Insight into solid-liquid phase transfer catalyzed synthesis of Mecoprop ester using K₂CO₃ as base and development of new kinetic model involving liquid product and two solid co-products

GANAPATI D YADAV* and GUNJAN P DESHMUKH
Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra 400 019, India
E-mail: gdyadav@yahoo.com; gd.yadav@ictmumbai.edu.in

Abstract. 2-Methyl-4-chlorophenoxy propionic acid (Mecoprop) is a widely used household herbicide. In the current work, a simple synthetic method is developed for Mecoprop methyl ester using solid-liquid phase transfer catalysis (S-L PTC) with K₂CO₃ as mild base and toluene as solvent. Conversion of 95% was achieved with 100% selectivity for Mecoprop ester at 100 °C. Simple isolation process was employed to recover the product from the reaction mixture. A reaction mechanism was proposed and new kinetic model developed involving one liquid and two solid co-products. The activation energy for the reaction was calculated. This is the first example of its kind being reported vis-à-vis kinetics and mechanism.

Keywords. Phase transfer catalysis; O-alkylation; mecoprop ester; kinetic modelling; solid-liquid reaction.

1. Introduction

2-Methyl-4-chloro phenoxy propionic acid (Mecoprop) is one of the widely used herbicides of the phenoxy acid family. Several salts and esters of Mecoprop are used as active agents in herbicidal formulations. It is also utilized as an intermediate in the synthesis of natural products and pesticides. Methyl-2-(4-chloro-2-methylphenoxy) propionate (Mecoprop ester) is one of the esters, employed as an intermediate in the synthesis of Mecoprop. Several methods are reported for synthesis of chloro phenoxy acid derivatives using alkali as base. In almost all processes, strong aqueous bases are used which are neutralized using mineral acids generating waste and are difficult to handle.

Phase transfer catalysis (PTC) is a widespread technique with continuous developments and new applications in the current age of synthetic chemistry. Different types of phase transfer catalytic techniques are known with several applications. During last few years, our laboratory has developed different concepts and applications of PTC such as process intensification in liquid-liquid-liquid (L-L-L) PTC, microwave irradiated L-L-L PTC (MILL-PTC) ionic liquid as PTC and pseudo-PFC. Among these studies, solid-liquid PTC is a well-known technique for different reactions. Alkalis such as NaOH and KOH are widely used as bases in phase transfer catalyzed reactions. These strong bases sometimes portray several disadvantages. The reactions with alkali as base involve multi-step synthesis and isolation of product, which is a tedious process reported in a couple of patents. In the case of water sensitive reactants, carbonates can be used as bases to avoid side reactions and hydrolysis of reactants. Thus, carbonates can be a good option to explore them as non-nucleophilic bases. Non-nucleophilic alkali carbonates such as K₂CO₃ and Na₂CO₃ can provide an efficient substitution for these alkali bases. Carbonates provide mild conditions for reaction, can suppress the side reactions and provide minimum corrosion of reactor and auxiliary equipment. A variety of PTC reactions are reported, wherein carbonates are employed as bases such as reactions of phosphorous and sulphur based compounds, oxidation, N-alkylation, O-alkylation and synthesis of amino acids, etc. A variety of multiphasic reactions involving PTC have been modeled by us. In the present work, a novel route for the synthesis of Mecoprop ester was established. Several phase transfer catalysts such as tetrabutylammonium bromide (TBAB), ethyltriphenyl phosphonium bromide (ETPPB), tetrabutylphosphonium bromide (TBPB), etc.
tetrabutyl ammonium hydrogen sulfate (TBAHS) and triethylammonium bromide (TEAB) were screened for the reaction. Among these K₂CO₃–TBAB: base-catalyst pair in solid-liquid PTC was found the best. In relatively milder conditions, >95% conversion and 100% selectivity for the product was achieved. Kinetics for the reaction was established and the activation energy was also calculated. The product was recovered by simple isolation process.

2. Experimental

2.1 Chemicals and catalysts

4-Chloro-2-methyl phenol (CMP) and ethyl-2-chloro propionate (ECP) were obtained from Sigma Aldrich. All PTC reagents were obtained from Dishman Pharmaceuticals and Chemicals Ltd., Ahmedabad, India as gift samples. NaOH and toluene were obtained from M/s S.D. Fine Chemicals, Mumbai, India. All the chemicals were used as received without purification.

2.2 Experimental procedure

All the reactions were studied in a glass reactor. The details of the reactor are mentioned in previous work done in our lab. The impeller of the reactor was kept 2 cm above the bottom to ensure complete mixing of solid–liquid suspension to achieve maximum mass transfer rates. The reactor was placed in an isothermal oil bath at the temperature required to perform the reaction. The quantities of chemicals and reagents were weighed, added to the reactor and then the temperature raised. The catalyst quantity was added in reactor once it reached the desired temperature. Typical experimental runs were conducted by preparing reaction mixture of CMP (0.0028 mol), ECP (0.003 mol), K₂CO₃ (0.0032 mol), toluene (20 cm³) and TBAB (3 × 10^{−4} mol) at 100 °C.

2.3 Analysis

Samples were withdrawn periodically. Agitation was stopped and the solid suspension allowed to settle. The sample was centrifuged after withdrawal and further analyzed by GC (Chemito model 1000) using capillary column (BPX- 50).

The products were confirmed by GCMS (Perkin Elmer, Claricus Model 500 on Elite 1 capillary column of length 30 m and inner diameter 0.25 mm).

2.4 Reaction scheme

2.4a Overall reaction: See Scheme 1.

2.4b Reaction mechanism: See Scheme 2.

2.5 Isolation of the product

At the end of the experiment, the reaction mass was filtered to remove solid KHCO₃, unreacted K₂CO₃ and KBr. The solid was washed with 5 mL toluene to collect the adsorbed product on the surface of solid particles. The collected filtrate was washed with 2% NaOH. Further, toluene was distilled out to obtain the pure product.

3. Results and Discussion

3.1 Mechanism and kinetic model

In the usual mechanism of S-L PTC, an ion-pair is formed between the quaternary phase transfer cation and the reactive anion (ion-exchange reaction) as discussed in our previous work. However, in this case, a different model is developed due to the specific nature of reaction forming two solid products. The complete reaction sequence can be illustrated as given below.

In this overall reaction, the first reaction step is an abstraction of a proton from the phenolic compound (R₁PhO^{-H}) by K₂CO₃ in organic phase. All inorganic salts are sparingly soluble in organic medium and thus there is a saturation solubility denoted by an asterisk with an equilibrium. The various equilibria and reactions are also depicted as given below:

\[
K_2CO_3(s) \rightleftharpoons K_2CO_3^* \\
R_1PhO^-H^+ + K_2CO_3^* \rightleftharpoons R_1PhO^- + KCO_3^* \\
+ KHCO_3^* \text{ (org)}
\]
Insight into solid-liquid phase transfer catalyzed synthesis of Mecoprop ester

Scheme 2. The reaction mechanism for the synthesis of Mecoprop ester under S-L PTC.

The actual reaction is given by the following:

\[RX_{(org)} + [R_1PhO^-Q^+]_{(org)} \xrightarrow{k_2} RR_1PhO_{(org)} \]

\[+ [Q^+X^-]_{(org)} \]

By using the above equilibria, the following is derived:

\[[R_1PhO^-Q^+]_{(org)} = \frac{K_1K_2K_3K_4K_5[R_1PhO^-H^+]_{(org)}[K_2CO_3]_{(s)}[Q^+X^-]_{(org)}}{[KHC\text{O}_3]_{(s)}[KX]_{(s)}} \]

The rate of reaction of RX is given by:

\[-\frac{d[RX]_{(org)}}{dt} = k_2[RX]_{(org)}[R_1PhO^-Q^+]_{(org)} \]

In Equation (7), it is necessary to substitute for \([R_1PhO^-Q^+]_{(org)}\) in terms of known variables. The following equilibria hold:

\[K_1 = \frac{[K_2CO_3]_{(s)}}{[K_2CO_3]_{(s)}} \]

The phenolic \(R_1PhOH\) is taken in stoichiometric excess over the substrate RX and also the conversion of \(R_1PhOH\) is complete in the \(R_1PhOK\) form since \(K_2CO_3\) is taken in excess over \(R_1PhOH\). Thus, the following could be written:
Thus, a plot of \([R_1 PhO^- Q^+]_{\text{org}} \) is present in bulk organic phase (toluene) to form (Figure 1). In S-L PTC the entire quantity of the catalyst was screened for O-alkylation of CMP. Catalysts such as TBAB, TBPB, TBAHS and TEAB were used (Figure 1). In S-L PTC the entire quantity of the catalyst is present in bulk organic phase (toluene) to form active \([R_1 PhO^- Q^+]_{\text{org}} \) unlike the L-L PTC wherein it remains distributed across the aqueous and organic phases in four ion-pairs. The ion exchange reaction for TBAB is very fast with \(K_2 CO_3 \) as compared with other catalysts such as CTAB, TEAB and ETPPB. Tetrabutyl cation is more reactive as compared with tetraethyl cations, when exchanged with large anions of \([R_1 PhO^- Q^+]_{\text{org}} \). Further, in the case of ethyltriphenyl cation, it shows less activity due to the formation of strong ion pairs with bromides. The order of the catalyst for the conversion of phenol can be given in the following sequence:

\[
\text{TBAB(max)} > \text{TBPB} > \text{TBAHS} > \text{CTAB} > \text{TEAB} > \text{ETPPB}.
\]

From the reactivity trend obtained, it is concluded that TBAB gives the perfect balance between its lipophilicity and structure size. A catalyst such as TEAB lacks the lipophilic character to allow the ion pair to dissolve in toluene and further react with the substrate. On the contrary catalysts with bulkier alkyl group show steric hindrance to form ion pair with the phenol. The reaction was also studied without catalyst which showed marginal conversion.

\[
[R_1 PhO^- Q^+]_{\text{org}} = \frac{K_1 K_2 K_3 K_4 K_5 [R_1 PhO^- H^+]_{\text{org}} [K_2 CO_3]_a [Q^+ X^-]_{\text{org}}}{[KHCO_3]_a [KX]_a} \quad (15)
\]

\[
= K_4 [Q^+ X^-]_{\text{org}} \quad (16)
\]

Now, in the organic phase the total catalyst \(Q_0 \) exists in the form of two ion-pairs in S-L PTC, unlike the L-L PTC where it is in four different ion-pairs. The material balance on total catalyst added to the system gives the following:

\[
Q_0 = \text{total concentration of catalyst in organic phase, mol/cm}^3
\]

\[
\begin{align*}
[R_1 PhO^- Q^+]_{\text{org}} &= [R_1 PhO^- Q^+]_{\text{org}} (1 + \frac{1}{K_e}) \\
\left[R_1 PhO^- Q^+ \right]_{\text{org}} &= \frac{K_e Q_0}{(K_e + 1)} \\
\frac{d[RX]_{\text{org}}}{dt} &= k_2 K_e Q_0 (K_e + 1) \quad (19)
\end{align*}
\]

The above equation is a typical pseudo-first order rate equation.

Let \(X_A = \frac{[RX]_{t=0} - [RX]_t}{[RX]_{t=0}} \), the fractional conversion of RX. Then on integration, it leads to:

\[
-\ln(1 - X_A) = \frac{k_2 K_e Q_0}{(K_e + 1)} t = k_1 t
\]

Where

\[
k_1 = k Q_0 \quad (21)
\]

and

\[
\frac{k_2 K_e}{(K_e + 1)} = k \quad (22)
\]

Thus, a plot of \(-\ln(1 - X_A)\) against \(t \) will give a slope equal to \(k_1 \). From the knowledge of the initial quantity of catalyst, the rate constant \(k \) can be calculated. Order of magnitude analysis suggests that the catalyst is mostly in the \([R_1 PhO^- Q^+]_{\text{org}} \) form and thus \(K_e >> 1 \) leading to \([R_1 PhO^- Q^+]_{\text{org}} \) \(\approx Q_0 \). It was thus planned to test the above model.

3.2 Effect of different phase transfer catalysts

Various nitrogen, phosphorous and sulphur based PTC were screened for O-alkylation of CMP. Catalysts such as TBAB, ETPPB, TBPB, TBAHS and TEAB were used (Figure 1). In S-L PTC the entire quantity of the catalyst is present in bulk organic phase (toluene) to form active \([R_1 PhO^- Q^+]_{\text{org}} \) unlike the L-L PTC wherein

![Figure 1](image-url). Effect of different PTC used for reaction of 4-chloro-2-methyl phenol (CMP). 4-Chloro-2-methyl phenol \(-0.0028 \) mol; Ethyl-2-chloropropionate \(-0.003 \) mol; \(K_2 CO_3 \) \(-0.0032 \) mol; catalyst \(-0.000014 \) mol/cm\(^3\); agitation speed \(-1200 \) rpm; solvent (toluene) \(-20 \) ml; temperature \(-100 \) \(^\circ\)C.
Figure 2. Effect of the speed of agitation on conversion of CMP. 4-Chloro-2-methyl phenol – 0.0028 mol; Ethyl-2-chloropropionate – 0.003 mol; K₂CO₃ – 0.0032 mol; catalyst – 0.000014 mol/cm³; solvent (Toluene) – 20 mL; temperature – 100 °C. (●) 800, (▲) 1000, (●) 1200, (■) 1400.

Thus, all further reactions were studied using TBAB as a catalyst as it showed enhanced activity, is inexpensive and commercially available with high purity.

3.3 Effect of speed of agitation

Influence of mass transfer was determined by varying the stirring speed from 800 to 1400 rpm. The rate of the reaction dramatically increases when stirring speed is increased from 800 to 1200 rpm (Figure 2). This might be due to increase in interfacial area per unit volume of dispersion which increases linearly with increase in speed of agitation. However, there is a marginal difference in conversion between 1200 and 1400. Thus, S-L mass transfer resistance at and above 1200 rpm is overcome and further experiments were studied at 1200 rpm.

3.4 Effect of K₂CO₃ quantity and particle size

The effect of quantity of K₂CO₃ was studied for the conversion of CMP to form the product. As the solid base was added to the reaction, its concentration in organic phase could not be varied. The quantity of K₂CO₃ to CMP was varied in the ratio of 0.9 to 1.2. As stated earlier, more quantity of K₂CO₃ helps in saturation of organic phase as given by equations 1 and 3, and then exchange with the quaternary cation leading to maximum of \([R₁PhO⁻Q⁺]_{(org)}\) occurs. Conversion of CMP goes on increasing with increase in the quantity of base. At lower mole ratio less conversion was observed and this might be due to the insufficient quantity of K₂CO₃ which is available for reaction. From Figure 3, one can note that a little more quantity of K₂CO₃ than stoichiometry is enough to achieve the best conversion. Further, the reaction was studied with fine powder and granular K₂CO₃. The fine powder gave a good rate and conversion for the reaction which is explained later (Figure 4).

The rate of solid-liquid mass transfer is dependent upon the surface area provided by the number of particles and will be maximum if fine particles instead of granular ones are used. In the current case the surface area per unit volume of the particle is:

\[n_p \left(\frac{6}{d_p^2} \right)\]

where \(n_p\) and \(d_p\) are a number of particles and particle diameter, respectively. Thus, with finer the particles more surface area is provided. Thus, the solid-liquid mass transfer coefficient can be given by the limiting Sherwood number, \(Sh = \frac{k_{SL}d_p}{D_A} = 2\), which is far greater than 2 in agitated vessels. \(D_A\) is the diffusivity of dissolved K₂CO₃ in the liquid phase. The value of particle surface area per unit liquid volume is \(a_p = \frac{6W}{\rho_p d_p}\) where \(W\), \(\rho_p\) and \(d_p\) are solid loading (g/cm³), particle density (g/cm³) and particle diameter respectively. Thus,
the solid-liquid mass transfer rate is given by $k_{SL} a_p [B_S]$ where $[B_S]$ is the solid saturation concentration wherein B forms an ion-pair with phenoxide species leading to the formation of potassium salt with K and KHCO3. The K$^+$ is then exchanged with Q$^+$ X$^-$ (org) species to form quaternary ion-pair and K$^+$ X$^-$ (solid). The concentration of the phenoxide ion will always be at its saturation value for fine particles and the rate of solid-liquid mass transfer will be far greater than reaction rate in the liquid phase. Thus, after certain particle size, the rate of reaction or conversion will be independent of particle size as given in Figure 4.

3.5 Effect of catalyst loading

Catalyst concentration plays an important role in S-L PTC because the catalyst is a medium between reaction between solid and organic phase. Increase in catalyst concentration increases the rate of reaction. The catalyst concentration was varied from 6.2×10^{-6} to 1.5×10^{-5} mol/cm3 (Figure 5). Even though the concentration of the catalyst is increased the concentration of Q$^+$ PhO$^-$ is the saturation value and therefore, the rate of conversion remains the same. Thus, 1.4×10^{-5} mol/cm3 was considered as optimum catalyst concentration. The experimental data were validated with the model (Figure 6).

Figure 4. Effect of size of K$_2$CO$_3$ on conversion of CMP. 4-Chloro-2-methyl phenol – 0.0028 mol; Ethyl-2-chloro-propionate – 0.003 mol; K$_2$CO$_3$ – 0.0032 mol; catalyst – 0.000014 mol/cm3; solvent (Toluene) – 20 mL; temperature -100°C. (■) Granular K$_2$CO$_3$ (●) Fine powder of K$_2$CO$_3$.

Figure 5. Effect of catalyst loading on conversion of CMP. 4-Chloro-2-methyl phenol – 0.0028 mol; Ethyl chloro propionate – 0.0032 mol; K$_2$CO$_3$ – 0.0032 mol; agitation speed – 1200 rpm; solvent (Toluene) – 20 mL; temperature -100°C. (+) 6.2×10^{-6} mol/cm3; (●) 7.8×10^{-6} mol/cm3; (●) 9.31×10^{-6} mol/cm3; (×) 1.1×10^{-5} mol/cm3; (○) 1.24×10^{-5} mol/cm3; (△) 1.39×10^{-5} mol/cm3; (▲) 1.55×10^{-5} mol/cm3.

Figure 6. Validation of model at different catalyst loadings. 4-Chloro-2-methyl phenol – 0.0028 mol; Ethyl-2-chloro-propionate – 0.0032 mol; K$_2$CO$_3$ – 0.0032 mol; catalyst – 0.000014 mol/cm3; agitation speed – 1200 rpm; solvent (Toluene) – 20 mL; temperature -100°C. (+) 6.2×10^{-6} mol/cm3; (●) 10^{-6} g/cm3; (○) 1.1×10^{-5} g/cm3; (△) 1.24×10^{-5} g/cm3; (×) 1.39×10^{-5} g/cm3; (○) 1.55×10^{-5} g/cm3.

Figure 7 demonstrates the effect of catalyst concentration of the pseudo-rate constant k_1. It gives a very good fit suggesting that as stated earlier $K_e \gg 1$ and hence $[R_1 PhO^- Q^+]_{(org)} \simeq Q_a$.
3.6 Effect of mole ratio

The effect of variation in mole ratio was studied to find out optimum concentration to achieve maximum conversion and selectivity towards the product. Mole ratio was studied from 1:0.9 to 1.2 with reference to CMP (Figure 8). The catalyst loading was kept 1.4×10^{-5} mol/cm3. It is concluded that the conversion goes on increasing with increase in the concentration of CMP.

3.7 Effect of temperature

The effect of temperature on conversion of CMP was studied at different temperatures from 80 to 110°C under otherwise similar experimental conditions (Figure 9). Increase in temperature results in an increase in
the initial rate of reaction. The conversion also increased subsequently. However, only marginal difference was observed. The model for each temperature was also tested to get good statistical fit (Figure 10). Thus, the Arrhenius plot was made and activation energy for the reaction was found as 15.4 kcal/mol (Figure 11).

4. Conclusion

A simple process was developed for the synthesis of mecoprop ester from 4-chloro-2-methyl phenol (CMP) and ethyl-2-chloropropionate using K2CO3 as a mild base with >95% conversion under solid-liquid phase transfer catalysis. Tetrabutylammonium bromide was found as an excellent catalyst among all the catalysts screened. A simple isolation process for the product was developed. A new insight was provided into the reaction mechanism and kinetics of the reaction. A complete theoretical analysis of the process involving one liquid and two solid co-products was carried out to describe the observed rate data for the first time in published literature on S-L PTC. The apparent activation energy for the reaction is 15.4 kcal/mol.

Acknowledgements

G D Yadav acknowledges support from R T Mody Distinguished Professor Endowment and J C Bose National Fellowship of Department of Science And Technology, Government of India. G P Deshmukh acknowledges University Grant Commission (UGC) for award of SRF under its UGC-SAP green technology programme.

References

4. Camps P, Pérez F and Soldevilla N 1998 (R)- and (S)-3-Hydroxy-4,4-dimethyl-1-phenyl-2-pyrrolidinone as chiral auxiliaries in the enantioselective preparation of α-aryloxypropanoic acid herbicides and α-chlorocarboxylic acids Tetrahedron: Asymmetr. 9 2065
11. Loewenthal H J E and Loewenthal B 2002 Conversion of hydroxy group in certain alcohols into a fluoro- or trimethanesulphonate ester United States Patent 6395918 B1

Figure 11. Arrhenius plot.
Insight into solid-liquid phase transfer catalyzed synthesis of Mecoprop ester

