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Changes in seasons and season length are an indicator, as well as an effect, of climate change.
Seasonal change profoundly affects the balance of life in ecosystems and impacts essential human
activities such as agriculture and irrigation. This study investigates the uncertainty of season length
in Karnataka state, India, due to the choice of scenarios, season type and number of seasons.
Based on the type of season, the monthly sequences of variables (predictors) were selected from
datasets of NCEP and Canadian General Circulation Model (CGCM3). Seasonal stratifications
were carried out on the selected predictors using K-means clustering technique. The results of
cluster analysis revealed increase in average, wet season length in A2, A1B and B1 scenarios
towards the end of 21st century. The increase in season length was higher for A2 scenario whereas
it was the least for B1 scenario. COMMIT scenario did not show any change in season length.
However, no change in average warm and cold season length was observed across the four scenarios
considered. The number of seasons was increased from 2 to 5. The results of the analysis revealed
that no distinct cluster could be obtained when the number of seasons was increased beyond
three.

1. Introduction

Changes in seasons and its length are an indicator,
as well as an effect, of climate change. They reflect
the variations that are occurring in the cycling
of energy in the global environment and pro-
foundly affect the balance of life in ecosystems,
impact agriculture and water balance of a region.
Hence, knowing the future changes in season length
in developing countries like India helps policy
makers and general public for realistic assessment,
management and mitigation of natural disasters,
and for sustainable development. However, there
is dearth of attempts in published literature that
studies the variability in the future season length
in this part of the world.

Global climate models (GCMs) are widely used
to simulate climate conditions on earth, several
decades into the future, for each of the con-
structed climate change scenarios. As GCMs are

generally run at coarser scale to cover the whole
Globe, they are inefficient in simulating regional
climatic conditions on earth. For this purpose,
weather classification methods have been used in
the past to transfer the information on large-scale
patterns provided by GCMs (predictors) to seasons
(predictand) at regional scales.

Owing to the availability of a number of GCMs,
climate change scenarios, classification methods,
predictors, definitions of seasons, number of sea-
sons, etc., prediction of season length is subject to
a number of uncertainties. Hence, there is a need
to study the changes in season length of a region
by the various alternatives available.

The objective of this study is to investigate
the variability of future season length to some of
the uncertainties such as the choice of climate
scenario, predictors, definition of seasons. The
chosen methodology is tested for the Karnataka
state in India.
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2. Background

In order to obtain season length, the seasons
are to be defined. In general, depending on the
application, seasons are defined in a number of
ways, such as astronomical seasons, meteorologi-
cal seasons (e.g., Argiriou et al 2004) and standard
seasons (Tuller 1990). In this study seasons are
divided based on meteorological variables (namely,
rainfall, temperature and wind), as they affect
agriculture and irrigation of the region and also
they are commonly used in climate change impact
studies.

A number of studies have analyzed the rain-
fall and temperatures simulated by the IPCC AR4
GCMs and regional climate model (RCM) for
different regions of India (Rupa Kumar et al 2006;
Kripalini et al 2007; Yadav et al 2010a). These
studies show an increase in mean monsoon rainfall
and temperature towards the end of 21st century
under scenarios of increasing greenhouse gas con-
centrations and sulphate aerosols. Though a num-
ber of studies have analyzed the changes in rainfall
and temperatures for the different seasons in India,
there is a lacuna in research to study the changes
in season length for the future scenarios.

The season length may be defined as conven-
tional (fixed) length or ‘floating’ length. In a fixed
season length, the starting dates and length of
seasons remain the same for every year. In con-
trast, in a ‘floating’ season length, the date of onset
and duration of each season is allowed to change
from year to year. Studies have shown that floating
seasons reflect ‘natural’ seasons contained in the
climate data better than fixed seasons, especially
under changing climate conditions (Winkler et al
1997; Anandhi et al 2008). Therefore, in this study,
floating season length is used to effectively capture
the changes in the future climate conditions.

The weather classification methods are used in
this study to define floating meteorological
season length, link large-scale circulation pattern
and surface weather by grouping the daily/
monthly datasets of large-scale circulation or
surface climate variables into a finite number of
discrete weather types or ‘seasons’. The classifi-
cation may be subjective (e.g., Lamb 1972),
objective (e.g., Tripathi et al 2006), or hybrid
(e.g., Sailor et al 2008). In subjective classifica-
tion, the stratifications were carried out manually
using empirical rules where the meteorologi-
cal scientist’s experience is applied and reflect
the knowledge of meteorologists. These stratifica-
tions cannot be easily replicated and are labour-
intensive. In objective classification methods, a
variety of automated techniques were developed
using computers to group the seasons, and there
is subjectivity in the choice of the algorithm.

Hybrid techniques combine elements of empirical
and automated procedures for grouping seasons,
thereby avoiding time delay and enabling the pro-
duction of easily reproducible and interpretable
results. In this study the hybrid approach using
K-means clustering (MacQueen 1967) was used
since it had the advantages of both subjective and
objective approaches.

In this study, season length is proposed to be
investigated for:

• each of the four scenarios specified in
Special Report on Emission Scenarios (SRES;
Nakicenovic et al 2000) that are relevant to
IPCC’s fourth assessment report (AR4) (Alley
et al 2007) namely A1B, A2, B1 and COMMIT,

• the seasons defined based on the three meteoro-
logical variables,

• the predictors used in the classification of sea-
sons, and

• varying number of seasons.

3. Study region and data used

The chosen methodology is tested for the
Karnataka state of India (figure 1). It has an area
of 191791 km2 situated between 11◦N to 18◦N lati-
tudes and 74◦E and 78◦E longitudes. The state has
the second largest arid and semi-arid regions in the
country after Rajasthan.

The predictors used for this study comprise of
the reanalysis data extracted from database pre-
pared by National Centers for Environmental Pre-
diction (NCEP) (Kalnay et al 1996), and the data
extracted from simulations by Canadian Center
for Climate Modeling and Analysis’s (CCCma)
third generation Coupled Global Climate Model
(CGCM3). The details of the data used are fur-
nished in table 1. A brief description of the four
future scenarios is provided in table 2. The pre-
dictors at each of the nine NCEP grid points and
twelve CGCM3 grid points which are within and
surrounding the study region are used in the study.
The list of predictors and their description used
are provided in table 3. In addition to the pre-
dictors, the surface average temperature and rain-
fall were also extracted from NCEP and CGCM3
database. The GCM data and the information
on atmospheric flux are re-gridded to a common
2.5◦ NCEP grid using Grid Analysis and Display
System (GrADS) (Doty and Kinter 1993).

4. Methodology

The methodology adopted for stratification into
seasons is presented in the form of a flowchart
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Figure 1. Location of Karnataka state of India. The latitude, longitude and scale of the map refer to the Karnataka state.
The data extracted from GCMs are re-gridded to the nine 2.5◦ NCEP grid points. Among the nine grid points 1, 4 and 7
are over Arabian Sea, and the remaining points are on land.

Table 1. Details of meteorological data used in the study.

Data type Source of data Period Details Time scale

CGCM3 T/47 data on
atmospheric variables

http://www.cccma.
bc.ec.gc.ca/cgi-bin/
data/cgcm3

1948–2100
baseline: 20C3M –

1948 to 2000.
future: SRES A1B,
A2, B1 and COMMIT
– 2001 to 2100

12 grid points for
atmospheric variables,
with grid box ≈3.75◦.

Latitudes range:
9.28◦N–20.41◦N.

Longitudes range:
71.25◦E–78.75◦E.

Monthly

NCEP re-analysis data
of atmospheric
variables

Kalnay et al (1996) 1948–2000 9 grid points for
atmospheric variables
with grid box 2.5◦.

Latitudes range:
12.5◦N–17.5◦N.

Longitudes range:
72.5◦E–77.5◦E.

Monthly

Observed historical
rainfall for Karnataka

High-resolution
gridded daily rainfall
data (Rajeevan et al
2005, 2006)

1951–2001 20 grid points with grid
box 1◦ in Karnataka are
considered.

Monthly

(figure 2). The steps involved in the stratification
into seasons are as follows:

Step 1. Selection of appropriate predictors from
regridded NCEP and GCM monthly datasets as
probable predictors at each of the NCEP grid
points within and surrounding the study region
(figure 1).

Step 2. Preparation of scatter plots and corre-
lation plots using three measures of dependence

(Pearson’s product moment correlation and non-
parametric rank correlations namely Spearman’s
rho and Kendall’s tau explained in Annexure)
between predictor variables in NCEP and GCM
datasets after removing significant autocorrelations
and trends. Then, examine the correlation between
predictors in NCEP and GCM datasets.

Step 3. Selection of highly correlated predictors
(potential predictors) with reference to a speci-
fied threshold Tng for correlation between predictor
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Table 2. Explanation of the scenarios considered in the study.

Dataset Description Duration

Climate of the 20th
Century (20C3M)

Atmospheric CO2 concentrations and other input
data are based on historical records or esti-
mates beginning around the time of the Indus-
trial Revolution.

1870–2000

Year 2000 equivalent
CO2 (COMMIT)

Atmospheric CO2 concentrations are held at
year 2000 levels. This experiment is based on
conditions that already exist (e.g., ‘committed’
climate change).

2001–2100

SRES B1 (550 ppm
equivalent CO2)

Atmospheric CO2 concentrations reach 550 ppm
in the year 2100 in a world characterized by
low population growth, high GDP growth, low
energy use, high land-use changes, low resource
availability and medium introduction of new and
efficient technologies.

2001–2100

SRES A1B (720 ppm
equivalent CO2)

Atmospheric CO2 concentrations reach 720 ppm
in the year 2100 in a world characterized by low
population growth, very high GDP growth, very
high energy use, low land-use changes, medium
resource availability and rapid introduction of
new and efficient technologies.

2001–2100

SRES A2 (850 ppm
equivalent CO2)

Atmospheric CO2 concentrations reach 850 ppm
in the year 2100 in a world characterized by
high population growth, medium GDP growth,
high energy use, medium/high land-use changes,
low resource availability and slow introduction
of new and efficient technologies.

2001–2100

Table 3(a). Probable predictors selected.

Probable predictor(s) selected from NCEP and CGCM3 monthly
Sl. no. Predictand datasets downscaling predictand

1 Rainfall Ta 925, Ta 700, Ta 500, Ta 200, Zg 925, Zg 500, Zg 200, Hus 925,
Hus 850, Ua 925, Ua 200, Va 925, Va 200, Prw, Ps

2 Temperature Ta 925, Ua 925, Va 925

3 Wind speed Ua 925, Va 925

Table 3(b). Abbreviations used to define predictors.

Sl. no. Abbreviations Long form of abbreviations

1 Hus 850 Specific humidity at 850 hPa

2 Hus 925 Specific humidity at at 925 hPa

3 Prw Precipitable water content

4 Ps Surface pressure

5 Ta 200 Air temperature at 200 hPa

6 Ta 500 Air temperature at 500 hPa

7 Ta 700 Air temperature at 700 hPa

8 Ta 925 Air temperature at 925 hPa

9 Ua 200 Zonal wind at 200 hPa

10 Ua 925 Zonal wind at 925 hPa

11 Va 200 Meridional wind at 200 hPa

12 Va 925 Meridional wind at 925 hPa

13 Zg 200 Geopotential height at 200 hPa

14 Zg 500 Geopotential height at 500 hPa

15 Zg 925 Geopotential height at 925 hPa
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Figure 2. Flow chart of methodology adopted for stratification into seasons. In the figure, Tng represents threshold for
cross-correlation between predictor variables in NCEP and GCM datasets. PCs represents principal components, PDs
denotes principal directions and SS denotes seasonal stratification.

variables in NCEP and GCM datasets. The selec-
tion of threshold is subjective. Using correlation as
a metric to select predictors captures the change in
direction of predictors. Other metrics may be used
in the place of correlation to capture the changes
in pattern as well as magnitude of predictor
variables.

Step 4. Standardization of potential predictors for
the baseline period (1948–2000) to reduce systemic
bias (if any) in the mean and variance of the pre-
dictors in the GCM data, relative to those of the
predictors in the NCEP reanalysis data. This step
typically involves subtraction of mean and division
by the standard deviation of the predictor for the
period.

Step 5. Principal component (PC) analysis of
standardized NCEP predictor data is carried out
to extract PCs. PCs which preserve more than 98%
of the variance in the data are selected. The PCs
of GCM predictor data are extracted along prin-
cipal directions of NCEP predictor data. The PCs
account for most of the variance in the input and
also remove the correlations, if any, among the
input data. PCA was carried out in this study as
they make the model more stable and reduce the
computational load.

Step 6. Formation of feature vectors using PCs.
The PCs for each month form a feature vector. The
feature vectors form the input to the K-means clus-
tering algorithm, and the seasons is its output.
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Step 7. Partitioning of NCEP feature vectors into
clusters, depicting seasons, by using K-means clus-
tering (MacQueen 1967), while the GCM dataset
partitioned into two clusters by using nearest
neighbour rule (Fix and Hodges 1951).

Step 8. In this analysis, each feature vector (rep-
resenting a month) of the NCEP data is treated as
an object having a location in space. The feature
vectors are partitioned into clusters such that the
feature vectors within each cluster are as close to
each other as possible in space, and are as far as
possible in space from the feature vectors in the
other clusters.

Step 9. The distance between feature vectors in
space is estimated using Euclidian measure. Subse-
quently, each feature vector (representing a month)
of the NCEP data is assigned a label that denotes
the cluster (season) to which it belongs.

Step 10. The feature vectors prepared from GCM
simulations (past and future) are labeled using the
nearest neighbour rule. As per this rule, each fea-
ture vector formed using the GCM data is assigned
the label of its nearest neighbour from among the
feature vectors formed using the NCEP data. To
determine the neighbors for this purpose, the dis-
tance between NCEP and GCM feature vectors is
computed using Euclidean measure.

Step 11. From the seasons, depending on the
months falling in each season, the season length is
determined in terms of month.

Step 12. For a season, estimate the average season
length and the uncertainty limits.

The procedure to estimate the average season
length and their uncertainty limits is explained
using an example, wet-dry season based on rain-
fall for a period say 1948–2000. For a particu-
lar set of predictors, selected based on threshold
Tng, the months in the period may be classified
as wet or dry month. This classification of wet or
dry month may be different for a different Tng.
In other words, the month May 1981 may be clas-
sified as a wet month for a set of predictors while
the same month (May 1981) may be classified as
a dry month for another set of predictors (due to
a different Tng). In this case for 15 combinations
of predictors we get 15 series of months labeled
wet – dry. For each month in the period 1948–2000,
from the different combinations of Tng (15 com-
binations in this case), the number of times the
month is classified as wet or dry is counted. If the
count is more for wet than dry then the month is
assigned as wet and vice versa. Thus a single series
is obtained for the period 1948–2000 where each

month is assigned a wet or dry label and the uncer-
tainty in the fifteen combinations are accounted
by giving equal weightage. From this single series,
the average season length and its uncertainty limits
are estimated. Now for the period 1948–2000, all
the January’s (53 in number) are counted for wet or
dry months. To estimate the average season length
the frequency of the month as dry or wet is esti-
mated. If the frequency of dry month is more than
wet then January is a dry month. In the similar
way, the rest of the 12 months in the period are
assigned wet or dry month depending on the fre-
quency. From the number of months in the wet
season the length of average wet season is esti-
mated and from the number of months in the dry
season the length of average dry season is esti-
mated. The upper and lower uncertainty limits in
a season may be obtained from the frequency of
wet and dry months from January to December.
For wet season the lower uncertainty limit is the
month in which the frequency of wet is 47 of the
53 (at least 90 percent) and frequency of dry is 6
or less (10 per cent). In other words, when at least
47 June months are wet, the month qualifies in
the lower uncertainty limit. The upper uncertainty
limit is obtained when at least 6 months from the
53 months is wet. In other words, when at least 6
months from 53 June months are wet, the month
qualifies in the upper uncertainty limit. The lower
uncertainty limit is the lower limit for season length
and comprises of least number of months that was
in a particular season. The upper uncertainty limit
is the upper limit for season length and comprises
of maximum number of months in a season. The
upper and lower uncertainty limits encompass the
range of changes in season length.

5. Results and discussion

The sources of uncertainty associated with assess-
ment of future season length were examined
using numerous simulations of the season length,
for various choices of climate scenario, types of
predictors and seasons, and number of seasons.
The results of predictor selection and uncertainty
analysis are presented and discussed in this section.

In this study, the seasons are classified based on
meteorological variables as:

• wet and dry seasons based on rainfall;
• warm and cold seasons based on temperature;
• windy and non-windy seasons based on wind;
• and their combinations.

5.1 Predictor selection

Selection of appropriate predictor variables is one
of the salient steps for translating large-scale
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patterns to various seasons using classification
methods. Some of the examples of predictors (vari-
ables and indices) chosen in previous studies in
predicting Indian Monsoon rainfall are sea sur-
face temperatures (SSTs), mean sea level pres-
sure (MSLP), geopotential height and wind fields,
Eurasian snow cover and surface temperatures, the
Ninõ-3 SST anomaly, the Europe pressure gradient,
the south Indian Ocean SST index, and north
Atlantic SST (Yadav et al 2007, 2009a, 2009b,
2010b).

The predictors used in this study include some
of the predictors used in previous studies and
also based on the work by Anandhi (2007). The
selected predictors have a physically meaningful
relationship with rainfall, temperature and wind
are selected for clustering into different meteoro-
logical seasons (table 3a). The physical basis for
selecting the predictors in table 3 is explained
below. As the rainfall in the region is depen-
dent on dynamics through advection of water
from the surrounding sea, and thermodynamics
through effects of moisture and temperature, both
of which can modify the local vertical static sta-
bility (Anandhi 2007). The physical basis for selec-
tion of these predictors is given. For example,
winds during monsoon season advect moisture
into the region, while temperature and humidity
are associated with local thermodynamic stabi-
lity and hence are useful as predictors. Tempera-
ture affects the moisture holding capacity of the
atmosphere and the pressure at the point. The
pressure gradient affects the circulation which in
turn affects the moisture brought into the place
and hence the rainfall. Higher precipitable water
in the atmosphere means more moisture, which in
turn causes statically unstable atmosphere lead-
ing to more vigorous overturning, resulting in more
rainfall. Lower pressure leads to more winds and
so more rainfall. At 925 hPa pressure height, the
boundary layer (near surface) effect is prominent.
The 850 hPa pressure height is the low level flow
response to regional rainfall. The 200 hPa pressure
level captures the global scale effects. Tempera-
ture at 500 hPa represents the heating process of
the atmosphere due to monsoonal rainfall which is
maximum at mid-troposphere at a constant pres-
sure height. Geopotential height represents the
pressure gradient which is related to the moisture
brought into the place and hence the rainfall.

5.2 Uncertainties in wet and dry season length

Based on rainfall, the study region can be divided
into two seasons namely wet and dry seasons. The
sources of uncertainty in wet and dry season length
were studied, for choice of predictors and climate
scenario.

5.2.1 Uncertainties in wet and dry season
length: Choice of predictors

For projecting future seasons it is necessary that
GCM data is consistent with NCEP data. The
cross-correlations were used to assess the rela-
tionship between predictors in NCEP and GCM
datasets. The results reveal that

• Pearson’s correlation coefficient and rank corre-
lations (Spearman and Kendall’s tau) lead to the
same conclusions. All three measures of depen-
dence showed near equal ranking of probable
predictors. Therefore, in the following discussion
only product moment correlation values were
used, without loss of generality;

• the correlation between predictors in NCEP and
GCM datasets is generally greater than 0.57
(except for Va 200), indicating that the predic-
tor variables are realistically simulated by the
GCM.

Depending on a threshold Tng for the correla-
tion coefficient, potential predictors are selected
for classification into seasons and details are fur-
nished in table 4. It can be observed from the table
that the potential predictors selected were sub-
jective to the threshold Tng concerned. When the
values of the predictors in NCEP and 20C3M GCM
datasets have the same pattern of variation, then
the values of threshold is equal to one (Tng = 1).
Using such datasets will produce similar seasons
during the time period 1948–2000. As the values of
threshold decreases, the values of the predictors in
NCEP and 20C3M GCM datasets are not of the
same pattern of variation and the clusters formed
using these two datasets could be different depend-
ing on the values of predictors. Higher Tng repre-
sents selecting predictors which have GCM data
highly consistent with NCEP data, while lower Tng

represents selecting predictors which have GCM
data less consistent with NCEP data.

To estimate the uncertainty in season length for
wet and dry seasons, the classification into seasons
was performed using cluster analysis for each of
the threshold values. From these classifications, the
average season length (figure 3a) and uncertainty
limits (figure 3b and c) are calculated using proce-
dure explained in methodology section and results
are shown in figure 3. It can be observed from
the figure that the average wet season length for
the various predictors selected is May to October
during the period 1948–2000, while the average dry
season length during the same period is November
to May. The lower uncertainty limit in wet season
length is June to September (figure 3b; NCEP,
20C3M), while the limit for dry season length is
October to April (figure 3c; NCEP, 20C3M). The
upper uncertainty limit in wet and dry season
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Table 4. Potential predictors selected for classification into seasons based on rainfall for different values
of Tng for product moment correlation between probable predictors in NCEP and CGCM3 datasets.

Sl. no. Tng R Potential predictors selected

1 1.0–0.95 1.0–0.95 –

2 0.93 0.93 Ua 925

3 0.92 0.92 Ua 925, Ps

4 0.91 0.91 Ua 925, Ps, Ua 200

5 0.86–0.90 0.86–0.90 Ua 925, Ps, Ua 200, Zg 925

6 0.84–0.85 0.84–0.85 Ua 925, Ps, Ua 200, Zg 925, Prw

7 0.83 0.83 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925

8 0.80–0.82 0.80–0.82 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925, Hus 850

9 0.77–0.79 0.77–0.79 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925, Hus 850, Zg 200

10 0.76 0.76 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925, Hus 850, Zg 200,
Ta 925

11 0.71–0.75 0.71–0.75 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925, Hus 850, Zg 200,
Ta 925, Ta 500, Ta 200

12 0.70 0.70 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925, Hus 850, Zg 200,
Ta 925, Ta 500, Ta 200, Ta 700

13 0.62–0.69 0.62–0.69 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925, Hus 850, Zg 200,
Ta 925, Ta 500, Ta 200, Ta 700, Zg 500

14 0.55–0.61 0.55–0.61 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925, Hus 850, Zg 200,
Ta 925, Ta 500, Ta 200, Ta 700, Zg 500, Va 925

15 0.26–0.54 0.26–0.54 Ua 925, Ps, Ua 200, Zg 925, Prw, Hus 925, Hus 850, Zg 200,
Ta 925, Ta 500, Ta 200, Ta 700, Zg 500, Va 925, Va 200

length for the period 1948–2000 is April to October
and September to May, respectively.

5.2.2 Uncertainties in wet and dry season
length: Different future scenarios

The average season length for the future four
scenarios (A2, A1B, B1 and COMMIT) are esti-
mated for five time periods 2001–2020, 2021–2040,
2041–2060, 2061–2080 and 2081–2100 respectively
and the results are provided in figure 3. From the
figure it can be inferred that the average wet sea-
son length increase in future for A2, A1B and
B1 scenarios for the time period 2080–2100. The
increase was more for A2 scenario, where the wet
season length increased from April–November dur-
ing the period. This increase was followed by A1B
and B1 scenarios, in which case the average wet
season length increased from May–November dur-
ing the period 2081–2100. No change in season
length was observed in COMMIT scenario. With
the increase in wet season length there is a decrease
in dry season length during the period 2081–2100.
The decrease is complimentary to wet season
length. Similar pattern of increase, is observed
in upper and lower uncertainty limits in wet sea-
son length. The increase in wet season is very high
with the entire year classified as wet season during
the period 2081–2100 for A2 scenario. These results

compliment the results from an earlier study by
Rupa Kumar et al (2006). They showed an increase
in rainfall towards the end of the 21st century in
this region in SRES A2 and B1 scenarios. Hence,
the increase in wet season length towards the end
of the 21st century could be due to the increase in
rainfall during the period.

The annual cycle of rainfall for observed histori-
cal, NCEP and GCM scenarios (20C3M, A1B, A2
and B1) are shown in the first column of figure 4 for
the five time periods considered. This figure gives
us general idea about the wet/dry seasons in the
region.

The variation in future season length among
scenarios is high for A2 scenario, whereas it is
least for B1 scenario. This is because among
the scenarios considered, the scenario A2 has the
highest concentration of carbon dioxide (CO2)
equal to 850 ppm, while the same for A1B, B1
and COMMIT scenarios are 720 ppm, 550 ppm and
≈370 ppm, respectively. Any rise in the concen-
tration of CO2 in atmosphere causes the earth’s
average temperature to increase, which in turn
causes increase in evaporation especially at lower
latitudes. The evaporated water would eventually
precipitate. In the COMMIT scenario, where the
emissions are held the same as in the year 2000,
no significant increase in the pattern of projected
future season length could be discerned.
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Figure 3. Typical results of classification into two seasons (wet and dry) performed using cluster analysis for different
combinations of the fifteen predictors. (a) Shows the average wet and dry season length. (b and c) Show the upper and
lower uncertainty limits in season length due to predictors selected. The period for NCEP and 20C3M is 1948–2000. The
numbers 1 to 5 in the SRES scenarios represent the five time periods considered in the study namely 2001–2020, 2021–2040,
2041–2060, 2061–2080 and 2081–2100, respectively. The grey colour (darker shade) represents the dry season while the light
blue colour (lighter shade) represents the wet season.

5.3 Uncertainties in warm and cool
season length

Based on temperature the study region can be
divided into two seasons namely warm and cold
seasons. The sources of uncertainty in warm and
cold season length were studied, for choice of
predictors and climate scenario.

The potential predictors selected for classifica-
tion into seasons for different values of Tng for
product moment correlation between probable pre-
dictors in NCEP and GCM datasets are shown
in table 5. The classification into seasons was

performed for each of the threshold values shown in
the table. The uncertainty in the months selected
as a warm or cold month is subjective to predictor
selected for clustering (figure 5).

The average season length and the uncertainty
limits in the season length are estimated quanti-
tatively using the various simulations of seasons
obtained for the different combinations of pre-
dictor variables (figure 5). The typical results of
uncertainty in the season length for the various
combinations of predictors selected are shown in
figure 5(b and c). It can be observed from the
figure that on an average the warm and cold
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Figure 4. Monthly mean rainfall and average temperatures calculated from NCEP and GCM datasets. The 20C3M and
NCEP data are averaged for the period 1948–2000. While for the future SRES scenarios, the five time periods are for
the period 2001–2020, 2021–2040, 2041–2060, 2061–2080 and 2081–2100, respectively. Monthly mean observed rainfall is
calculated for the period 1951–2000.

seasons coincided with wet (June–September) and
dry months (rest of them) and there is no change
in future warm and cold season length for the four
scenarios (A1B, A2, B1 and COMMIT) considered.
However, there is a decrease in warm season
length in the lower uncertainty limit in all the
four scenarios considered. The decrease in season
length was higher for A2 scenarios when com-
pared with the rest of the three scenarios. This
decrease in warm season length may be related
to increase in wet season length, during the same
period as observed in the previous section. The
annual cycle of average temperature for NCEP and
GCM scenarios (20C3M, A1B, A2 and B1) are
shown in the second column of figure 4 for the
five time periods considered. This figure gives us
general idea about the warm/cold seasons in the
region.

5.4 Uncertainties in wind and non-windy
season length

Based on wind, the study region can be divided
into two seasons namely windy and non-windy sea-
sons. The classification into seasons was performed
for the each of the threshold values to observe
the variability in the length of windy and non-
windy seasons. The results of the cluster analysis

Table 5. Potential predictors selected for classification
into seasons based on temperature for different values of
Tng for product moment correlation between probable pre-
dictors in NCEP and CGCM3 datasets.

Sl. no. Tng Potential predictors selected

1 1.0–0.95 –
2 0.93 Ua 925
3 0.76–0.92 Ua 925, Ta 925
4 0.56–0.75 Ua 925, Ta 925, Va 925

(not presented for brevity) envisaged that windy
and non-windy seasons coincided with wet (June–
September) and dry months (rest of them).

Thus the seasons, classified on the basis rainfall,
temperature and wind using the predictors from
large-scale atmospheric variables, showed that the
region had predominant wet and dry seasons.
Hence for studying the variation in season length
for varying number of seasons, seasons based on
rainfall was used.

5.5 Variation in season length with
the number of seasons

The variation in season length with increase in
the number of seasons was studied. For this pur-
pose, the number of seasons was increased from
two to five. It was observed that no distinct seasons
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Figure 5. Typical results of classification into two seasons (warm and cold) performed using cluster analysis for different
combinations of the predictors. (a) Shows the average warm and cold season length. (b and c) Show the upper and lower
uncertainty limits in season length due to predictors selected. The period for NCEP and 20C3M is 1948–2000. The numbers 1
to 5 in the SRES scenarios represent the five time periods considered in the study namely 2001–2020, 2021–2040, 2041–2060,
2061–2080 and 2081–2100, respectively. The grey colour (darker shade) represents the cold season while the light orange
colour (lighter shade) represents the warm season.

were obtained using cluster analysis when the num-
ber of seasons was increased more than three.
When the region was classified into three clus-
ters (clusters A, B and C), the cluster A was
found to coincide with cold season and clusters
B and C together coincide with wet season and
cluster C coincide with warm season. This could
be attributed to the fact that there are only two
distinct seasons for the study region namely wet
and dry seasons. It is observed that the wet sea-
son obtained was divided into two seasons (clusters
B and C) from which one season coincided with
warm season (June–September). Among the three

seasons, there was no distinct change in seasons
defined by clusters A and C, whereas there is
an increase in season length in season defined by
cluster B.

5.6 Implications of the varying seasonal length

The variation in season length affects agriculture
which is related to changes in crop and forest
phenology, increases in insect and pest diseases
thereby affecting yield of crops (Patterson et al
1999; Peng et al 2004; Jones et al 2005). Longer
growing season could increase plant uptake thereby
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increasing evapotranspiration, reducing soil
moisture, reducing the availability of water and air
pollution. Longer growing seasons, and especially
earlier springs, also lead to changes in the hydro-
logical cycle with serious negative implications
which could lead to water shortage in summer,
when the demand is greater (Christidis et al 2007).

The consequences of change in warm and cold
season length are of great importance to agricul-
ture since this is closely related to the growth
period of crops, crop water requirements, the life
cycles of pests (insects and parasites) infecting the
crops. The evaporation from water bodies are influ-
enced by the change in warm seasons especially in
arid and semi-arid regions. Temperature influences
plant growth and increase evaporation/evapotrans-
piration of crops.

The most likely impact of climate change in plant
diseases will be felt in three areas:

(1) losses from plant diseases,
(2) efficacy of disease management strategies, and
(3) the geographical distribution of plant diseases.

Climate change could have positive, negative or
no impact on individual plant diseases (Chakra-
borty et al 2000).

The ill effects of increase in windy season include
increase in the rate of evaporation of water,
increase in aridity, poor crop growth and reduc-
tion in yield due to mechanical damage to crops
(e.g., stripping of leaves, abrasion in plant canopies
through rubbing, Cleugh et al 1998).

6. Summary and conclusions

Changes in seasons and season length of a region
are driven by shifts in the intensity of sunlight
reaching earth’s surface (insolation), latitude, con-
tinental and marine climate, wind direction, and
local geographical features. Since change in season
length is an indicator, as well as an effect, of climate
change and is less studied, the objective of this
study was set to investigate the variability of future
season length to some of the uncertainties such as
the choice of climate scenario, predictors, definition
of seasons and number of seasons.

For this purpose four climate scenarios rele-
vant to IPCC’s AR4 report namely A1B, A2,
B1 and COMMIT were used. The seasons were
defined based on the three meteorological vari-
ables (namely, rainfall, temperature and wind)
using large scale atmospheric variables (predictors)
which have physical relationship to these vari-
ables. Wet and dry seasons were defined based
on rainfall, warm and cold seasons were defined
based on temperature, windy and non-windy

seasons based on wind. The predictors from NCEP
reanalysis (period: 1948–2000) and Canadian GCM
(CGCM3.1, period: 1948–2100) were used in this
study. The classifications into seasons were carried
out using K-means clustering technique and near-
est neighbour rule. The chosen methodology was
tested for the Karnataka state in India.

The results showed:

• Uncertainty in season length for the choice of
predictors for the different seasonal definitions
used in the study.

• The region has predominant wet and dry
seasons.

• Average wet season increased in future towards
the end of the 21st century for A2, A1B and B1
scenarios. The variation is high for A2 scenario,
whereas it is least for B1 scenario. No change in
COMMIT scenario. Similar pattern of increase
is observed in upper and lower uncertainty limits
in wet and dry season length.

• No change in average and upper uncertainty
limits for warm and cold seasons in future for all
the four scenarios. However, there is a decrease
in warm season length in the lower uncertainty
limit. The decrease in season length was higher
for A2 scenarios when compared with the rest of
the scenarios.

• The windy and non-windy seasons coincided
with wet and dry seasons.

• When the number of seasons were increased
from two to five, the results of the analy-
sis revealed that the distinct cluster could not
be obtained when the number of seasons were
increased beyond three. When the region was
classified into three clusters, three distinct sea-
sons were obtained and they coincide with cold,
warm and wet seasons.

The present study brings out the variability in
season length across scenarios, season type, and
when the number of seasons is changed. The uncer-
tainties in the season length to the choice of
clustering methods and GCMs should also be
considered to provide more general conclusions
about the variation in the study region which
would help policy makers and general public for
realistic assessment, management and mitigation
of natural disasters, and for sustainable develop-
ment. Investigating these uncertainties is a future
scope of study.
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Annexure: Dependence measures

Three dependence measures used in this study
are product moment correlation (Pearson 1896),
Spearman’s rank correlation (Spearman 1904a,
1904b), and Kendall’s tau (Kendall 1951).

Let the probable predictor and predictand for
month t be denoted as Xt and Yt, respectively.
Then the product moment correlation which mea-
sures the linear relationship between probable
predictor and predictand is given by:

P =
∑N

t=1(Xt − X̄)(Yt − Ȳ )
NσXσY

,

where N refers to the number of months in the
datasets; X̄ and Ȳ represent the means of predic-
tor and predictand respectively, while σX and σY

represent the standard deviations of the same.
Spearman’s rank correlation and Kendall’s tau

are the two nonparametric correlations used in
this study which are estimated based on ranks
assigned to data points in predictor and predictand
datasets. The advantage of these rank correlations
over the linear correlation stems from the use of
ranks rather than numerical values of the predictor
and the predictand variables for estimation of the
correlations (Press et al 1992). Ranks are assigned
to the N data points in each dataset after arrang-
ing them in increasing order of magnitude, such
that the least value in the data has the first rank.
Spearman’s rank correlation (ρ) is computed using
the difference between the ranks of contempo-
raneous values of predictor and predictand (Di).

ρ = 1 − 6
∑N

i=1 D2
i

N(N 2 − 1)
,

where Di = Rank of Xt − Rank of Yt.
Estimation of the Kendall’s tau (τ) for a

pair of predictor and predictand datasets involves
preparation of N pairs of data ranks {(ui, vi),
i = 1, . . . , N}, where ui and vi denote ranks of
contemporaneous data points in the predictor
and predictand datasets at ith time step respec-
tively. Let two pairs of ranks be (uj, vj) and
(uk, vk). The two pairs are concordant if uj > uk

and vj > vk, or if uj < uk and vj < vk, for which
(uj − uk)(vj − vk) > 0. The two pairs are discor-
dant, if uj > uk and vj < vk, or if uj < uk and

vj > vk, for which (uj − uk)(vj − vk) < 0. A tied
pair is neither concordant nor discordant, i.e.,
(uj − uk)(vj − vk) = 0. The Kendall’s τ is calcu-
lated using the formula given below.

τ =
4λ

N(N − 1)/2
,

where λ is the difference between the number of
concordant pairs and the number of discordant
pairs. So, a high value of λ means that most pairs
are concordant, indicating that the two rankings
are consistent. Further, N(N − 1)/2 is the total
number of possible pairs of ranks. If there are a
large number of tied pairs it should be adjusted
accordingly. A positive value of τ indicates that
the ranks of both the variables increase together,
whilst a negative correlation indicates that as the
rank of one variable increases the rank of the
other decreases. The Kendall coefficient has two
advantages over the Spearman coefficient (Leach
1979). The first advantage is that it is appro-
priate when a large number of ties are present
within ranks. The second advantage is its direct
and simple interpretation in terms of probabili-
ties of observing concordant and discordant pairs.
The Spearman’s coefficient can be considered as
the regular Pearson’s correlation coefficient in
terms of the proportion of variability accounted
for, whereas Kendall’s coefficient represents a
probability, i.e., the difference between the prob-
abilities that the observed data are in the same
order and the observed data are not in the same
order. The advantages of Kendall coefficient makes
it useful to effectively interpret the relationship
between the predictors in NCEP and GCM data
sets and between predictors in NCEP and the
predictand.
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