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Using analytic signal method, interpretation of pole-pole secondary electric potentials due to 2D
conductive/resistive prisms is presented. The estimated parameters are the location, lateral extent
or width and depth to top surface of the prism. Forward modelling is attempted by 2D-Finite
Difference method. The proposed stabilised analytic signal algorithm (RES2AS) uses Tikhonov’s
regularization scheme and FFT routines. The algorithm is tested on three theoretical examples
and field data from the campus of Roorkee University. The stability of RES2AS is also tested on
synthetic error prone secondary pole-pole potential data.

1. Introduction

Analytical signal method (Nabighian 1972;
Roest et al 1992) or its variants (Rao, Babu and
Narayan 1981; Sundarrajan and Srinivas 1996;
Sundarrajan, Rao and Sunitha 1998) have been
proposed in the past for interpretation of poten-
tial field anomalies and S.P anomalies. However,
its application to DC electrical signals is not yet
reported. The success of analytic signal method
(Nabighian 1972, 1984; Roest et al 1992) and
the formal analogy between magnetostatics and
electrostatics (Eskola 1992; Quick 1974) allow its
use (Pujari 1998) in the analysis of DC pole-pole
secondary electric potential data caused by 2-D
conductive/resistive closed bodies of rectangular
cross-section. Here, the similarity of secondary
potential, Vs with the residual magnetic field
anomaly interpretation is invoked.

The complex analytic signal computation
depends on stable numerical derivatives of sec-
ondary electric potentials. So, Tikhonov’s regular-
ization is incorporated in the designed analytic
algorithm. Theoretical modelling is carried out
on an isolated 2D conductive/resistive body of

rectangular cross-section enclosed within resis-
tive/conductive host medium.

2. Similarity in governing equations
of magnetostatics and electrostatics

A fundamental feature of Maxwell’s equations is
their symmetry in relation to the electric and mag-
netic fields.

In the case of magnetostatics, the magnetic
scalar potential, u∗ obeys the governing equation

∇2u∗ = −σ∗ (1a)

in an anomalous region, where the volume density
of magnetic poles is σ∗.

In a source-free region, it assumes

∇2u∗ = 0. (1b)

Further, across a boundary separating two media
with different magnetic permeabilities, µ1 and µ2,
the scalar magnetic potential satisfies the following
two boundary conditions

u∗
1 = u∗

2, (2a)
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µ1
∂u∗

1

∂n
= µ2

∂u∗
1

∂n
(2b)

where ∂
∂n

refers to derivative normal to the inter-
face.

In the case of electrostatics, the governing equa-
tion for electric potential, u, in a medium where
there is charge injection, I is given by

∇2u = −I. (3a)

In a source-free region, the electric potential sat-
isfies

∇2u = 0. (3b)

The electric potential, u also satisfies the follow-
ing two boundary conditions across a physical
interface separating two media with resistivities ρ1
and ρ2

u1 = u2, (4a)

1
ρ1

∂u1

∂n
=

1
ρ2

∂u2

∂n
(4b)

where n̂ refers to unit normal to the interface.
Thus, the governing equations along with bound-

ary conditions for static electrical and magnetic
fields are similar.

3. Analogy of secondary electric potential
and residual magnetic anomalies

In a typical DC resistivity profiling, the measured
total potential comprises of primary and secondary
components, the former one relates to the response
of host medium and the latter to that of the tar-
get in question. In all resistivity imaging problems,
the emphasis is laid on secondary potential estima-
tion for further analysis. In the magnetic method,
the processed anomalies are subjected to regional-
residual separation to separate out residual anom-
alies, which are interpreted for geological object(s)
in question.

Thus, the secondary electric potential is equiv-
alent to residual magnetic anomaly. However, this
analogy is restricted to closed bodies in view of
charge accumulation concepts (Li and Oldenburg
1991) due to external current source(s) and sink(s)
pairs and it fails for target(s) with open electrical
interface(s) due to non-uniform polarisation.

4. Analytic Signal (AS) and
related parameters

Following Nabighian (1972), the 2-D Analytic Sig-
nal (AS), A(x, z) of the secondary pole-pole poten-
tial Vs(x, z) can be defined as

A(x, z) =
∂V ′

s

∂x
+ ĵ

∂V ′
s

∂z
(5)

where Ĵ =
√−1.

The amplitude of the analytic signal (AS) is
given by

|A(x, z)| =

√(
∂V ′

s

∂x

)2

+
(

∂V ′
s

∂z

)2

(6)

where V ′
s =

∂Vs

∂x
.

The real and imaginary parts of R.H.S of (5)
constitute a Hilbert transform pair (Nabighian
1972).

Nabighian (1972) has identified the follow-
ing properties of complex Analytic Signal of
magnetic anomaly due to a 2-d body of arbi-
trary cross-section, approximated by an n-sided
polygon.

• The amplitude of analytic signal, AAS is a sym-
metrical function maximising exactly over the
top of each corner of the 2-d body.

• The complex analytic signal, AS has simple poles
at each corner of the arbitrary shaped 2-d body
and conversely, 1/A(x, z) has zeros at those cor-
ners. So, the real part of the inverse of AS is zero
at the body corners.

Thus, the AAS can be used for computing the
depth to top of the body and the poles of AS fix
the lateral edges of the body.

The various AS parameters relevant for interpre-
tation are

• Amplitude of Analytic Signal (AAS).
• Amplitude of the Real part of 1/A(x, z) i.e.,

(RIAS).
• Real component of the Analytic Signal (RAS).
• Imaginary component of the Analytic Signal

(IAS).

The RAS and IAS are used for determining the
position of the centre of the body, whereas the AAS
is used for defining the depth to top of the body.
The RIAS, which gives the zeros of the inverse of
AS is used to find the lateral coordinates or lateral
extent of the body.

For depth determination, only a simple half-
width depth rule (Nabighians 1972) has been
used.

5. Computation of Stable Analytic Signal

In view of numerical derivative computations being
unstable (Tikhonov & Arsenin 1977), analytic sig-
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nal computation is an ill-posed problem. So, our
spectral algorithm (RES2AS) uses both regularisa-
tion strategy (Tikhonov & Arsenin 1977) and FFT
routines (Starostenko & Sastry 1979) for comput-
ing a stable analytic signal from secondary poten-
tial data.

Computation of nth order derivative of a given
arbitrary function u(x) is governed by Volterra
type Integral equation (Tikhonov & Arsenin 1977)
of first kind of convolution type given by

t∫
0

1
(n − 1)!

(t − ξ)(n−1)z(ξ)dξ = u(t) (7)

which is ill-posed.
In operator form, (7) can be written as

Az = u (8)

where z ∈ Z, u ∈ U with Z and U as Hilbert spaces.
In Fourier domain, the spectrum of z(t) is given

by

Z̃(ω) =
Ũ(ω)
K̃(ω)

(9)

where the Fourier transform pairs are

z(t) ⇔ Z̃(ω)

k(t) ⇔ K̃(ω)

u(t) ⇔ Ũ(ω) (10)

and ω, is the spatial frequency and k(t), the kernel

of (1).
However, in view of the ill-posedness of (8),

Inverse Fourier Transform, IFFT of (7) does not
exist.

The regularised solution as per Tikhonov and
Arsenin (1977) is given by

Zα(t) = IFFT

(
ũ(ω)
k̃(ω)

f(ω, α)
)

. (11)

The regularisation operator, f(ω, α) is chosen to
be

f(ω, α) =
1

1 + αM(ω)
, (12)

where M(ω) is a smoothing function.

As per the theory of regularisation (Tikhonov &
Arsenin 1977), one can choose M(ω) to be of the
form

M(ω) = ω2p (13)

where p, the order of regularisation, controls the
degree of smoothness intended for the solution. For
our numerical experiments, p = 2.

Thus, 2-D Stabilised Analytic Signal algorithm,
RES2AS is designed.

6. Interpretation procedure

The sequence of interpretation steps is outlined in
a flowchart (figure 1). They entail two basic tasks.

• Computation of secondary potential (pole-pole).
• Computation of stable AS and its associated

terms, which are used for the semi-quantitative
interpretation.

6.1 Computation of secondary
pole-pole potential

In numerical experiments, secondary pole-pole
electric potential distribution at air-earth interface
is generated by subtracting the host medium effect
from the total measured potential due to combined
effect of host and target body for a fixed cur-
rent source and sink configuration using a finite-
difference (Mufti 1976) scheme.

In field survey, for a fixed source(s) and
sink(s) configuration, the host medium response
at receiver electrodes is estimated by conducting
the experiment outside the influence of the tar-
get body. Then, in the vicinity of the body, a
staggered set of receiver electrodes are considered
where the total potential is measured for similar
arrangement of source(s) and receiver(s). A dif-
ference of these two responses for each receiver
electrode position in a pole-pole set up provides
the desired secondary electric pole-pole potential,
for further analysis by RES2AS.The included case
study employs this methodology.

7. Numerical experiments and results

The input data to RES2AS could either be
error-free or error-prone DC pole-pole secondary
potential data due to conductive/resistive tar-
get(s) located within resistive/ conductive half-
space respectively.

A 2-D body of size 6 m × 6 m, with a square
cross-section constitutes the model for theoretical
studies. Figure 2 is a schematic diagram explaining
the emplacement of the body in the linear portion
of the FDM mesh (51 × 101 nodes) along with the
source positions S0, and S1 at 33, and 28 node posi-
tions respectively. The linear portion of the mesh
extends over 64 nodes in the X-direction.

The target details inclusive of physical property
distribution and source strength are provided in
table 1, whereas table 2 contains the geometric
details of the considered models.
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Figure 1. Flow chart giving the sequence of interpretation steps of RES2AS algorithm.
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Figure 1. (Continued)

Figure 2. Schematic section of the linear portion of
the finite-difference mesh containing the anomalous body
(Model 1) with current source positions S0 and S1 at nodes
33 and 28 respectively. σ1 and σ2 are conductivities in
s/m of inhomogeneity and background half space respec-
tively. The meaning of the rest of the parameters is self-
evident.

The three versions of models are referred to as
Model 1.1, Model 1.2 and Model 1.3 respectively

Table 1. Numerical values for current source strength,
conductivities of the inhomogeneity and background
half-space.

Current Conductivity of Conductivity
strength inhomogeneity of half-space

Models (A/m) (S/m) (S/m)

1.1, 1.2, 1.3 1 0.1 0.01
(Conductive)

1.1 1 0.01 0.1
(Resistive)

(refer table 2). Interpretation as per the earlier out-
lined procedure (figure 1) is implemented.

7.1 Model 1.1

Case I: Conductive body

For illustration sake, the position location of the
centre of the target is highlighted only for the
model 1.1.
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Table 2. Geometric details of Model 1. (Schematic section is given in figure 2).

Lateral Depth to Depth to Depth to Position of
extent top (m) bottom (m) center (m) body

Prism (P,Q) h1 h2 H center

Model 1.1 (30,36) 3 9 6 33
Model 1.2 (30,36) 2 8 5 33
Model 1.3 (30,36) 5 11 8 33

Figure 3. Real and imaginary component plots of analytic
signal (RAS and IAS) for Model 1.1 (refer tables 1 and 2),
when current source is offset from body axis, P0P1 ( S1 in
figure 2).

Determination of position of the centre
of the body

Two different source positions, S1 and S0 (refer fig-
ure 2) are considered. For S1, the plots of RAS
and IAS (figure 3) are neither symmetric nor anti-
symmetric about the vertical axis (P0P1) through
the body centre, whereas for S0 (refer figure 4)
exactly above body centre, they are perfectly sym-
metric and anti-symmetric respectively.

Determination of depth to top of the body

The half-width depth rule of Nabighian (1972)
determines the depth to top (figure 5) of the body.
The depth estimate is included in table 3.

Determination of the lateral extent of the body

Figure 6 represents the plot of RIAS. The inferred
body edges from the zero crossings are presented
in table 3.

Figure 4. Real and imaginary component plots of analytic
signal (RAS and IAS) for Model 1.1 (refer tables 1 and 2),
when current source is at projection of body axis, P0P1 (S0
in figure 2).

Figure 5. Amplitude of analytic signal (AAS) plot for
Model 1.1 and computation of depth to top surface of the
body by Nabighian’s depth rule. MN is full width. MN/2 is
the estimated depth to top (refer table. 3). Source is at S0.
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Table 3. Results of numerical experiments for square
shaped 2-D body of size 6m × 6m.

Actual Inferred
Actual Inferred lateral lateral
depth depth extent extent

Model (m) (m) (node-wise) (node-wise)

1.1 3 4 (30,36) (30,36)
(Conductive
case)
1.1 3 5.5 (30,36) (28,38)
(Noisy data)
1.1 3 4 (30,36) (30,36)
(Resistive
case)
1.2 2 2 (30,36) (30,37)
(Conductive
case)
1.3 5 7 (30,36) (28,37)

Figure 6. Real component of complex inverse analytic sig-
nal (RIAS) plot for Model 1.1 (refer tables 1 and 2). Its zero
crossings at P and Q identify the lateral edges of the body
(refer table. 3). Source is at S0.

Stability of the algorithm

The stability of RES2AS is checked by adding 5%
random Gaussian noise to the secondary potential
due to Model 1.1. Figure 7 is for unregularised case
and figure 8 is for regularised. In case of regular-
isation (α = 7), the AAS (figure 8) behaves well
and has been used for depth estimation. The RIAS
(figure 9) identifies the body edges at nodes (29,37)
which are not far from the actual ones. Table 3
enlists the results.

Figure 7. Amplitude of analytic signal (AAS) plot for
Model 1.1 (conductive case) for error-prone input pole-pole
potential data. A 5% Gaussian noise is included in the input
data. No regularisation is incorporated.

Figure 8. Regularised amplitude of analytic signal (AAS)
plot (regularisation parameter, α = 7.0). A 5% Gaussian
noise is included in the input data (refer figure 7).

Case 2: Resistive body

The geometry of the body remains the same as that
of Model 1.1 (refer table 2) and table 1 contains
physical property distribution and source details.
Two source positions are considered i.e., S1 and S0
(refer figure 2). Body centre is located correctly for
source S0 (figure 10) in comparison to that of S1
(figure 11). Depth and lateral extent of the body
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Figure 9. Regularised (α = 7.0) real component of com-
plex inverse analytic signal (RIAS) plot for error-prone
input pole-pole potential data (5% Gaussian noise) due to
Model 1.1 (conductive case).

Figure 10. Real and imaginary component plots of analytic
signal (RAS and IAS) for Model 1.1 (resistive case), when
current source is offset from body axis, P0P1 (S1 in figure 2).
Source is at S1 (refer figure 2).

determined from figures 12 and 13 respectively are
presented in table 3.

7.2 Model 1.2 and Model 1.3

The earlier exercise is repeated for Model 1.2 and
Model 1.3. For the sake of brevity, the plots of RAS
and IAS are not reproduced here. The depth to
top and lateral extent of the body are determined
from AAS and RIAS plots (figures 14 and 15) for

Figure 11. Real and imaginary component plots of analytic
signal (RAS and IAS) for Model 1.1 (resistive case) (refer
tables 1 and 2), when current source is at S0, projection of
body axis, P0P1 (refer figure 2).

Figure 12. Amplitude of analytic signal (AAS) plot for
Model 1.1 (resistive case) and computation of depth to top
surface of the body by Nabighian’s depth rule. MN is full
width. MN/2 is the estimated depth to top (refer table 3).
Source is at S0.

Model 1.2 and (figures 16 and 17) for Model 1.3
are included in table 3.

8. Field example

The objective is to locate and determine lateral
extent of an iron pipe of small diameter, which
drains waste water from our institute’s swimming
pool located on the campus (Lat. 29052′ 11.9′′,
Long. 770 53′ 37.1′′E).
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Figure 13. Real component of complex inverse analytic sig-
nal (RIAS) plot for Model 1.1 (resistive case) (refer tables
1 and 2). Its zero crossings at P and Q identify the lateral
edges of the body (refer table 3). Source is at S0.

Figure 14. Amplitude of analytic signal (AAS) plot for
Model 1.2 and computation of depth to top surface of the
body by Nabighian’s depth rule. MN is full width. MN/2 is
the estimated depth to top (refer table 3). Source is at S0.

The geometric details of the drain pipe as gath-
ered from the institute records are included in
table 4. A separate VES is performed in the region
to assess the background conductivity of the soil
cover within which the pipe is embedded. Fig-
ure 18(a) provides a schematic field layout in plan
and figure 18(b) bears the depth-section includ-
ing the current pole positions. Pole-Pole electrode
configuration is used here. The separation between
two adjacent stations (say 1N and 2N) is 0.1524 m.

Figure 15. Real amplitude of complex inverse analytic sig-
nal (RIAS) plot for Model 1.2 (refer tables 1 and 2). Its zero
crossings at P and Q identify the lateral edges of the body
(refer table 3). Source is at S0.

Figure 16. Amplitude of analytic signal (AAS) plot for
Model 1.3 and computation of depth to top surface of the
body by Nabighian’s depth rule. MN is full width. MN/2
is the estimated depth to top (refer table 3). Source is at
S0. Regularised AAS for Model 1.2 (conductive case). Refer
tables 1 and 2.

The remote current and potential pole positions
are also indicated in figure 18(b) for P1 current
pole (source). For current source pole at P1 and P2
positions, the current sink, C2 is at infinity for all
practical purposes (P1C1 = 11 m). Pole-Pole sur-
vey is carried out for three current source positions
as indicated in figure 18(a). Henceforth, they are
denoted by P1, P2 and P3. P1 and P2 (current pole
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Figure 17. Regularised real amplitude of complex inverse
analytic signal (RIAS) plot for Model 1.3 (refer tables 1 and
2). Its zero crossings at P and Q identify the lateral edges
of the body (refer table 3). Source is at S0.

Table 4. Geometric details of the iron pipe and physical
details of the pipe and host medium.

Diameter ConductivityConductivity
of the Depth of of iron of host

pipe (m) pipe (m) pipe (S/m) (S/m)

Internal External 1.9 1.0e + 17 0.17
0.1524 0.2032

positions) are in the vicinity of the pipe, whereas
P3 is outside its influence. A staggered set of 64
stations is considered for P3. P3 is primarily meant
for getting the half-space response (in the absence
of inhomogeneity).

The pole-pole potential data for P3 is subtracted
from that of P1 and P2 current pole positions to
yield secondary potential distributions, which are
analysed by RES2AS.

The body (iron pipe) position and its lateral
extent are attempted for both P1 and P2 pole posi-
tions.

Position location of pipe

For current pole position P1 (situated at O in
figure 18(b)), RAS and IAS plots in figure 19
identify the body location whereas similar plot (fig-
ure 20) for an offset current pole position (situ-
ated at 2N in figure 18(b)) could not locate the
body.

Lateral extent estimation

The RIAS plot (figure 21) for current source P1
provides lateral coordinates and width of pipe. The
interpreted results are included in table 5.

9. Discussion

The adopted procedure rests on the analogy
between DC electrical and magnetic fields at a fun-
damental level. However, this analogy may break
down for causative sources with open electrical
interfaces, primarily because of inhomogeneous
electric polarisation set up by external current
source(s) as per charge accumulation concept (Li
and Oldenburg 1991).

The stabilised analytic signal algorithm,
RES2AS uses Tikhonov’s regularisation concepts
in spectral domain. The adopted regularising oper-
ator (equation 12) is equivalent to a dynamic
low pass filter, whose properties are determined
by smoothing function (equation 13) and regu-
larisation parameter, α. Equation (7) outlines an
integral equation as an equivalent of nth order
derivative for function u(t). This integral equation
is the first kind of convolution type and for exper-
imentally measured data, u(t), it belongs to ill-
posed class and equation (8) is an operator form of
equation (7).

For error prone input data, the estimated para-
meters in table 3 are in tune with error amount in
conductive model case (Model 1.1).

The adopted pole-pole electrode configuration
is a building block for all other in-line electrode
configurations and for electrical imaging it is pre-
ferred (Li and Oldenburg 1991, 1992). It is hoped
that the estimation of secondary potential distrib-
ution under field conditions could be more labour
intensive for other configurations, but the outlined
methodology may still work.

Lateral width determination

The real part of inverse analytic function (RIAS)
has helped in identifying the upper corners of the
square shaped targets. The zeroes of RIAS outline
the body edges, i.e., the intersection of RIAS curve
with horizontal drawn at zero value of RIAS pro-
vides the lateral coordinates of the target body.
There is no ambiguity and subjective judgement
involved in this procedure.

Depth determinations

Depth estimate is based on Nabighian’s depth rule
devised for magnetic anomalies. For its applica-
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Figure 18(a). Schematic plan view of field layout (pole-pole experiment). P1, P2 and P3 are current pole positions. Distance
between P1 and P2 is 0.3048m. Distance between P1 and P3 is 5.18m. C2 electrode is at a distance of 200m (to be at
infinity for all practical purposes).

Figure 18(b). Schematic depth section indicating the iron pipe (conductive horizontal cylinder) position and current pole
position for pole-pole experiment. Separation between potential electrodes is 0.1524m.

tion, depth to width ratio has to be within rea-
sonable limits. This depth rule is adopted for our
models in view of the similarity in basic govern-
ing equations of DC electrical and magnetic meth-
ods. Our inability to estimate properly the depth
to target body in the case study is because of
higher depth to width ratio in excess of unity.
There is a need for undertaking rigorous the-
oretical studies for evolving depth rules in DC
resistivity method for targets of closed geome-
try in accordance with Nabighian’s (1976) work.
Even though the theory of analytic signal method
envisages the depth and lateral coordinates esti-
mation for all body corners, in real practice it
may not, due to derivatives in analytic signal
emphasising shallow corners at the expense of the
deeper ones.

Similarity between secondary pole-pole potential
and residual magnetic anomaly

Geophysical literature is replete with instances of
drawing analogies and using them at empirical
level. For instance in low-frequency e.m profiling
(Telford et al 1976) over closed steeply dipping tar-
gets analogy is drawn with vertical and horizontal
magnetic anomalies over the same bodies.

Choice of regularisation

For the various numerical experiments, the AAS
and other quantities like RIAS, RAS, IAS are first
computed without regularisation (α = 0). If the
AAS is well behaved (with the maximum ampli-
tude centred), it is considered for further analysis.
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Figure 19. Real and imaginary component plots of ana-
lytic signal (RAS and IAS) for source position at P1 (refer
figure 18). Regularisation is invoked with parameter of reg-
ularisation, α = 5.0. Station interval is 0.1524m.

Figure 20. Real and imaginary component plots of ana-
lytic signal (RAS and IAS) for source position at P2 (refer
figure 18). Regularisation is invoked with parameter of reg-
ularisation, α = 5.0. Station interval is 0.1524m.

Else, regularisation is introduced and regularisa-
tion parameter (α) is changed in small increments
until AAS behaves properly. The AAS and other
quantities like RAS, IAS, and RIAS are then used
for interpretation.

The application of this method to other natural
electric fields like SP is not tested but it is hoped
that it may work as the governing equations are
similar.

The robustness of the algorithm is established
as evident in figures 7 and 8. This suggests the
applicability of the approach in field problems.

Figure 21. Regularised (α = 5.0) real component of com-
plex inverse analytic signal (RIAS) plot for (α = 5.0) for
source position P1 (refer figure 18). The inferred lateral
extent of the target is PQ.

Table 5. Interpreted results of field experiment
(refer figures 19, 20, 21 and 22).

Lateral
Position of the body extent of the body

Actual Inferred Actual(m) Inferred (m)

1S to 1N 1S to 1N 0.2032 0.2032

10. Conclusions

RES2AS has enabled the determination of key
body parameters like the depth to top and lateral
extent of the body and it worked for both con-
ductive and resistive targets. The study also estab-
lishes the stability of the algorithm. The depth
estimation is very delicate and it depends on the
width to depth ratio in an intricate manner. As the
estimated depth is only based on depth rule due
to Nabighian (1972), there are discrepancies. How-
ever, the lateral depth estimation is more reliable
and even for deep seated bodies, use of a strong reg-
ularisation has enabled determination of the body
edges fairly well.

RES2AS requires a total CPU time of 39.1 sec-
onds to compute the pole-pole potentials and ana-
lytic signal and its associated terms for a typical
51 × 101 grid size. Out of which, 37.2 seconds are
needed for computation of the forward response
(secondary potential) only. These computations are
made on DEC ALPHA 400 series (64-bit machine)
with 166 MHz processor and 64 Mb RAM. The
CPU time on a PC 486 did not exceed 1 minute
for computation of Stabilised Analytic Signal and
its associated terms with previous input.
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List of symbols

α Regularising parameter.
σ∗ Volume density of dipoles.
µi(i = 1, 2) Magnetic permeability of ith

medium.
ρi(i = 1, 2) True resistivity of ith medium.
Vi(i = 1, 2) DC pole-pole electric potential in

ith medium.
Vs Secondary pole-pole potential in

the first medium.
u(t) Arbitrary input function.
z(t) First derivative of u(t).
A(x, z) Analytic signal (AS) of secondary

DC pole-pole potential, us.
p Order of regularization.
f(ω, α) Tikhonov’s regularizing operator.
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