-
ation of snowfall. Leave-one-out cross-validation
method has also been applied to carry out RMSE
analysis of the model.

2. Data and methodology

A homogeneous HMM has been developed for
forecasting of quantitative snowfall at 10 meteoro-
logical stations in Pir-Panjal and Great Himalayan
mountain ranges of Indian Himalaya. At these
stations of Snow and Avalanche Study Estab-
lishment (SASE), snow and meteorological data
are recorded twice daily at 08:30 and 17:30 hrs
since more than last four decades. The dataset
used in the model consists of maximum temper-
ature, minimum temperature, atmospheric pres-
sure, relative humidity, average wind speed, wind
direction, cloud amount, cloud type and sun
shine hours for the winters (November–April)
1992/1993 to 2013/2014. In addition to daily
recorded data, derived data such as deviation of
maximum temperature from the average maxi-
mum temperature, deviation of minimum tem-
perature from the average minimum temperature,
deviation of pressure from the standard atmo-
spheric pressure at the station and deviation of
relative humidity from saturation have also been
used in the model as input. The plots of average
maximum temperature, average minimum tempe-
rature and average snowfall and average snow
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Figure 2. Average weather condition of the Station-6 in Pir-Panjal range of the Himalaya.
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depth of representative Station-6 in Pir-Panjal
range and that of Station-10 in Great Himalayan
ranges for the winters 1992/1993 to 2013/14 are
shown in figures 2 and 3, respectively.
Snow and meteorological data collected at 10

meteorological stations of SASE has been used to
derive the model input data. The model input vari-
ables have been categorized into different ranges
having equal intervals and calculated precipitation
index (PI) for each range of all the variables. The
PI of a range of the variable is the ratio of pre-
cipitation days and total days in that range. The
PI values of different variables have been normal-
ized between 0 and 1 for making them scale invari-
ant. The variables have been attributed to weights
based on correlation of the variables with their PIs.
The square of the correlation has been considered
as the weight of the variable. The weighted sum
of the PIs of all the variables has been grouped
into six categories to define six observations of
the model. The snowfall amount has also been

categorized into six ranges (0, 1–15, 16–30, 31–45,
46–60 and >60 cm) defining six states of the HMM.
The observations and states of the model for dif-
ferent stations are summarized in table 1. The
number of snowfall events in each category of the
snowfall for all the stations are given in table 2.
The average meteorological characteristics of each
state for Station-6 in Pir-Panjal range and Station-
10 in Great Himalayan range of the Himalaya are
given in table 3. The model parameters (initial
state probability, state transition probability and
probability of observations in different states) have
been computed after defining states and observa-
tions of the model. The initial state probability
denoted as πi, represents ratio of the number of
times state i visited and total number of states.
The state transition probability is denoted as Aij

that represents ratio of number of transitions from
state i to state j and total number of transitions
taking place from state i. The probability of obser-
vations in different states is the ratio of number of
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Figure 3. Average weather condition of the Station-10 in Greater-Himalayan range.

Table 1. Ranges of observations and states of HMM for different stations in Indian
Himalaya.

Ranges of states of HMM for snowfall (cm)

S1 (0) S2 (1–15) S3 (16–30) S4 (31–45) S5 (46–60) S6 (>60)

Ranges of observations for different stations in Indian Himalaya

Station O1 O2 O3 O4 O5 O6

Station-1 <0.80 0.80–1.00 1.00–1.30 1.30–1.50 1.50–1.70 >1.70

Station-2 <0.80 0.80–1.00 1.00–1.20 1.20–1.30 1.30–1.40 >1.40

Station-3 <0.40 0.40–0.45 0.45–0.50 0.50–0.55 0.55–0.60 >0.60

Station-4 <0.90 0.90–1.00 1.00–1.10 1.10–1.15 1.15–1.20 >1.20

Station-5 <0.60 0.60–0.65 0.65–0.70 0.70–0.75 0.75–0.80 >0.80

Station-6 <0.65 0.65–0.70 0.70–0.74 0.74–0.78 0.78–0.82 >0.82

Station-7 <0.50 0.50–0.55 0.55–0.60 0.60–0.65 0.65–0.70 >0.70

Station-8 <1.30 1.30–1.40 1.40–1.50 1.50–1.60 1.60–1.70 >1.70

Station-9 <0.95 0.95–1.05 1.05–1.10 1.10–1.15 1.15–1.20 >1.20

Station-10 <0.60 0.60–0.65 0.65–0.70 0.70–0.75 0.75–0.80 >0.80
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observations in state i and total number of
observations. These three sets of probabilities
have been used to compute the most probable
observation as well as state sequence. Sequence
of two observations has been used to predict
the sequence of two states. The most prob-
able observation sequence has been computed
by using Forward algorithm and correspond-
ing most probable state sequence by Viterbi
algorithm. The flow chart of the model develop-
ment is shown in figure 4.

While developing HMM, it is supposed that
the model parameters are good to explain the
model observations, but this is not true every time.
There is a need to adjust the model parameters to
maximize the probability of observation sequence.
This is done through an iterative method called

Baum–Welch algorithm. The forward, Viterbi and
Baum–Welch algorithms have been discussed below.

2.1 Forward algorithm

In the forward algorithm, a forward variable αt(i)
is initialized, which represents probability of initial
observation for the state ‘i’. Initially, the forward
variable is calculated by using initial state proba-
bility ‘πi’ and observation probability bi(Ot) in
that state with ‘t’ representing time. The proba-
bility of observation sequence, P (OtOt+1) can be
calculated inductively in the followingsteps:

Initialization:

αt(i) = πi × bi(Ot), 1 ≤ i ≤ 6 (1)

Table 2. Number of snowfall events in different categories at different stations over
Himalaya.

Number of snowfall events in different categories of snowfall

Category-1 Category-2 Category-3 Category-4 Category-5 Category-6

Station (0 cm) (1–15 cm) (16–30 cm) (31–45 cm) (46–60 cm) (>60 cm)

Station-1 5442 1279 464 248 113 68

Station-2 5849 1500 211 41 11 2

Station-3 5238 1477 503 207 99 90

Station-4 5721 991 434 230 130 108

Station-5 6421 720 225 113 58 77

Station-6 5778 943 339 217 131 206

Station-7 5347 1397 491 219 94 66

Station-8 5886 1085 360 144 81 58

Station-9 5676 1551 278 82 18 9

Station-10 5443 1255 496 221 102 97

Table 3. Average meteorological characteristics in different states at representative stations in Pir-Panjal and Great
Himalaya.

Average meteorological characteristics

Maximum Minimum Atmospheric Relative humidity Cloud

temperature temperature pressure deviation from Average amount Sun shine

State deviation deviation deviation saturation wind speed (okta) hours

Representative station in Pir-Panjal (Station-6)

State-1 5.0 1.8 2.0 36 2.5 4 5.0

State-2 −0.6 2.0 −0.5 13 1.2 6 2.0

State-3 −1.7 2.5 −2.0 8 0.7 7 0.5

State-4 −2.5 3.5 −2.5 5 0.5 8 0.3

State-5 −3 4.0 −4 4 0.6 8 0.0

State-6 −4 4.0 −5 2 0.3 8 0.0

Representative station in Great Himalaya (Station-10)

State-1 5.0 3.0 4.0 40 2.8 4 6.0

State-2 1.0 4.0 0.0 22 1.8 6 2.0

State-3 2.0 7.0 −1.0 20 2.6 7 1.0

State-4 3.0 10.0 −6.0 10 2.5 8 0.0

State-5 3.0 10.0 −6.0 5 3.0 8 0.0

State-6 4.0 12.0 −8.0 2 3.2 8 0.0
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Figure 4. Flow chart of the HMM development for snowfall forecast.

Induction:

αt+1(j)=

[
6∑

i=1

αt(i)×aij

]
× bj(Ot+1), 1≤ j ≤ 6

(2)

Termination:

P (Ot Ot+1) =

6∑
i=1

αt+1(i). (3)

After the most probable observation sequence
has been calculated, most probable state sequence
can be calculated by using Viterbi algorithm as
stated below.

2.2 Viterbi algorithm

This algorithm is similar to that of Forward
algorithm except that it uses maximization rather
than summing over all the possible states and it
keeps track of states in every step to predict most
probable state sequence. A new variable δt(i) has
been introduced that represents highest probabil-
ity along a single path at time t. It accounts for the
first t observations and ends in state i. The most
probable state sequence P (StSt+1) corresponding
to the most probable observation sequence OtOt+1

can be calculated iteratively in the following steps:

Initialization:

δt(i) = πi × bi(Ot), 1 ≤ i ≤ 6. (4)

Induction:

δt+1(j)=Max[δt(i)×aij ]×bj(Ot+1), 1 ≤ j ≤ 6. (5)

Termination:

P (St St+1) = Max[δt+1(j)], 1 ≤ j ≤ 6. (6)

2.3 Baum–Welch algorithm

It is based on both forward and backward
variables. The backward variable βt(i) represents
probability of partial observation sequence from
t+1 to the end, given state i at time t. βt(i)
can be calculated inductively in the following
steps:

Initialization:

Bt(i) = 1, 1 ≤ i ≤ 6 (7)

Induction:

βt(i) =
6∑

j=1

aij × bj(Ot+1)× βt+1(j),

t = T − 1, T − 2, . .., 1, 1 ≤ i ≤ 6. (8)

From the forward and backward variables, two new
variables can be calculated. The first one is ξt(i, j),
the probability of being in state Si at time t, and
state Sj at time t+1, given the model and the
observation sequence, i.e.,

ξt(i, j) = αt(i)× aij × bj(Ot+1)

× βt+1(j)/P (O/λ). (9)

The second one is γt(i), the probability of being in
state Si at time t, given the observation sequence
O, and the model, i.e.,

γt(i) = αt(i)× βt(i)/P (O/λ). (10)
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The variables ξ and γ satisfy the relationship

γt(i) =
∑

ξt(i, j), 1 ≤ j ≤ 6. (11)

Now, if γt(i) is summed over all instants (excluding
instant T ), expected number of times that the state
Si has been visited is obtained. On the other hand,
if ξt(i, j) is summed over all instants (excluding
instant T ), expected number of transitions that
have been made from state i to j is obtained.
From this behaviour of γt(i) and ξt(i, j), the follo-
wing re-estimations of the model parameters could
be deduced:

π′
i = γt(i), (12)

a′
ij =

(∑T−1

t=1 ξt(i, j)
)

(∑T−1

t=1 γt(i)
) (13)

b′j(Ok) =

(∑T

t = 1
Ot=Wk

γt(i)

)
(∑T

t=1 γt(i)
) . (14)

After re-estimations of the model parameters, a
new model λ′ is obtained, which is more likely
than model λ, producing observation sequence
O. This process of re-estimation is continued till
no improvement in the probability of observation
sequence reached.

3. Results and discussion

Hidden Markov Model has been developed for
quantitative snowfall at different stations in Pir-
Panjal and Great Himalayan mountain ranges in
Indian Himalaya. The HMM uses nine input varia-
bles that have been categorized into different
ranges. For each range of all the variables, PI has
been calculated. The PI of a range of a parameter
represents likelihood of precipitation in that range.
The model input variables have been assigned
weights according to their correlation with corres-
ponding precipitation index. The square of the
correlation has been considered as the weight of
the variable. The weighted sum of the PI of the
model input variables have been categorized into
six different ranges to define six observations of the
model. The snowfall amount has been categorized
into six categories to represent six states of the
model (table 1). The probability matrices (initial
state probability, state transition probability, prob-
ability of observations in different states) have
been computed for all the stations to obtain most

probable observation and state sequences. The
initial state probability is the ratio of count of a
state during winter period and total number of
counts of all the states during that period. The
state transition probability is the ratio of number
of state transitions from one state to the other and
total number of transitions from that state. The
probability of an observation in a state is the ratio
of number of that observation and total number of
observations in that state.

The probability matrices as computed from the
database can be modified to achieve best possible
observation sequence. This can be achieved itera-
tively by adjusting the model parameters using
Baum-Welch algorithm. The probability matrices
have been optimized for all the stations to achieve
optimal state sequence. The most probable obser-
vation sequence and corresponding state sequence
have been computed for all the stations with and
without optimization.

The model has been validated using independent
data (not used in the model development) of two
winters (2012–2013 and 2013–2014) by computing
skill scores and other verification measures using
6 × 6 contingency table (Appendix). These scores
are summarized in table 4. The RMSE of the model
with and without optimization has been compared
with the persistence forecast and standard devia-
tion of snowfall for both the days as shown in
figures 5 and 6.
As far as the data used in model validation

is concerned, the critical success index (CSI) is
higher in category-1 as compared to that in other
categories for all the stations implying that the
model can predict snowfall in lower categories bet-
ter than in higher categories for both the days. The
CSI for all the stations in category-1 vary from
0.63 to 0.87 for day-1 and 0.10 to 0.41 for day-
2. The HSS for these stations vary from 0.19 to
0.37 for day-1 and 0.06 to 0.16 for day-2 imply-
ing that the model is superior to the random fore-
cast. The overall performance of the model in
terms of PC with the validation data vary from
60.3 to 79.6% for day-1 and 15.9 to 38.2% for
day-2. All the accuracy measures and skill scores
show that the model performance for these sta-
tions is reasonably good for day-1 and can be used
reliably in other applications such as avalanche
forecasting.

The RMSE of the model computed using data
of two winters reveal that for all stations, RMSE
of the model with optimization has been found
smaller than that without optimization and per-
sistence forecast for both the days. The RMSE
of the model with optimization has been found
<5 cm for Stations 9 and 10, between 5 and 10
cm for Stations 2, 4 and 9 and 10–15 cm for Sta-
tions 1, 3, 5, 6 and 7 for day-1 forecast. For day-2
forecast, it has been found <5 cm for Station 10,



33 Page 8 of 12 J. Earth Syst. Sci. (2017) 126: 33

Table 4. RMSE, accuracy measures and Heidke skill score of optimized model for different stations in Indian Himalaya.

Skill scores of the optimized model for snowfall

CSI CSI CSI CSI CSI CSI RMSE (cm)

Station (Cat-1) (Cat-2) (Cat-3) (Cat-4) (Cat-5) (Cat-6) PC HSS (leave-one-out)

Station-1 Day-1 0.77 0.09 0.06 0.06 0.08 0.20 66.7 0.31 16.0

Day-2 0.15 0.04 0.06 0.06 0.07 0.10 30.1 0.10 16.5

Station-2 Day-1 0.77 0.26 0.12 0.09 0.05 0.10 72.2 0.37 8.9

Day-2 0.10 0.18 0.08 0.10 0.09 0.08 15.9 0.14 9.4

Station-3 Day-1 0.87 0.08 0.09 0.11 0.09 0.10 79.6 0.35 10.0

Day-2 0.35 0.05 0.05 0.10 0.09 0.08 29.9 0.12 12.1

Station-4 Day-1 0.83 0.13 0.12 0.05 0.09 0.06 78.5 0.32 9.9

Day-2 0.23 0.12 0.02 0.05 0.07 0.06 16.3 0.15 10.3

Station-5 Day-1 0.63 0.18 0.11 0.07 0.05 0.09 60.5 0.19 11.8

Day-2 0.19 0.09 0.11 0.08 0.02 0.09 26.2 0.06 12.0

Station-6 Day-1 0.83 0.15 0.11 0.13 0.12 0.18 72.8 0.34 11.3

Day-2 0.41 0.11 0.09 0.08 0.10 0.12 38.2 0.16 13.0

Station-7 Day-1 0.72 0.15 0.09 0.09 0.10 0.10 60.3 0.23 13.5

Day-2 0.15 0.15 0.11 0.06 0.12 0.16 19.5 0.13 16.1

Station-8 Day-1 0.71 0.10 0.09 0.09 0.10 0.14 62.9 0.22 12.6

Day-2 0.26 0.05 0.11 0.06 0.12 0.12 22.2 0.10 12.8

Station-9 Day-1 0.82 0.09 0.10 0.16 0.17 0.10 72.7 0.33 12.3

Day-2 0.30 0.09 0.07 0.08 0.22 0.12 30.6 0.08 12.5

Station-10 Day-1 0.72 0.20 0.10 0.04 0.06 0.08 68.3 0.27 11.3

Day-2 0.40 0.08 0.08 0.05 0.10 0.09 16.6 0.09 12.9
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Figure 5. Forecast validation at different stations in Indian Himalaya for day-1.

5–10 cm for Stations 2, 4 and 8 and 10–15 cm for
Stations 1, 3, 5, 6, 7 and 9 with model optimization.
Thus at 50% stations, the RMSE has been found
<10 cm and between 10 and 15 cm for rest of the
stations for day-1. For day-2, the RMSE has been
found <10 cm for 40% stations and 10–15 cm for
rest of the stations. The RMSE of the model with
optimization has also been found less than the
standard deviation of snow fall.

Leave-one-out cross-validation method has also
been applied to carry out RMSE analysis of the
model. The RMSE computed through this method
vary from station to station from 8.9 to 16 cm for
day-1 and 9.4 to 16.5 for day-2. For 60% stations,
the RMSE lies between 10 and 15 cm for both
the days. 30% of the stations have RMSE lying
between 5 and 10 cm and 10% stations have RMSE
>15 cm. The RMSE calculated through both the
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Figure 6. Forecast validation at different stations in Indian Himalaya for day-2.

methods reveal that there is no significant varia-
tion in the results, thus implying towards stability
and robustness of the model.

3.1 Performance analysis of the model during
hazardous snowfall events over Himalaya

Some of the hazardous avalanche activities due
to excessive snowfall in different parts of Indian
Himalaya have been discussed in this section. The
cumulative snowfall during complete snow storm
period that resulted into an avalanche has been
predicted using the HMM. The observed and pre-
dicted cumulative snowfall during the hazardous
snow storms are summarized in table 5. The analy-
sis of observed and HMM predicted snowfall during
some of the recent hazardous avalanche activities
has been discussed below.

3.1.1 Avalanche hazard in Gulmarg,
J&K, India (8 February 2010)

A western disturbance hit the Indian Himalaya on
5th February, 2010 that caused a total 92 cm snow
fall during 5–8 February, 2010 at Gulmarg. Before
the snowfall started in the region, there was 34 cm
standing snow existing on the ground. The existing
snow faced a number of melt–freeze cycles before it
got buried under new snowfall. At the time of
snowfall, the existing snowpack was loose due to
daytime melting as the snow fall started in the
afternoon. This loose snowpack acted as a weak
layer when got buried under the new snow and trig-
gered avalanche. The avalanche triggered during
snow storm at Khilanmarg (Gulmarg) in J&K,
India at 10:30 hrs on 8th February 2010. There
were a total of 226 victims of this avalanche
accident and 17 lost their lives. Cumulative
snowfall during the snow storm was 92 cm and
standing snow was 215 cm at Gulmarg at the time

of avalanche accident. The HMM predicted 72 cm
cumulative snowfall during the storm from 5 to 8
February 2010.

3.1.2 Avalanche hazard in Drass Sector,
J&K, India (17 February 2012)

Snowfall in the month of February in 2012 started
on 12th February in the morning at Drass and con-
tinued till 17th February. Before the snow storm
started, a shallow snow pack of 35 cm was existing
on the ground. Within this snowpack at the bot-
tom, there were weak depth hoar crystals formed
due to temperature gradient. There was 35 cm
cumulative snowfall and 100 cm standing snow at
the Drass observatory when an avalanche triggered
at 08:30 hrs on 17th February 2012 at Kill Nala
in Mashkoh Valley, Drass. Four army persons were
victims of this avalanche and two lost their lives.
The HMM predicted 52 cm cumulative snowfall
over a period of 24 hrs for Drass region.

3.1.3 Avalanche hazard at Sonamarg and Dawar,
J&K, India (22 February 2012)

Moderate to heavy snowfall during the snowstorm
during 17–22 February 2012, triggered major
avalanches at Sonamarg and Dawar in Indian
Himalaya. The avalanche triggered at Sonamarg
(Srinagar–Leh road axis, J&K) at 16:45 hrs and
that at Dawar (Bandipur–Gurej road axis, J&K)
at 22:15 hrs on 22nd February 2012. At Sonamarg,
three army persons lost their lives out of the nine
affected. At Dawar, there were 29 army persons
affected by avalanche out of which 16 lost their
lives. During this snow storm, there was 132 cm
cumulative snowfall at Kanzalwan and 39 cm at
Sonamarg. The HMM predicted 180 cm cumula-
tive snowfall at Kanzalwan (Dawar) and 66 cm at
Sonamarg during the storm.
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Table 5. Observed and model predicted cumulative snowfall during Hazardous snow-
fall events in different regions over Himalaya.

Observed cumulative Model predicted

Region/station snowfall cumulative snowfall

Gulmarg (Station-4) 92 cm 72 cm

Drass (Station-10) 35 cm 52 cm

Sonamarg (Near Station-9) 132 cm 180 cm

Dawar (Near Station-9) 39 cm 66 cm

4. Conclusion

In the present study, a Hidden Markov Model has
been developed for quantitative prediction of snow-
fall at different stations in Pir-Panjal and Great
Himalayan mountain ranges of Indian Himalaya.
The HMM predicts quantitative snowfall for two
days in advance. The root mean square error of
snow fall with optimization has been found smaller
than that without optimization for both the days.
It has also been found smaller than the persistence
forecast and standard deviation of the snow fall for
both the days. The RMSE of snowfall computed
through leave-one-out cross validation method for
different stations vary from 8.9 to 16 cm for day-1
and 9.4 to 16.5 for day-2. It lies between 10 to15
cm for six stations, 5–10 cm for three stations and
>15 cm for one station. The comparison of RMSE
of the model and persistence forecast reveal that
the model performance with optimization has been
found better than the persistence forecast. The
HSS for all the stations vary from 0.19 to 0.37 for
day-1 and 0.06 to 0.16 for day-2 implying that the
model forecast is better than the random forecast.
The overall performance of the model in terms of
percent correct (PC) vary from 60.3% to 79.6% for
day-1 and 15.9% to 38.2% for day-2. The model
predicted cumulative quantitative snowfall during
the hazardous snow storms in different parts of
Indian Himalaya with fairly good accuracy. The
model forecast validation show that the model
performance for all the stations over Himalaya
is reasonably good for day-1 and can be used
reliably in other applications such as avalanche
forecasting.

The forecast using HMM in this study is based
on fixed model parameters (probability matrices)
derived from the database. The forecast can be
made more realistic by making transition prob-
abilities vary with time and forming a Non-
homogeneous Hidden Markov Model (NHMM).
The NHMM can be developed by incorporating
large scale synoptic weather conditions into the
HMM for more accurate long-term forecast and can
be done in future.
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Appendix
(Categorical forecast verification of six

category event)

In table A1, the total number of observed events
in category-1 are given by:

A1 = C11 + C12 + C13 + C14 + C15 + C16.

The total number of forecasted events in category-1
are given by:

B1 = C11 + C21 + C31 + C41 + C51 + C61.

In a similar fashion, total number of observed and
forecasted events in all the six categories are calcu-
lated. The total number of events are given by:

T = C11 + C12 + C13 + C14 + C15 + C16

= C11 + C21 + C31 + C41 + C51 + C61.

The forecast verification measures, derived from
table A1 are:

Percentage correct (PC)

PC = ((C11+C22+C33+C44+C55+C66)

×100/T)%.

Critical success index (CSI) in different
categories

CSI-1 =
C11

(A1 + B1− C11)

CSI-2 = C22/(A2 + B2− C22)
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Table A1. 6 × 6 contingency table of observed vs. forecasted events.

Forecasted

Observed Category-1 Category-2 Category-3 Category-4 Category-5 Category-6 Total

Category-1 C11 C12 C13 C14 C15 C16 A1

Category-2 C21 C22 C23 C24 C25 C26 A2

Category-3 C31 C32 C33 C34 C35 C36 A3

Category-4 C41 C42 C43 C44 C45 C46 A4

Category-5 C51 C52 C53 C54 C55 C56 A5

Category-6 C61 C62 C63 C64 C65 C66 A6

Total B1 B2 B3 B4 B5 B6 T

CSI-3 = C33/(A3 + B3− C33)

CSI-4 = C44/(A4 + B4− C44)

CSI-5 = C55/(A5 + B5− C55)

CSI-6 = C66/(A6 + B6− C66)

Heidke skill score (HSS)

HSS = ((C11 + C22 + C33 + C44 + C55 + C66)

−(A×B1+A2×B2+A3×B3+A4×B4+A5

×B5+A6×B6)/T)/(T−(A1×B1+A2×B2

+A3×B3+A4×B4+A5×B5+A6×B6)/T).
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