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The postseismic lithospheric deformation is usually explained as viscoelastic relaxation of the coseismic 
stresses. In general, for computing the postseismic deformation, the shear modulus (#) is relaxed, keeping 
either the bulk modulus (k) or the Lame parameter (A) flied. It is shown that the two assumptions yield 
significantly different results. The assumption k -- coust, implies that the medium behaves like an elastic 
body for dilatational changes which can be justified on physical grounds, but such a justification cannot 
be given in the case of the assumption )~ = const. 

1. I n t r o d u c t i o n  

The elasticity theory of dislocations has been success- 
fully applied in the recent past to model the coseismic 
lithospheric deformation. The postseismic deforma- 
tion can be explained as viscoelastic relaxation of the 
coseismic stresses. The correspondence principle of 
linear viscoelasticity has been widely used for calcu- 
lating the postseismic deformation. In the case of an 
isotropic material, there are only two elastic modulii. 
In the general case, both these elastic modulii should 
be relaxed for calculating the viscoelastic response of 
the medium. However, for simplicity, only the shear 
modulus (#) is relaxed, keeping either the bulk 
modulus (k) or the Lam6 parameter  (A) fixed. 
Rosenman and Singh (1973a,b), Singh and Rosenman 
(1974), Nur and Mavko (1974), Peltier (1974), 
Matsu 'ura  and Tanimoto (1980), Cohen (1980, 
1982), Matsu'ura et al (1981), Iwasaki and Matsu'ura 
(1981, 1982), Malosh and Raefsky (1983), Iwasaki 
(1985, 1986), Bonafede et al (1986), Dragoni and 
Magnaneusi (1989) and Pollitz (1992) assumed a 
constant value for the bulk modulus while computing 
the viscoelastic response. In contrast, Rundle and 
Jackson (1977), Rundle (1978, 1982), Thatcher and 
Rundle (1979) and Ma and Kusznir (1994a,b; 1995) 
assumed a constant value for the Lam6 parameter 
when computing the viscoelastic response. 

Singh and Singh (1990) gave a simple procedure for 
obtaining the quasi-static displacements, strains and 
stresses in a viscoelastic half-space under the assump- 
tion k = const. In this note, we give the corresponding 
results for A -- const, and show that the two assump- 
tions yield significantly different results. The assump- 
tion k- -cons t ,  might be more appropriate since it 
implies that the medium behaves like an elastic body 
for dilatational changes and like a viscoelastic body 
for deviatoric changes. This type of physical inter- 
pre ta t ion cannot be given for the assumption 

= const. 

2. A u x i l i a r y  f u n c t i o n s  for f ixed k 

In the expressions for the displacements, strains and 
stresses due to a source in a homogeneous, isotropic, 
elastic half-space, the elastic modulii occur in the 
following combinations: 

1 1 
Q 1 - - -  3k+4, 2,)' 

2# 2# 
Q 2 - - -  3 k + 4 #  3 ( A + 2 # ) '  

1 1 
Q 3 - - -  3k+  
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2it 2# 
Q 4  = 3 k  -{--------~ = 3 ( ~  + i t - - - - - - )  ' 

2it 2 2it 2 
3 k + 4 #  3 (A+2 i t ) '  

2 i t  2 2 i t  2 

Q6 = 3 k  - -  3 ( A  + i t ) '  0) 

where A, it are the Lam~ parameters and k = A+ 
(2/3)it is the bulk modulus. For example, the displace- 
ments due to a centre of dilatation in a half-space can 
be expressed in terms of Q1 and Q3 (we need only Q3 
for surface displacements). The displacement field due 
to a shear dislocation in a half-space can be expressed 
in terms of Q2 and Q4 (only Q4 for surface displace- 
ments). For stresses, we need Q2 and Qa in the case of 
a centre of dilatation and Q5 and Q6 in the case of a 
shear dislocation. 

Let the source-time function be the unit  step 
function H(t).  Then, from the correspondence princi- 
ple, the Laplace transform of the viscoelastic solution 
is obtained on replacing Q1 by 

1 1 
(2 )  

s[3/~(s) + 4/2(s)] = 3s[X(s) + 2#(s)] 

and similarly for the other functions. Here, s is the 
Laplace transform variable and A(s), #(s) and/~(s) are 
the transform elastic modulii. On inverting, we find 
that  Q1 in the elastic response is replaced by Ql ( t ) in  
the viscoelastic response, where 

(~l(t) = L_I [ 1 ] 
s{3 (s) + 

[3 = L-1 s{A(~)+2it($) ' (3) 

where L -1 denotes the inverse Laplace transform. 
Similarly, Qi (i = 2, 3, 4, 5, 6) are replaced by the 
auxiliary functions Qi(t). 

Singh and Singh (1990) derived the auxiliary 
functions for the Kelvin model, the Maxwell model  
and the SLS (Standard Linear Solid) when the 
medium behaves elastically for dilatational changes 
and viscoelastically for deviatoric changes. For this 
purpose, Singh and Singh (1990) relaxed the shear 
modulus, keeping the bulk modulus fLxed so that  

k, k = = - 

Defining 

qi(t) = O.,(t)/Q, (i = 1,2,3,4,5, '6), 

the results of Singh and Singh (1990) for the Maxwell 
model and SLS can be summarized as under. 

2.1 Maxwell model 

The constitutive equation for a Maxwell material is 

~ T  T B e  
-1- ~ = 2it ~-~, (4) 

where T is the shear stress, e is the shear strain and b2 
is the  relaxation time. The expressions for the 
auxiliary functions for the Poisson case (A = #) are 

Q1 : 9 -  4exp ( -5T) ,  

Q2 = exp ( -  ~ T), 

Q3 : ~ -  ~exp(-~  T), 

Q4 = exp(-.~ T), 

Q5 = ~ e x p ( ' T )  - ~exp( -~  T), 

Q6 = 6 exp( -T)  - 5 exp ( -  ~ T), (5) 

where T = t/t2 > O. 

2.2 Standard linear solid 

Assuming that  the elastic contants of the two springs 
of the SLS model are equal, the constitutive equation 
for SLS can be written as 

T + t2 ~ = i t  e + 2 t2  . (6) 

Assuming A = it, the expressions for the auxiliary 
functions are (T > 0) 

9 7 T )  ' q l  ----- ~ -- ~ ~xp~-- 

q2 -- 9 + 5 exp ( -  ] T), 

12 1 11 q3 -- iS - H exp ( -  i-~ T), 

q4 = 6 5 n T), + -isexp(- 
q5 : ~s + 9exp( -T)  - 25 7 e x p ( -  6 T), 

q6 = 3 +  3 e x p ( - T ) -  ~ e x p ( -  ~ T). (7) 

3. A u x i l i a r y  f u n c t i o n s  for  FLxed A 

The auxiliary functions when the Laxn6 parameter A is 
kept fixed can be derived similarly. In this case 

2 -  S = = + (8 )  

T a b l e  1. Limi t ing  values of  qi(t) as t --* c~. 

Maxwel l  m o d e l  SLS 

qi(t) 
k f ixed A fixed k fLxed A fixed 

9 3 

q2 0 0 

q3 6_ 2 5 

q4 0 0 

q5 0 0 

q6 0 0 

9 _3 
7 2 
__9 _3 
14 4 
12 _4 
11 3 
6 _2 
11 3 

�9 9 _3 
28 8 
3-- 1 
11 3 
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so t ha t  while relaxing the  shear modulus,  the  bulk 
modulus  also gets relaxed. In this case, we find the  
following expressions for the auxil iary funct ions for a 
Poissonian mater ia l  ()~ = #). 

3.1 Maxwell  model  

ql = 3 - 2 e x p ( - 1  T),  

q2 = e x p ( - 1  T) ,  

q3 = 2 -  e x p ( -  �89 T),  

q4 = exp( - -1  T),  

q5 = 3 e x p ( - T )  - �89 - 1  T),  

q6 = 2 e x p ( - T )  - e x p ( -  �89 T).  (9) 

3.2 Standard linear solid 

q�92 _ 3 __ l e x p ( _  2 T),  

1 2 T) ,  q2 = +  exp(- 

q3 = 4 _ 1 3 T),  g exp ( -  

1 a T) ,  q4 = + e x p ( -  

q5 = ~ _lg e x p ( -  g2 T)  + 3 e x p ( - T ) ,  

q6 = 1 _  �89  ~ T)  + e x p ( - T ) .  (10) 

Tab le  1 gives the  l imiting values of  qi(t) as t ~ oc. 
W e  note  t ha t  the  l imit ing values of qi when A is kept  
fixed are much  larger t h a n  the corresponding values 
when k is kept  fLxed. However,  in all cases, qi(t) ~ 1 
as t ---~ +0.  

4.  N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n  

Figure i shows the  var ia t ion  of the  auxil iary functions 
qi wi th  dimensionless t ime T = t/b2 for the  Maxwell  
model, assuming A = #. The  solid line is for ~ -- const. 
and  the  broken line is for k = const. We  no te  tha t ,  for 
all t imes, the values of  ql and  q3 when A is fLxed are 
much  larger t h a n  the  corresponding values when k is 
fLxed. As t --+ oc, q2 and  q4 tend to zero m u c h  faster  
unde r  the  a s s u m p t i o n  k =  const. T h e  difference 
between the  values of q5 and q6 under  the  two 
assumpt ions  is not  significant. 

Figure 2 shows the  var ia t ion  of qi for SLS. For  this 
model, for all t imes,  the  values of qi when  A is held 
fLxed are significantly larger t h a n  the  corresponding 
values when k is held fLxed. 

Since the  values of  the  auxil iary functions qi under  
the  two assumpt ions  are significantly different,  the  
choice between the  two assumpt ions  k - - c o n s t ,  and  
)~- -cons t .  b e c o m e s  i m p o r t a n t .  T h e  a s s u m p t i o n  
k - - c o n s t ,  seems more  relevant  since it is based on 

the physical  considerat ion t ha t  the  med ium behaves  
elastically for di la ta t ional  changes.  

R e f e r e n c e s  

Bonafede M, Dragoni M and Quareni F 1986 Displacement and 
stress fields produced by a centre of dilation and by a 
pressure source in a viscoelastic half-space; Geophys. J. R. 
Astron. Soc. 87 455-485 

Cohen S C 1980 Postseismic viscoelastic surface deformation 
and stress-1. Theoretical considerations, displacement and 
strain calculations; J. Geophys. Res. 85 3131-3150 

Cohen S C 1982 A multilayer model of time dependent 
deformation following an earthquake on a strike slip fault; J. 
Geophys. Res. 87 5409-5421 

Dragoni M and Magnanensi C 1989 Displacement and stress 
produced by a pressurized, spherical magma chamber, 
surrounded by a viscoelastic shell; Phys. Earth Planet. Int. 
56 316-328 

Iwasaki T 1985 Quasi-static deformation due to a dislocation 
source in a Maxwellian viscoelastic earth model; J. Phys. 
Earth 33 21-43 

Iwasaki T 1986 Displacement, strain and stress within a 
viscoelastic half-space due to a rectangular fault; J. Phys. 
Earth 34 371-396 

Iwasaki T and Matsu'ura M 1981 Quasi-static strains and tilts 
due to faulting in a layered half-space with an intervenient 
viscoelastic layer; J. Phys. Earth 29 499-518 

Iwasaki T and Matsu'ura M 1982 Quasi-static crustal deforma- 
tious due to a surface load; Rheological structure of the 
earth's crust and upper mantle; J. Phys. Earth 30 469-508 

Ma X Q and Kusznir N J 1994a Effects of rigidity layering, 
gravity and stress relaxation on 3-D subsurface fault 
displacement fields; Geophys. J. Int. 118 201-220 

Ma X Q and Kusznir N J 1994b Coseismic and postseismic 
subsurface displacements and strains for a vertical strike-slip 
fault in a three-layer elastic medium; Pure Appl. Geophys. 
142 687-709 

Ma X Q and Kusznir N J 1995 Coseismic and postseismic 
subsurface displacements and strains for a dip-slip normal 
fault in a three-layer elastic-gravitational medium; J. 
Geophys. Res. 100 12, 813-12, 828 

Malosh H J and Raefsky A 1983 An elastic response of the 
Earth to a dip-slip earthquake; J. Geophys. Res. 88 515-526 

Matsu'ura M and Tanimoto T 1980 Quasi-static deformations 
due to an inclined rectangular fault in a viscoelastic haif- 
space; J. Phys. Earth 28 103-118 

Matsu'ura M, Tanimoto T and Iwasaki T 1981 Quasi-static 
displacements due to faulting in a layered haif-space with an 
intervenient viscoelastic layer; J. Phys. Earth 29 23-54 

Nur A and Mavko G 1974 Postseismic viscoelastic rebound; 
Science 183 204-206 

Peltier W R 1974 The impulse response of a Maxwell earth; 
Rev. Geophys. Space Phys. 12 649-669 

Pollitz F F 1992 Postseismic relaxation theory on the spherical 
Earth; Bull. Seismol. Soc. Am. 82 422-453 

Rosenman M and Singh S J 1973a Quasi-static strains and tilts 
due to faulting in a viscoelastic half-space; Bull. Seismol. 
Soc. Am. 63 1737-1752 

Rosenman M and Singh S J 1973b Stress relaxation in a semi- 
infinite viscoelastic Earth model; Bull. Seismol. Soc. Am. 63 
2145-2154 

Rundle J B 1978 Viscoelastic crustal deformation by finite 
quasi-static sources; J. Geophys. Res. 83 5937-5945 

Rundle J B 1982 Viscoelastic-gravitational deformation by a 
rectangular thrust fault in a layered earth; J. Geophys. Res. 
87.7787-7796 



14 Sarva Ji t  Singh et al 

Rundle J B and Jackson D D 1977 A three-dimensional 
viscoelastic model of a strike-slip fault; Geophys. J. R. 
Astron. Soc. 49 575-591 

Singh K and Singh S J 1990 A simple procedure for obtaining 
the quasi-static displacements, strains, and stresses in a 
viscoelastic half-space; Bull. Seismol. Soc. Am. 80 488-492 

Singh S J and Rosenman M 1974 Quasi-static deformation of a 
viscoelastic half-space by a displacement dislocation; Phys. 
Earth Planet. Int. 8 87-101 

Thatcher W and Rundle J B 1979 A model for the earth- 
quake cycle in under thrust zones; J. Geophys. Res. 84 
5540-5556 

MS received 11 December 1996; revised P7 March 1997 


