Synthesis and structural characterization of a diruthenium pentalene complex, [Cp*Ru{(Cp*Ru)2B6H14}(Cp*Ru)]

BENSON JOSEPHa, SUBRAT KUMAR BARIKa, SOUMYA KUMAR SINHAa, THIERRY ROISNELb and SUNDARGOPAL GHOSHb,c

aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036, India
bInstitut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1, 35042 Rennes Cedex, France
E-mail: sghosh@iitm.ac.in

Abstract. Treatment of nido-[1,2-(Cp*Ru)2(μ-H)2B3H7], 1 with five equivalents of Te powder led to the isolation of diruthenium pentalene analogue [{(Cp*Ru)2B6H14}(RuCp*)}, 2 and a metal indenyl complex [{(Cp*Ru)2B2H6C6H3(CH3)}], 3. The [{(Cp*Ru)2B6H14}] fragment in 2 may be considered as a true metal–boron analogue of η5η5-pentalene ligand (C8H6) and [(Cp*Ru)B2H6C6H3(CH3)] fragment in 3 is an analogue of η5-indenyl ligand. The solid-state X-ray structures were unambiguously determined by crystallographic analysis of compounds 2 and 3. Further, the density functional theory (DFT) calculations were performed to investigate the bonding and the electronic properties of 2a (Cp analogue of 2). The frontier molecular orbital analysis of both 2a and 2b (Cp analogue of [(Cp*Ru)B8H14(RuCp*)]) reveals a lower HOMO–LUMO gap indicating less thermodynamic stability.

Keywords. Ruthenium; boron; pentalene; indenyl; metallaborane.

1. Introduction

Over the past several decades, significant research efforts in the field of transition metal boron chemistry have established several sandwich type metallaborane compounds.1–4 In the majority of these boron containing compounds,1–4 the polyhaptot π-ligand based sandwich complexes, metal atoms are sandwiched mainly by two types of polyhaptot π-ligands (Chart 1).1–3 The first such type of sandwich molecule [{(η5-C5H5)FeB2H6}] was reported by Grimes and coworkers in 1977.1 Later in 1984, Grimes reported [{(η5-C5H5)CoB4H8}]2 that showed the connection of isolobal analogy between (η4-C4H4) and (η4-B4H8) fragments. Fehlner and coworkers in 2005 reported a novel dinuclear ruthenium–pentalene analogue [{(Cp*Ru)B3H11(RuCp*)}],3 Successively, they reported [{(η5-C5Me3Ir)B2H6}] which was an analogue of [{(η5-C5H5)2Fe}], in which [B2H6]2− moiety is isoelectronic with the [η5-C5H5]− ligand.4 As a part of our research efforts in the field of transition-metal–boron chemistry, we have isolated and characterized a wide range of metallaborane compounds of group 4–95–10 starting from novel boron-rich metallaboranes such as 15- and a 16-vertex rhodaborane clusters10b–c to complexes with a one boron, for example, σ-borane,9a–d boryl,9e trimetallic bridging borylene9f–g,9h,10d complexes. Recently, we have synthesized various metallaheteroboranes through the activation of heterocumulenes9b, diaryl–dichalcogenide ligands9a–c or chalcogen powders.7a–c As a result, we have thermolysed the nido-[1,2-(Cp*Ru)2(μ-H)2B3H7] with Te powder that resulted in the formation of a diruthenium pentalene analogue 2 and a metal indenyl complex 3. In this report, we describe the detailed structural characterization and bonding of these sandwich molecules.

2. Experimental

2.1 General considerations

All the manipulations were conducted under an Ar/N2 atmosphere using standard Schlenk techniques or glove box.
Solvents were distilled prior to use under Argon. LiBH₄ THF 2.0 M, Cp*H, Tellurium powder (Alrrich) were used as received. [Cp*RuCl₂]¹¹ and nido-[1,2-(Cp*Ru)₂(μ-H)₂B₃H₆]¹² was prepared according to the literature methods. The external reference [Bu₄N(B₃H₆)]¹³ for the ¹¹B NMR, was synthesized with the literature method. Preparative thin-layer chromatography was then used as a reference (δ, ppm, CDCl₃, 7.26; C₆D₆, 7.16), while a sealed tube containing [Bu₄N(B₃H₆)] in [D₆]benzene (δₘ, ppm, −30.07) was used as an external reference for the ¹¹B NMR. The Infrared spectra were recorded on a Jasco FT/IR-1400 spectrometer. Mass spectra were recorded using a Bruker MicroTOF-II mass spectrometer in ESI ionization mode. The CV measurements were carried out on a CH potentiostat, model 668.

2.2 Synthesis of compound 2

Compound 1 (0.1 g, 0.19 mmol) was taken in a flame-dried Schlenk tube and dissolved in toluene (15 mL). The resulting solution was heated with five equivalents of Te powder (0.123 g, 0.95 mmol) at 80 °C for 18 h. The reaction mixture was filtered through Celite using hexane. The filtrate was concentrated and the residue was chromatographed on silica gel TLC plates. Elution with a hexane/CH₂Cl₂ (90:10 v/v) mixture yielded orange 2 (0.09 g, 4.5%) and yellow 3 (br, 1H, Ru–H–B), −12.47 (br, 1H, Ru–H–B), −14.04 (br, 1H, Ru–H–B), −11.85 (s, 1H, Ru–H–Ru), −14.66 (s, 1H, Ru–H–Ru). ¹³C[¹H] NMR (125 MHz, d₆-benzene, 22 °C): δ = 95.2, 94.8, 87.5, 86.6 (s, C₅Me₅), 12.3, 12.2, 11.7, 10.5 (s, C₅Me₅); IR (DCM, cm⁻¹): 2962 (C–H), 2354, 2406 and 2480 (B–H). Raman (DCM, cm⁻¹): 289 (Ru–Ru).

2.3 X-ray structure determination

The crystal data for 2 and 3 were collected and integrated using a Bruker Axs kappa apex2 CCD diffractometer with graphite monochromated Mo-Kα (λ = 0.71073 Å) radiation at 150 K. The structures were solved by heavy atom methods using SHELXS-97¹⁵a or SIR92¹⁵b and refined using SHELXL-97 (Table 1).¹⁵c

2.4 Computational details

Quantum chemical calculations were performed on compounds 2a, 2b and 3a (Cp analogues of 3 nido-[(Cp*Ru)₂B₂H₆C₅H₃(CH₃)] using density functional theory (DFT) as implemented in the Gaussian 09 package.¹⁶ The calculations were carried out with the Cp analogue compounds instead of Cp* in order to save computing time. Without any symmetry constraints, all the geometry optimizations were carried out in a gaseous state, (no solvent effect) using PBE0 functional¹⁷ in combination with triple-ζ quality basis set Def2-TZVP. The calculated ¹¹B chemical shielding values, determined at the PBE0/Def2-TZVP level of calculations, were referenced to B₂H₆ (PBE0/Def2-TZVP, B shielding constant 85.9 ppm), and these chemical shift values (δ) were then converted to the standard BF₃·OEt₂ scale using the experimental value of +16.6 ppm for B₂H₆. The ¹H chemical shifts were referenced to TMS (SiMe₄). The computation of the NMR shielding tensors employed gauge-including atomic orbitals (GIAOs),¹⁸ using the implementation of Schrekenbach, Wolff, Ziegler, and co-workers.¹⁹ The ChemCraft package²⁰ was used for the visualizations. The two-dimensional electron density and
Table 1. Crystal data and structural refinement for compounds 2 and 3.

<table>
<thead>
<tr>
<th>Component</th>
<th>2 (CCDC no. 1828946)</th>
<th>3 (CCDC no. 1828947)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{40}H_{64}B_{6}Ru_{4}</td>
<td>C_{27}H_{42}B_{2}Ru_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1014.05</td>
<td>590.36</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>150(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}</td>
</tr>
<tr>
<td>a/Å</td>
<td>11.1227(9)</td>
<td>14.4265(9)</td>
</tr>
<tr>
<td>b/Å</td>
<td>14.2888(11)</td>
<td>16.3603(9)</td>
</tr>
<tr>
<td>c/Å</td>
<td>15.6289(13)</td>
<td>16.3603(9)</td>
</tr>
<tr>
<td>α/°</td>
<td>70.293(3)</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>86.130(3)</td>
<td>90</td>
</tr>
<tr>
<td>γ/°</td>
<td>70.142(3)</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å3</td>
<td>2196.3(3)</td>
<td>2700.6(3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(\rho_{\text{calc}}/\text{g/cm}^3)</td>
<td>1.533</td>
<td>1.452</td>
</tr>
<tr>
<td>(\mu/\text{mm}^{-1})</td>
<td>1.375</td>
<td>1.13</td>
</tr>
<tr>
<td>F(000)</td>
<td>1020</td>
<td>1208</td>
</tr>
<tr>
<td>2θ range for data collection/°</td>
<td>5.834 to 49.998</td>
<td>6.122 to 54.948</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>7709 [R\text{int} = 0.0606, R\text{sigma} = 0.0614]</td>
<td>6158 [R\text{int} = 0.0551, R\text{sigma} = 0.0629]</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.163</td>
<td>1.104</td>
</tr>
<tr>
<td>Final R indexes [I≥2σ (I)]</td>
<td>R\text{1} = 0.0595, wR\text{2} = 0.1356</td>
<td>R\text{1} = 0.0453, wR\text{2} = 0.0900</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R\text{1} = 0.0780, wR\text{2} = 0.1495</td>
<td>R\text{1} = 0.0551, wR\text{2} = 0.0939</td>
</tr>
</tbody>
</table>

Laplacian electronic distribution plots were generated using Multiwfn package.21

3. Results and Discussion

3.1 Synthesis of \([(Cp^{*}Ru)\{(Cp^{*}Ru)_{2}B_{6}H_{14}\}](RuCp^{*}))\), 2

As shown in Scheme 1, the thermolysis of \(\text{nido-I}\) with five equivalents of Te powder yielded a moderately air-stable solid 2. Compound 2 isolated as orange solid in its purest form by thin-layer chromatography (TLC) and characterized by \(^{11}\text{B}\{\text{H}\}, \text{H} \text{and } ^{13}\text{C}\{\text{H}\}\text{NMR, IR spectroscopy and a single-crystal X-ray diffraction study. In parallel to the formation of compound 2, the reaction also yielded compound 3 in very less yield.}14\) Compound 3 was characterised with limited spectroscopic data and a single-crystal X-ray diffraction analysis.

The solid-state X-ray structure of 2, shown in Figure 1, can be viewed as a fused structure in which two diruthenaborane cages fused in a transoid fashion with two common boron atoms, to generate a planar \(\text{Ru}_{2}\text{B}_{6}\) fragment. The framework is analogous to that of isoelectronic dinuclear pentalam complex \([\text{Cp}^{*}\text{M}(\text{C}_{8}\text{H}_{6})\text{MCp}^{*}]\), (M = Fe or Ru)22 and \([(\text{Cp}^{*}\text{Ru})\text{B}_{8}\text{H}_{14}](\text{RuCp}^{*}))3 (Chart 2). In compound 2, the ruthenium atoms are bonded symmetrically to the \(\text{Cp}^{*}\) ligands. The average Ru-B distance is found to be larger (d_{Ru-B} 2.228 Å) as compared to \([(\text{Cp}^{*}\text{Ru})\text{B}_{8}\text{H}_{14}](\text{RuCp}^{*}))1 (d_{Ru-B} 2.15 Å). The average distance between two Ru is 2.837 Å. As shown in Figure 1, two Ru atoms (Ru2 and Ru3) are bridged by \(\text{Ru}^{\text{R}}\text{Ru}\) and \([(\text{Cp}^{*}\text{Ru})\text{B}_{8}\text{H}_{14}](\text{RuCp}^{*}))3 fragment, in which the ends of \(\text{B}_{4}\text{H}_{x}\) (x = 6 or 8) are bonded by two Ru atoms (Ru1 and Ru4) forming cyclic metal-boron rings. These cyclic RuB4Hx (x = 6 or 8) units are fused by a B–B bond (B3–B6) resulting in a fused dimetallacycle. The B6–Ru1–B1–B2–B3 ring is puckered with the Ru1 lying 0.128 Å out of the least square plane defined by boron atoms B1–B2–B3–B6 (mean deviation from the plane = 0.045 Å). Similarly, in the Ru4–B6–B5–Ru4–B4–B3 ring the Ru4 lies 0.528 Å out of the least square plane defined by boron atoms B6–B5–B3–B4 (mean deviation from the plane = 0.003 Å).

Consistent with the X-ray structure determination, the \(^{11}\text{B}\{\text{H}\}\text{NMR spectrum reveals six different resonances (δ = 21.58, 14.23, 11.59, 9.53, −1.95 and −30.66 ppm) reflecting the lack of symmetry in the molecule. In addition to \(\text{Cp}^{*}\) protons, the \(^{1}\text{H}\text{NMR spectrum of 2 shows up-field resonances at δ = −0.78, −1.50, −2.56 and −4.48 for B–H–B, δ = −11.08, −12.17, −12.47 and −14.04 for B–H–Ru and −11.85 and −14.66 ppm for the presence of Ru–H–Ru protons. Assignment of the Ru–Ru stretching vibration...}
Scheme 1. Synthesis of compounds 2 and 3.

Figure 1. Molecular structure of compound 2. Selected interatomic distances (Å) and angles (°): Ru1–Ru2 2.854(7), Ru3–Ru4 2.821(5), Ru1–B6 2.402(10), Ru1–B1 2.99(13), B1–B2 1.811(14), B3–B6 1.789(12), B1–Ru1–B6 81.0(4), B2–B3–B4 135.7(7), Ru1–B6–B5 133.9(5).

in compound 2 is evidenced by a single resonance-enhanced band at 289 cm\(^{-1}\), which falls within the reported range.\(^{23}\)

To gain some insight into the electronic structure and bonding nature of 2a (Cp analogue of 2), we carried out the density functional theory (DFT) calculations\(^ {16}\) and compared with 2b. The optimized structure of 2a (Figure S13 and Table S1 in Supplementary Information) is in good match with its X-ray structure. Further, the DFT calculations helped us to confirm the position of the bridging hydrogen atoms that could not be located by X-ray diffraction studies. The DFT-computed energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for 2a of 4.43 eV at PBE0 level is consistent with its high thermodynamic stability. However, the HOMO–LUMO gap for 2a is much less than its parent metallaborane 2b (5.66 eV). This led us to compare their MO diagrams (Figure 2). Analyses of the frontier orbitals for 2a reveals a significant increase in HOMO energy (ca. 0.67 eV) and decrease in LUMO energy (ca. 0.56 eV) with respect to 2b. Consequently, it leads to the decrease in HOMO–LUMO gap of 2a compared to 2b (Figure 2). Previous theoretical calculations on compound 2b showed that the LUMO of B\(_8\)H\(_{14}\)\(^{-}\), which is essentially vacant orbitals centered at B\(_8\)H\(_{14}\) ligand, is destabilized and higher in energy due to the

Chart 2. Dimetala pentalene complex [Cp*M(pentalene)MCp*] (M = Fe and Ru), pentalene analogue [Cp*Ru(B\(_8\)H\(_{14}\))RuCp*] and a metallaborane analogue of diruthenium pentalene, 2.
Figure 2. Frontier molecular orbitals of 2a and 2b (isocontour value ±0.03 [e/Bohr^3]^{1/2}).

electropositive nature of B. In contrast, the presence of two 2 electron donor {Cp*RuH} fragments in the central [(Cp*Ru)_{2}B_{6}H_{14}]^{2-} ligand of 2a destabilizes the HOMO and stabilizes the LUMO, resulting in a smaller HOMO/LUMO gap of 2a (compared to 2b). This may be attributed to the presence of electron rich {Cp*RuH} fragments compared to the BH units.

To understand the bonding of the nearly planar [Cp*Ru_{2}B_{6}H_{14}]^{2-} unit and the nature of Ru–B and B–B bonding in 2a, the topological analyses were carried out. As shown in Figure 3, the results show an area of charge concentration along each Ru–B and B–B bonds in [Ru_{2}B_{6}] plane indicating the σ/π delocalized bonds between Ru and B atoms. In addition, the boron–metal interaction has more covalent character as compared to B–B bonds in 2a. This is also indicated by higher values of the electron density (ρ) and a negative value of the energy density [H(r)] at bcp’s (Table S3 in Supplementary Information).

Compound 2 is a redox active molecule which has been concluded from its cyclic voltammetric studies. The cyclic voltammogram of [Cp*Ru(C_{8}H_{6})RuCp*] exhibits one reversible oxidation wave and an irreversible wave at 0.29 V higher potential. The irreversible behaviour is attributed to the oxidation reaction of the Cp* ligand, analogous to the behaviour of [Cp*_{2}Ru] on oxidation. Compound 2 in a similar way exhibits three successive one-electron oxidations with the first two are separated by approximately 0.4 V while the 2nd and 3rd potentials are separated by 0.23 V. The first redox event 2^{0}/2^{+} is quasi-reversible, but the second and third oxidations 2^{+}/2^{2+} and 2^{2+}/2^{3+} are irreversible as shown by the lack of a return wave. The cyclic voltammogram of 2 is similar to that of [(Cp*Ru)B_{8}H_{14}(RuCp*)]^{3} that shows two successive one-electron oxidations separated by approximately 0.8 V (Figure S5 in Supplementary Information).

3.2 Solid state X-ray structure of 3

Although compounds 2 and 3 were isolated from the same reaction, all of our attempts to reproduce 3 were unsuccessful. However, with the limited spectroscopic data and an X-ray crystallographic analysis, we have characterized compound 3. The ^1{H} chemical shifts appeared at δ = −16.8 and −19.2 ppm correspond to the two different boron environments. The ^1{H} NMR spectrum of 3 displayed two signals (δ = 1.87 and 1.51 ppm) corresponding to Cp* protons in 1:1 ratio. Further, it predicts the presence of three up-fielded resonances at δ = −10.84, −11.16 and −12.23 ppm. These observed up-fielded chemical shifts may be due to the presence of Ru–H–B and Ru–H–Ru hydrogens.
Figure 4. Molecular structure of compound 3. Selected bond distances (Å) and angle (°): Ru1–Ru2 2.9578(8), Ru1–B21 2.349(12), Ru2–B21 2.391(11), Ru2–B28 2.386(10), C22–C27 1.43(3), Ru1–C22–B21 71.00(8), B21–Ru2–B28 76.4(4), B21–C22–C27 117.7(15), and C23–C22–C27 120.6 (17).

The solid-state X-ray structure of compound 3 may be considered as an eight-step nido-[(Cp*Ru)2B2H8C6H3(CH3)] cluster (Figure 4). Compound 3 ([Cp*Ru]2B2H8C6H3(CH3)) can be viewed as an edge-fused ruthenaborane cluster in which a toluene ring being fused to a pentagonal pyramidal ring Ru2B2C2. The structure of 3 is analogous to the isoelectronic ruthenium indenyli complex with a central indenyl ligand [(η⁵-C5R5)Ru(η⁵-C9H7)] (R = Me). The C–C bond length in 3 that is fused with the pentagonal pyramid ring is about 1.43 Å, which can be considered to have a partial double bond character. The respective C–C bond in 3 is slightly longer than the C=C bond length of toluene (1.40 Å), but shorter as compared to similar reported indenyl compounds, which indeed longer than the normal C=C length (1.33 Å). The Ru–Ru bond distance (2.9578 Å) is considerably longer than the reported diruthenaboranes. The RuB2C6 fragment in 3 is a true analogue of the η⁵-indenyl ligand and this further illustrates the similarity of the properties of boron and its immediate neighbour carbon and their tendency to form similar structures by using the concept of isolobal analogy.

4. Conclusions

In this article, we have synthesised and structurally characterized the metallaborane analogue of diruthena pentalene and an indenyl complex. Diruthena pentalene complex 2 is a notable entry in to the class of pentalene complexes containing main group and transition metals. On the other hand, compound 3 that contains a {RuB2C6} fragment is a true analogue of η⁵-indenyl ligand. Theoretical calculations adequately explained the electronic structure of 2. Further, we have demonstrated that the HOMO–LUMO gap decreases when two of the BH fragments in the parent molecule were replaced by two 2-electron {Cp*RuH} fragments.

Supplementary Information (SI)

Supplementary data contains the X-ray crystallographic files in CIF format for 2 and 3, CCDC 1828946 (2) and 1828947 (3) for this work. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. All additional information pertaining to characterization of the complexes 2-3 using ESI-MS technique, IR spectra and multinuclear NMR spectra (Figures S1–S8), and computational details are given in the Supplementary Information available at www.ias.ac.in/chemsci.

Acknowledgements

The generous support of the Council of Scientific & Industrial Research, CSIR (Project No. 01(2837)/15/EMR-II), New Delhi, India, is gratefully acknowledged. B.J. and UGC and IIT Madras for research fellowships. We are very thankful to Dr. Bijan Mondal for scientific discussion. We thank Dr. Babu Varghese (SAIF, IIT Madras) for X-ray data analysis. IIT Madras is gratefully acknowledged for computational facilities.

References

complexes that were derived from [Cp*CoCl_2] and mono-metal carbonyl fragments Chem. Eur. J. 19 15219

12. Lei X, Shang M and Fehlner T P 1999 Chemistry of dimetallaboranes derived from the reaction of [Cp^6MCl_2] with Monoboranes (M = Ru, Rh; Cp^6 = η^5-C_5Me_5) J. Am. Chem. Soc. 121 1275

14. Although our aim was to isolate Te incorporated metallahetroborane clusters, we were able to isolate compounds 2 and 3 in poor yields. Note that the [11^B NMR of the reaction mixture indicated several boron containing products, however we were unable to isolate any of these due to their instability. Compound 3 was isolated in a very poor yield and all our attempts to reproduce this molecule were failed. Thus, compound 3 was characterized by limited spectroscopic data and an X-ray structural analysis.

15. (a) Sheldrick G M 1997 SHELXS-97 University of Gottingen: Germany; (b) SIR92, Altomare A, Cascarano G, Giacovazzo C and Guagliardi A 1993 Completion and refinement of crystal structures with SIR92 J. Appl. Cryst. 26 343; (c) Sheldrick G M 1997 SHELXL-97 University of Gottingen: Germany

23. (a) Tait C D, Garner J M, Collman J P, Sattelberger A P and Woodruff W H 1989 Vibrational study of multiply inserted metal-metal bonds J. Am. Chem. Soc. 111 7806; (b) Poizat O and Sourisseau C 1984 Infrared, Raman, and resonance Raman studies of the ru(2,2'-bpy)_{2}^{2+} cation in its chloride crystal and as an intercalate in the layered MnP3S Compound J. Phys. Chem. 88 3007

27. (a) Mercier A, Yeo W C, Chou J, Chaudhuri P D, Bernardinelli G and Kundig E P 2009 Synthesis of highly enantiomerically enriched planar chiral ruthenium complexes via Pd-catalysed asymmetric hydrogenolysis Chem. Commun. 5227; (b) Wagschal S, Mercier A and Kundig E P 2013 Enantioselective desymmetrization of 1,2,3-trisubstituted metallocenes by molybdenum-
catalyzed asymmetric intraannular ring-closing metathesis *Organometallics* **32** 7133
