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Abstract. The paper [aresents a computational algorithm designed for efficient 
modelling of apparent resistivity over complex geological structures, using finite 
element method. The algorithm can be used to study variations of apparent resisti- 
vities using any electrode configuration at any point on the earth's surface, not 
necessarily regular. A Schlumberger apparent resistivity sounding curve over a 
buried anticline, is presented here as an example and compared with the corres- 
ponding analytical curve, to demonstrate the correctness of the FEM alg,~rithm. 

The various potential derivatives required for the computation of apparent 
resistivities evaluated through different electrode configurations have been obtained 
by calculating the 'influence coefficients' using reciprocal theorems, an approach 
successfully applied in structural engineering. In essence, a set of self balancing 
nodal currents, obtained from the appropriate derivative(s) of the shape functions 
of the elements contributing to the point of observation, is applied as the load vector. 

The resulting quantities corresponding to the potential distribution in tradi- 
tional finite dement method, then, turn out to be the potential derivatives at the 
point of observation for different positions of the current electrodes. These are 
known as influence coefficients. 

The continuum nature of the domain beyond the region of interest has been 
modelled by using ' infinite elements' across which the potential is assumed to decay 
exponentially. 
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1. Introduction 

The  de resistivity response o f  a buried s tn :c ture  o f  arbi t rary shape, to a given 
electrode configt:ration, is generally ob ta ined  by t.sing numerical  me~hods like the  
finite element (FE) ( C o g g o n  1971, 1973) o r  finite difference (FD)  (Mufl i  1976, 1978, 
1980; Aiken et al 1973). In  the usual  appl icat ion o f  these methods  to  dc pro-  
blems, the  finite region o f  interest is discretised and values o f  the potent ial  are 
approximated  at the  nodal  points  for a given current  distribution. But,  whilst 
modell ing for  vertical electrical sounding,  orte has  to calculate afresh, the  influence 
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coefficients for the potential derivative (first derivative in the case of Schlumberger 
and second derivative in the case of  dipole sounding) every time the current elec- 
trodes are moved to a new position. Mufti (1976, 1978, 1980) presented an effi- 
cient FD algorithm using the reciprocity theorem to obtain the vertical sounding 
apparent resistivity curve for the Schlumberger configuration. 

The FEM provides a generalised approach to the determination of influence 
Reld irrespective of  the nature of  the physical field involved. The influence coeffi- 
cient technique has been successfully applied to structural engineering problems 
such as analysis of  the effects of  moving loads on bridge. 

The FE1V[ algorithm presented in this paper is a simple modification of the stan- 
dard FE formulation. It makes use of the reciprocal theorem of matrices and 
enables one to evaluate the influence coefficients, for any derivative of the poten- 
tiM, at any point of  the region and for any electrode configuration, in a single run. 

Further, to improve the efficiency and versatility of the algorithm, an t:ncon- 
ventional ' infinite element' has been used. Using infinite elements, one can study 
the problem even in an infinitely extended domain without having to truncate it 
with arbitrary boundaries. 

2. FE formulations 

In resistivity exploration, if the line of measurement is perpendicular to the strike 
and if current is applied to the ground by means of  infinite line electrodes parallel 
to it, the problem can be treated as being purely a two-dimensional one. Even 
though resistivity surveys are normally carried out using point sources the study 
of the corresponding 2D problem can yield significant information (Mufti 1978) 
and is found quite useful in interpretation. The formulation presented here is 
quite general which is equally applicable to three dimensions. However, the 
problem dealt with here is posed in two dimensions simply to keep the cost of  com- 
putations low. 

The two-dimensional potential problem can be represented by the equation: 

+ + s :  (4) = 0. (1) 

where ff is the unknown potential, ao and au are conductivities in the x and y direc- 
tions respectively and S is the current source term. Equation (1) has to be solved 
in the I2 domain with boundary F given by 

where/"1 and F 2 represent component boundaries. On the entire boundary one 
of the following conditions has to be satisfied 

r = ~b0 on /'1, (2a) 

= qo o n  Q .  (2b) 

To approximate the numerical solution of  equation (1), the entire domain t2 
is divided into l homogeneous finite sub-domains (finite element), ~2", and Galerkin 
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method of weighted residuals is used for the FE formulation. Zienkiewicz (1977) 
gives a detailed description of  FE technique while a comprehensive account of the 
weighted residual method of Galerkin is given by Finlayson (1972). A brief deri- 
vation of FE equations is however included here for the sake of completeness. 

Let the unknown function ff be expressed in each subdomain, t2 ~, in an approxi- 
mate form as 

110 

r = 27 N , ~ ,  = [N] { r  (3) 

where n' is the number of  nodal points in the subdomain, r are the unknown 
nodal potential values and N~?s are the shape or trial functions which approximate 
the spatial dependence of ~ over the element. In the present analysis, parabolic 
isoparametrie shape functions belonging to the Serendipity family (Zienkiewicz 
1977) have been used. 

Substitution of the above approximate value o f r  in equation (1) yields a residual 
A(~b). Galerkin's method of  weighted residuals then yields the approximating 
equation in an integral form as follows: 

? 
j N+A(~b) dQ~ 
f~e 

fe 

f~e 

+ f N~ Sd~ e = O 
f e  

j - - 1 , . . . , n  e (4) 
since, for any integrable function 

F = 2F~, IXF~dQ = 21F~ dI2, 

Assuming ao, a. to have a constant value over an element and integrating equa- 
tion (4) by parts or using Green-Gauss theorem we get 

~[, [ f (a, eN' ON*" dx)  -- (a, ON~ oN' 

f i e  f ie  

0y 0y ) 
fie 

j = 1 , . . . , n  ~ (5) 

On the boundary of the domain the contribution due to first integral vanishes 
while on the interelement boundaries its contributions are cancelled during 
assembly of  all element equations. So, we can write 

~,=, a" ~ ~ + cry Oy Oy l (o, dr2 e -- N~ Sd 12 ~ =- 0 
fl~, f ie 

j = 1 . . . . .  n e. (6) 
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Assembling the different element equations, like (6), one obtains a system of N 
equations written in a matrix form as follows: 

[K] {r = { f } ,  (7) 

where N is the total number of nodes in the entire domain s and 

f~e 

f~ = Z f," = ~ N,, SdI2 ,  (8b) 
f~e 

p =  1 . . . . .  n ~ ; q =  '~ . . . .  , n ' ; i =  1 . . . .  , N ; j =  I , . . . , N .  (9) 

Eqv.ations (7) and (8) allow the values of the potential to be evaluated by algebraic 
solutions under the condition that at least one element of the vector {~b} is specified 
initially. This restriction can be circumvented by designing a suitable boundary 
condition described later in this paper. 

Once the potential values q~'s are known, the potential derivatives can be 
evaluated from equation (3). Various potential derivatives q~,, 4)~, etc. are, then, 
obtained by differentiating equation (3). Accordingly, 

~,,, = [ y - u / a x " - ]  {,/,;o = [g.A { , / , } ' ,  

and so on. Equation (10) can be rewritten in matrix form 

{,/,,,} = [G] { , #y ,  

where, {4~d} =[4 ~, ~b, 4'~, q~,, ~b~y] r , 

[c] = {[~,V [g~] [gL] [gL] [gL]} ~. 

(10a) 

(lOb) 

(10c) 

(11) 

(12a) 

( t2b) 

2 . 1 .  Influence coefficients 

The influence coefficient technique can be used to evaluate the potential derivative 
at a specified node when unit current is applied at any other node. The effect 
of  two current electrodes can then be obtained by using the superposition principle. 
To illustrate the technique, calculations for the first order potential derivative in 
the x direction, are presented below. One could similarly calculate any other 
derivative. 

Let a unit current be fed at the ith node so that all but ith element of the load 
vector { f )  in (7) are zero and the ith element, is unity, i.e. 

{ f )  = (u}, = [00 . . .  0 [ 0 . . .  01 r. (13) 

Equations (7) and (13) then give an expression for {~b} as 

{~} = [K]-' {u},. (14) 
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Premultiplying equation (14) by [g,] and using equation (lOa) one obtains 

4, = [g~] [K]-~ {~},. 

Since [K] is a positive definite symmetric matrix, using the reversal theorem on 
the transpose of a product we have, 

~ = {u}/[K] -1 EgW, 

or qSo = {u}~ T {r} = r,, 

where {r} = [K] -1 [g,]r. 

(15) 

(15') 

(16) 

Thus, when unit current is fed at the ith node the potential derivative at the point 
under investigation is nothing but the ith element of the vector [r] ~hich, indeed, 
gives the potential derivative at the specified node when unit current is fed at any 
other node and this would serve our purpose for computing the vertical sounding 
apparent resistivity curve. 

The vector [r] is obtained from equation (16). Rewriting equation (16) as 

[K] {r} = [g.l r, (17) 

and comparing (17) with equation (7) one observes that the two are similar, so that 
the conventional FE algorithm, itself, yields the vector {r} when the load vector 
consists of the requisite derivatives of the shape functions of elements which contain 
the specified node. Thus, only one additional subroutine which would generate 
the correct load vector, is required to get the vertical sounding resulls. 

2.2. Infinite element 

The efficiency of the algorithm has been improved by using inttnite elements beyond 
the boundaries of the region of interest. Infinite elements have been successfully 
employed by Bettes (1977), Bettes and Zienkiewicz (1977). 

The shape functions over infinite elements are based on Lagrange polynomials 
multiplied by exponential decay terms. The parent shape of the parabolic infinite 
element used in this analysis is shown in figure 1. 

In this element the variation along the 7/-axis is represented by the conventional 
one-dimensional shape function while the variation along the ~-axis is represented 
simply by an exponential factor exp (-- a~), a being the decay constant which con- 
trols the rate of decay of the potential. A typical shape function is 

N , ( ~ ,  ,7) = n,('~) exp ( - a O ,  (18) 

n~ (n) being the one-dimensional shape function. 

~ C  

Figure 1. Parent shape of an infinite element. 
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Using this definition of  shape functions and integrating analytically in the 
~-direction, one can obtain the elements' stiffness and incorporate that in equa- 
tion (7). Thus, the effect of  infinite domain is accounted for through the nodes 
of  the element. 

2.3. Boundary conditions 

In situations where clear Dirichlet boundary condition cannot be assumed for want 
of  symmetry or other simplifying properties, an approximate boundary condition 
can be designed by exploiting the fact that at very small distance from the current 
electrode, the electric potential can be deduced by assuming that the earth behaves 
as a semi-infinite medium of resistivity equal to that of  the first layer. 

2.4. A modelling example 

In order to check the algorithm, an anticlinal structure of  infinite resistivity buried 
in a homogeneous medium of resistivity 512-metre (vide figure 2) was studied for 
the Schlumberger array. This model was chosen because an analytical expression 
for apparent resistivity over it was already available (Nek Ram 1976). The equa- 
tion was solved for various values of the decay constant a. For a ----- 0.0135 the 
analytical and numerical curves of  apparent resistivity were found to be ,in cJose 
agreement as shown in figure 3. 

Although, the Dirichlet boundary condition was available in this case along the 
line of  symmetry, the solution was also obtained using the boundary condition 
described above. These two solutions were also found to be in quite close 
agreement. 

3. Conclusions 

The influence coefficient algorithm presented here provides an efficient means for 
the direct computation of  an apparent resistivity curve for vertical electrical sound- 
ing over a buried structure of  arbitrary shape. The technique can be used in res- 
pect of  any electrode configurations desired. The use of  infinite element shape 
functions has improved the quality of results and made it more efficient for deep 
electrical soundings. The algorithm can also be used to account for weathered 
layers. This versatile algorithm requires no significant additional memory but 
does require 7 see. of additional CPU time, on an IBM--370/145 computer 
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Figure 2. The anticlinal model studied. 



Finite element modelling for resistivity evaluation 49 

10000 

1000 

E 

E 
t -  

O 

100 

- -  1 2 =  

--- 0 . 0 1  / 
I . . . .  0,0135 

- - - -  0 0 3  / 
-- -- 0.05 ---o,o ///j 

_ - . . . . . . . .  I O0 
Theorehc~ 

/ J; 7" 

lo I .I 1 
10 100 1000 10000 

AB/2 ( meters} 

Figure 3. A plot of apparent resistivity Pa vs. half electrode spacing AB/2 for 
different values of tho decay constant a. 

over the 2 rain and 20 see required for the conventional FEM algorithm whose 
use is however limited only to resistivity profile modelling. 
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