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Static deformation of an orthotropic muitilayered elastic half-space by 
two-dimensional surface loads 
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Abstract. The transfer matrix approach is used to solve the problem of static deformation 
of an orthotropic multilayered elastic half-space by two-dimensional surface loads. The 
general problem is decoupled into two independent problems. The antiplane strain problem 
and the plane strain problem are considered in detail. Integral expressions for displacements 
and stresses at any point of the medium due to a normal line load and a shear line load, 
acting parallel to a symmetry axis, are obtained. In the case of a uniform half-space, closed 
form analytic expressions for displacements and stresses are derived. The procedure developed 
is quite easy and convenient for numerical computations. 
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1. Introduction 

The behaviour of horizontally layered elastic materials under surface loads is of great 
interest in engineering, soil mechanics and geophysics. Laminated composite materials 
are finding increasing applications in engineering. Many earthworks, such as fills or 
pavements, consist of horizontal layers of materials of different types. Quite often 
natural deposits in the earth are also horizontally layered. However, the elastic 
properties of the material at a point of a layer may be different in different directions, 
i.e., the medium may be anisotropic. Most anisotropic media of interest in seismology 
have, at least approximately, a horizontal plane of symmetry. The most general system 
with one plane of symmetry is the monoclinic system. A material with three mutually 
perpendicular planes of elastic symmetry at a point is said to possess orthotropic or 
orthorhombic symmetry. This symmetry is exhibited by olivine and orthopyroxenes, 
the principal rock-forming minerals of the deep crust and upper mantle. Therefore, 
it is useful to determine the static field due to surface loads acting on the surface of 
an orthotropic multilayered elastic half-space. It may also find applications in the 
study of reservoir-induced seismicity. 

Garg and Singh (1985) studied the static deformation of an isotropic multilayered 
half-space by two-dimensional surface loads. Singh (1986), Garg and Singh (1987) 
and Pan (1989) assumed the multilayered half-space to be transversely isotropic in 
which there are five elastic constants. Chaudhuri and Bhowal (1989) extended the 
results of Garg and Singh (1987) by introducing nonhomogeneity. They assumed 
exponential type variations of elastic parameters with depth. The static deformation 
of a multilayered semi-infinite medium by surface loads has also been studied by Kuo 
(1969) and Small and Booker (1984). 

The transfer matrix approach is used in the present paper to solve the problem of 
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the static deformation of an orthotropic multilayered semi-infinite elastic medium by 
two-dimensional surface loads. In an orthotropic material there are nine elastic 
constants as against five in a transversely isotropic material considered by Garg and 
Singh (1987). The results for a tetragonal material with six elastic coefficients, for a 
transversely isotropic material with five elastic coefficients and for a cubic material 
with three elastic coefficients can be derived as particular cases. We have verified that 
the results for a transversely isotropic material derived as a special case coincide with 
the corresponding results of Garg and Singh (1987). 

2. Basic equations 

In the cartesian coordinates (x~,x2,x3), the equations of equilibrium for zero body 
forces are 

63Pll 63P12 "k" 63p13 

OP21 0P22 ~ 3 3  
Ox---~- + -~x2 + =0, (2) 

~P31 0P32 0P33 = O, 
Ox---~- + ~ + ~ (3) 

where p~ is the stress tensor. Let (ul, u2, u3) denote the components of the displacement 
vector. The strain-displacement relations are 

% 2\Ox +~xi) (i,j=1,2,3). (4) 

For an orthotropic elastic medium, with coordinate planes coinciding with the planes 
of symmetry, the stress-strain relations are 

- P11-] 
P22 / 

P23 / 
~ P13 / 
_Plz_l 

-cla c12 c13 0 0 0 -  
C12 C22 C23 0 0 0 
C13 C23 C33 0 0 0 
0 0 0 c44 0 0 
0 0 0 0 c5~ 0 

_0 0 0 0 0 %6- 

F e l l  -] 
e22 | 
e33 ] 
2e23 ] 
2e13 [ 

_2e12_1 

(5) 

A transversely isotropic elastic medium, x 3 axis coinciding with the axis of symmetry, 
is a special case of an orthotropic elastic medium for which 

C22~-~'C11' C23 = C13' C55 = C44, C66 =�89 (6) 

and the number of independent elastic constants reduces from 9 to 5. For an isotropic 
elastic medium 

C11~C22=C33=~,-t-21Z, C12 = C13 = C23 =/]~, C44= C55 =C66 = ~, (7) 

where )~ and # are the Lam6 constants. 



Static deformation of an orthotropic half-space 207 

We shall consider a two-dimensional deformation in which the displacement 
components are independent of xl so that O/Oxx = O. Then, the general problem is 
decoupled into two independent problems--plane strain problem (ul = 0) and the 
antiplane strain problem (u2 = u3 = 0). We discuss both the problems separately. In 
the following, we shall write (x, y, z) for (xl, X z, 13) and (u, v, w) for (u l, u2, u3). 

3. Antiplane strain problem 

For this problem 

u=u(y,z),  v = w - O .  

The non-zero strain and stress components are 

(8) 

where 
62 = (c55 c66P. 

We write (13) and (15) in the form 

sin ky 

fo 
The functions U, T are given by the matrix relation 

[ Y(z)] = [Z(z)] [K], 
where 

[ Y(z)] = [U(z), T(z)3 r, [K] = [A, B3 r 

(15) 

(16) 

(17) 

(18) 

(19) 

e;. a = �89 ej. 2 = �89 (9) 

P12 = C66(Ou/OY), P13 ---- C55(OU/OZ)" (10) 

Equilibrium equations (2) and (3) are identically satisfied and equation (1) becomes 

62 ( OZu/ Oy 2 ) + ( OZ u/ Oz 2) = 0, (11) 
where 

63 = c66/c55. (12) 

A solution of (11) is of the form 

f o  ( )dk ,  sinky (13) u= [Aexp( -61kz )+Bexp(61kz ) ]  cosky 

where A, B are functions of k only. From (10) and (13), we find 

fo ~ ( s i n k y )  p13 =62 [ - A e x p ( - 6 1 k z ) + B e x p ( 6 1 k z ) ] \ c o s k y j k d k ,  (14) 
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and [ . . . ] r  denote the transpose of the matrix [. . .] .  The matrix [Z(z)] is given below 

I exp(-61kz)  exp(61kz) ] 
[Z (z ) ]=  _ 6 2 e x p ( _ 6 1 k z  ) 02 exp (61kz) ] .  

(20) 

When the medium is isotropic 

61 = 1, 62 =/~ (21) 

and the matrix [Z(z)] becomes identical with the corresponding matrix given by 
Garg and Singh (1985). 

4. Plane strain problem 

In this case 

v = v(y, z), w = w(y, z), u = O. (22) 

The non-zero strain and stress components are 

e2z = dv/Oy, e33 = Ow/Oz, (23) 

l[Ov Owl, (24) 
e23 = + ay J 

P l l  ---- c12e22 + c13e33, (25) 

P22 = c22e22 + c23e33, (26) 

P33 = c23e22 + r (27) 

P23 = 2c44e23- (28) 

For the plane strain deformation, the equilibrium equation (1)is identically satisfied 
and equations (2) and (3) reduce to 

0p22 . 0P23 
ey + ~ = 0, (29) 

r 0p33 Oy + ~ - z  = O. (30) 

Therefore, there exists an Airy stress function U*(y, z) such that 

P22 = 02 U*/Og2, P23 = - 02 U*/OyOz, P33 = 02 U*/OY 2. (31) 

Using (31), we note that the equilibrium equations (29) and (30) are identically satisfied. 
The non-zero compatibility equation is 

~2r 02e33 e23 
0z 2 + ~y2 = 2020yOz " (32) 
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From equations (26)-(28), (31) and (32), we find 

t~ 4 U* t~ 4 U* a 4 U* 
83 ~ ' - -  "[- 86 ~)~-" ~- "Jr- 85 ~'~--- ~ -  = 0, (33) 

where 
83 = c22/c44, 84 = c23/c44, 85 = c33/c44, 86 -- 8385 - 842 - 28,,. (34) 

Let a and/ ' /be  given by the relations 

~t2 + f12 = 86/8~, ct2fl 2 = 83/85. (35) 

Then (33) is factorized as 

- -  + + ~ )  U* = O. (36) 

In the case of an isotropic medium 

~t = fl = 1 (37) 

and U* becomes biharmonic. 
A solution of (36) is of the type (assuming ~t r fl) 

= ; o  [,4 e x p ( -  etkz) + Bexp (akz) + Cexp( - flkz) + D exp(//kz)] U* 

x \ c o s k y ]  " (38) 

Corresponding to the Airy stress function (38), the stress can be obtained from (31) 
and then the displacements can be obtained by integrating the stress-displacement 
relations (25)-(28). Following Singh and Garg (1985) and Garg and Singh (1987), we 
write 

- cos ky V= fo V(Z)( sinky )kdk, (39) 

f o  . . . . .  f sin ky "~ w= vvtZJkcoskyjkdk, (40) 

p23= S(z) ~k2dk, (41) 
cosky 

- sin k y ]  

sin ky 2 

The functions I1", W, S, N are given by the matrix relation 

[ Y(z)] = [Z(z)] [K], (43) 
where 

[ Y(z)] = [ V, W, S, N] r, [K] = [A, B, C, D] r. (44) 
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The matrix [Z(z)] is given below 

where 

[-r le  -~ rte" r2e -~ r2e ~ ] 

_ I s l e  -~ - - s l e  ~ s2e -~ --s2e  l 
[Z(z)] - [  ~e_ 0 -- ~e~ fle-O - fle~ l '  

[ _ - e  -~ - e  ~ - e  -~ - e  ~ d 

C33~2+C23 C33fl2+C23 
rl---- , r 2 - -  , 

C33C22--C~3 C33C22--C~3 

(45) 

C23~ "1"-(r C23fl+(C22/fl ) 
S I - -  , S 2 . . . .  , (46) 

C33C22--C~ 3 C33C22--C~3 
O=~kz ,  ~ = f l k z .  (47) 

5. Deformation of  a multilayered half-space 

We consider a semi-infinite elastic medium made up of p -  1 parallel homoger/eous 
orthotropic elastic layers lying over a homogeneous orthotropic elastic half-space. 
The layers are assumed to be in welded contact implying the continuity of the 
displacements and stresses across the interfaces. The layers are numbered serially, the 
layer at the top being layer 1 and the half-space, layer p. The origin of the cartesian 
coordinate system (x, y, z) is taken at the boundary of the semi-infinite medium and 
the z-axis is drawn into the medium, The nth layer is bounded by the interfaces 
z = z ._  1 and z = z. and is of thickness d. where d. = z. - z ._  1. Clearly z o = 0 and 
zp_ 1 = H, where H denotes the depth of the last interface [figure 1]. 

Zo ;Y 
Loyor 1 

Z1 

Zn-1 

Zn 

7 

Figure 1. Multilayered half-space. 
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5.1 Antiplane strain deformation 

Introducing the subscript n to the quantities related to the nth-layer, (18) becomes 

[ Y.(z)] = [Z.tz)] [ g . ] ,  (48) 

where the matrix [Z.(z)] is obtained from the matrix [Z(z)], given in (20) on replacing 
61 and 6 z, respectively, by the corresponding elastic constants of the nth layer. 

It has been shown by Singh (1970) and Singh and Garg (1985) that the deformation 
fields at the boundaries of the consecutive layers satisfy the relation 

[ Y.-l(z. - l)] = [ a . ] [  Y.(z.)], (49) 

where the transfer matrix [a .]  is 

ch(hlkd) -6 i l sh(6 tkd)]  
-62sh(61kd) ch(61kd) J (50) 

with ch = cosh and sh = sinh. 
For the p-th layer, Bp = 0, otherwise Up(z)--* oo as z--* ~ .  Making a repeated use 

of (48) and (49), we find 

[ U 1 (0), T 1 (0) ] r = [F] [A v, 0] r, (51) 
where 

[F] = [a I ] [a2] [a3] ... [ap_ l ] [Zp(H)]. (52) 

When the surface load is prescribed, the boundary condition is of the type 

Pl 3 = f(Y) at z = 0. (53a) 

We write [see, (17)] 

fo ~ - (2:kkY) 2 fo~ ( s i n k y )  = dy. (53b) f(y) = f(k) k dk, f(k) ~ f(Y) cos ky 

This determines the value of Ap: 

Ap = f(k)/F21. (54) 

The deformation field at any point z of the nth layer can be obtained from the relation 

[U.(z), T.(z)] T = [G(z)] [ A r  0] r, (55) 
where 

[a(z)] = [a.(z. - z)] Ea.+ l 3"" [ap_ t ] EZp(H)]. (56) 

From the relations (16), (i7), (54) and (55), the stress and the displacement at any 
point of the nth layer caused by the surface load acting on the boundary is given 
below in the integral form: 

GI 1 

Pl3 = fO ( ~ ]f(k)(sink'y ]k  dk. (58) 
\ r21  / \ cos  r y /  
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5.2 Plane strain deformation 
When the surface load is prescribed, the boundary conditions are of the form 

P23 = Y(Y), P33 = h(y) at z = 0. (59) 

We write [see, (41) and (42)] 

k 2 ~o _ cos y 2 g(Y)= fo ff(k)(-sinky) k dk, f ~ g(y)(_cosky \sinky,/ dy, (60) 

h(y) I~g(k)(sink, Y~k2dk, h(k)= 2 f o  ( s i n k y )  = dy. (61) do \cosry/ ~ h(y) cosky 

Proceeding as in the case of the antiplane strain deformation, the expressions for the 
displacements and stresses at any point of the nth layer are: 

1 - cos ky 
V=fo[G11(F43~-F33h)+G13(F31h-F,l~)]f~-( sinky )kdk, 

(62) 

w =  f o  [G21(F4ag- Fa3h-) + G23(F31h- F'tlg)]"-x(sink'Ykcos ry/~kdk' (63) 

where 

P23 = f~O 

P33 ---- fOOo 

1 cos ky 2 
[G31(F43g-F33h)+G33(F31h-F410)]f~- (_sinky) k dk, 

(64) 

[G41 (F,3 ~ -- F33 ~') -Jr- G43(F31 h-- F410)'] f~-1 ( s i n ?  ~k2dk, 
\ cos  ry / 

(65) 

f~ = F 3 t  F43 - F 3 3 F 4 1 .  (66) 

The transfer matrix [an] for the plane strain problem is given in Appendix I. 

6. Specified surface loads 

In this section, we consider a few particular cases in which the surface loads are 
specified. 

6.1 Antiplane strain problem 
Let R be the shear line load per unit length in the positive direction of the x-axis. If 
the line load passes through the origin, the boundary condition is 

Pt3 = -- R6(y), (67) 
where 

,fo ~ t~(y) = n cos kydk (68) 
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is the Dirac delta function. From (53), (67) and (68), we find that 

f ( y )  = - R6(y), f ( k )  = - R /nk  (69) 

and that we must choose the lower solution, cos ky, in the expression (13) for u and 
the corresponding solution in all the succeeding equations related to u. Substituting 
this value of f ( k )  in (57) and (58), we obtain 

u = cos k y k  - i dk, (70) 

-R f:/G~,'~ p,3=~ t ~ 2 1 j c o s k y d k .  (71) 

6.2 Plane strain problem 

In this case, we consider the particular cases of a normal line load and a shear line load. 

Normal  line load: Let a normal line load P per unit length be acting in the positive 
z-direction [figure 2]. Then the boundary conditions are 

P23-----0, P33 = - P 6 ( y ) .  (72) 

From (59)-(61) and (72), we find 

~(k) = O, h(k) = - P /nk  2 (73) 

and that we must choose the lower solution, cos ky, in the expression (38) for U* and 
the corresponding solution in all the succeeding equations related to U*. From (73) 
and (62)-(65), we find 

_ p f ~ o  v - - - - -  [GI3Fal - G l l F 3 3 ] k - l ~ - l s i n k y d k ,  (74) 
g o 

/ 
,, " ,,,r 

/ 

/ 

Figure 2. 
medium. 

Z 
Normal line load P per unit length acting on the boundary of a semi-infinite 
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W ---- [G23 F31 - G21 F33 ] k -  1 D -  1 cos ky dk, (75) 

, fo ~ P 2 3 = ~  - [G33F31 -G31F33]fUXsinkydk, (76) 

P f ~  [G43F31 - G41F33]~  -1 coskydk. (77) P33- rE 

Tangential line load: We assume that a shear line load Q per unit length is acting in 
the positive y-direction [figure 3]. Then, the boundary  condit ions are 

P23 = -- Q6(y), P33 = 0 at z = 0. (78) 

F rom (59)-(61) and (78), we obtain 

~j(k) = - Q/nk 2, h(k) = 0 (79) 

and that the upper  solution, sin ky, in the expression (38) for U* must  be taken. As 
before, we obtain the following integral expressions for the displacements and stresses 
caused by a shear line load: 

v = ~  [GllF43-G13F41]k-l~-Xcoskydk, (80) 

-Qfo ~ w = [G21 F43 - G23 F41 ] k -  1 f~- 1 sin ky dk, (81) 

P23--~--Qf~[G31Fa3-G33F41]~-lcoskydk, (82) 

P33 --: ---~Q fO [G't1F43-G43F41]~-asinkydk" (83) 

/ 
/ 

Figure 3. 
medium. 

Z 

Tangential line load Q per unit length acting on the boundary of a semi-infinite 
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7. Uniform half-space 

In the previous section, we have obtained the integral expressions for the displacements 
and the stresses at an arbitrary point of the medium caused by the surface line loads 
acting on the boundary of an orthotropic elastic multilayered half-space. These 
integrals can be computed numerically by using the method given by Jovanovich 
et al (1974a, b). In the case of an orthotropic elastic uniform half-space (p = 1) the 
integrals giving the stresses can be evaluated anlytically. For a half-space 

[F] = [Z(0)], [G] = [Z(z)] (84) 

7.1 Antiplane strain problem 

[ F ] =  - 6 2  62 [ G ] =  - 6 2 e x p ( - 6 1 k z )  62exp(61kz)_]" (85) 

From (10), (70), (71) and (85), we obtain, using the integrals given in Appendix II, 

u = - (R/2962) log(y a + 6~z2), (86a) 

P13 - ~ y2 + 6~z ~ , (86b) 

R61[ y ] (86c) 
P12 - -  ~ y2 + 6~Z ~ �9 

In the case of an isotropic elastic half-space 61 = 1~ 62 = tt and (86a-c) reduce to 

- R  y 
- - R  z = ~--(y-T-~z2~.\ / (87) 

7.2 Plane strain problem 

Here 

[ F ]  = [ Z ( 0 ) ]  = - s l  s 2  , 

1 - 1  1 

and [G] = [Z(z)], where [Z(z)] is given in (45). 

t a  = / ~  - ~ ( 8 8 )  

7.2a Normal line load: From (45), (74)-(77) and (88), we find 

v -  7r(fl- ~ flrl tan-1 ~zz - ctr2 tan-1 

P 
w - [0ts 2 log (y2 + f12z2 ) _ fls 1 log (y2 + a2z2)-i, 

27r(/3 ~ )  

(89) 

(90) 
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otflP [ y y ] 
p,3 - n(; - ~) L ~  + ~ 2z~ / + ~2z~ J' 

(91) 

~flP r z z ] 
P33 -- n(fl--S_ =) Ly2 + f12z2 y2 + ~2z2 _]. (92) 

When the half-space is isotropic, ct = fl = 1 and the stresses given in (91) and (92) reduce 
to 

z3] 
P23 - -  ff (y2 _~_ Z2)2 ' P33 = T (y2 ..]_ Z2)2 (93) 

which are identical with the corresponding results of Sneddon (1951). 

7.2b Tangential line load: From (45), (80)-(83) and (88), we obtain 

Q 
v = [r I log(y 2 + at2z 2) - r2 log(y 2 + f12z2)], 

2n(fl - ct) 

(') ,(;z)] w=n( ~) st tan-~ ~zz -s2tan- 

(94) 

(95) 

_ X_ r -z , , 2z ]  
p23 n( a) Ly 2+a2z2 y2+f12z2 , (96) 

P33 7~( Or) y2 +--f12Z2 y2 + ~2Z2 " (97) 

For an isotropic uniform half-space, stresses given in (96) and (97) become 

P ~ 3 -  n (v 2 + z 2 ) 2  , P 3 3 -  n L(y 2 + z 2 )  2 " 

These stresses coincide with the corresponding results given by Garg and Singh (1985). 

8. Conclusions 

We have solved the problem of the static deformation of an orthotropic multilayered 
elastic half-space by two-dimensional surface loads. The results for a tetragonal 
medium can be found by putting 

C 2 2 ~ C 1 1 ,  C 2 3 ~ C 1 3 ,  C55~C44. 

The results for a transversely isotropic medium can be obtained by taking 

C 2 2 = C 1 1 ,  C23 = C I 3  , C55 = C 4 4  , C66 =�89 --C12 ). 

The results for a cubic material can be obtained on taking 

C 2 2 ~ C 3 3  : C I I  , r162 r �9 
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While the prob lem of  a transversely isotropic mater ial  has been discussed by G a r g  
and Singh (1987), the solutions of  the p rob lems  for te t ragonal  and  cubic mater ia ls  
have not been repor ted  in the literature. 
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Appendix I: Transfer matrix for the plane strain problem 

From (45), we write 

where 

We find 

where 

[Z(z)] = [z(o)] IX(z)], 

[X(z)]  = e ~ 0 [Z(0) ]  = 
0 e -* ' 
0 0 e*_l 1 

[z(0)] -  ' I 
-~1 ff't2 -s2t'12 -r2f~t- I 
- t ~  - f ~  s~n~  -r~f~t / 

= ~ t  - x t ' ) 2  s tY2 rtf~l  [ 
t ) l  ~f~2 - stt)2 rift1 1 

f~l = [2(r ,  - r l ) ]  -1, f~2 = [2 ( f s l  - as2)] - l .  

(A.1) 

rl r2 

- -  - -  S 2  Sl S2 
- ct f ,. (A.2) 

- 1  - 1  

Fol lowing Singh (1970), we find that  the transfer matr ix  [ a . ]  is given by 

[ a . ]  = [ Z . (  - d . ) ]  [ Z . ( 0 ) ] -  t. 

(A.3) 

(A.4) 

(A.5) 

The elements of  the matr ix  [ a . ]  are (omitt ing the subscript  n) 

(11) = 2 ( -  r 1 ch0  + r2 ch ~b)D 1 , 

(13) = 2 ( -  r l s z shO + r2s 1 sh q~)f~ 2, 

(21) = 2 ( -  s I sh0  + s2 sht#)l) t, 

(23) = 2sl s2( - ch 0 + ch $) f l  2, 

(31) = 2 ( -  ctsh0 + f s h  t#)fl t, 

(33) = 2 ( -  ~ts2 ch 0 + fis t ch ~ )~2 ,  

(41) = 2(ch 0 - ch ~ )Dt ,  

(43) = 2(s2 sh 0 - sl sh ~b)fl2, 

(12) = 2(fir I sh 0 - r 2*t sh ~)t)2, 

(14) = 2 ( -  ch 0 + ch ~) r  I r2f~ 1 , 

(22) = 2(Sl rich 0 - s2*tch ~)f12, 

(24) = 2 ( -  s 1 r2 sh 0 + s2r 1 sh ~b)t)l, 

(32) = 2, tf(ch 0 - ch r  2, 

(34) = 2 ( -  *tr2 sh 0 + f r  I sh ~b)iat, 

(42) = 2 ( -  f sh 0 + ~t sh r  

(44) = 2(r 2 ch 0 - r 1 ch ~b)f) t . 

In (A.2) 0 = ctkz, c~ = flkz while in (A.5) 0 = ctkd and ~b = flkd. 
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Appendix II (z > 0): Integrals used 

(1) k - 1 exp ( - kz) cos ky dk = - ~ log (y + z 2), 

(2) f ~  k-  1 exp ( - kz) sin ky dk = tan- 1 (y/z), 

(3) ~ exp ( -  kz)cos ky dk = z/(y 2 + z 2), 

~ e x p ( -  kz) ky = + ). sin dk y / (y2  Z 2 (4) 
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